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Abstract
Fecal microbial biomarkers represent a less invasive alternative for acquiring informa-
tion on wildlife populations than many traditional sampling methodologies. Our goal 
was to evaluate linkages between fecal microbiome communities in Rocky Mountain 
elk (Cervus canadensis) and four host factors including sex, age, population, and 
physical condition (body-fat). We paired a feature-selection algorithm with an LDA-
classifier trained on elk differential bacterial abundance (16S-rRNA amplicon survey) 
to predict host health factors from 104 elk microbiomes across four elk populations. 
We validated the accuracy of the various classifier predictions with leave-one-out 
cross-validation using known measurements. We demonstrate that the elk fecal mi-
crobiome can predict the four host factors tested. Our results show that elk microbi-
omes respond to both the strong extrinsic factor of biogeography and simultaneously 
occurring, but more subtle, intrinsic forces of individual body-fat, sex, and age-class. 
Thus, we have developed and described herein a generalizable approach to disen-
tangle microbiome responses attributed to multiple host factors of varying strength 
from the same bacterial sequence data set. Wildlife conservation and management 
presents many challenges, but we demonstrate that non-invasive microbiome surveys 
from scat samples can provide alternative options for wildlife population monitoring. 
We believe that, with further validation, this method could be broadly applicable in 
other species and potentially predict other measurements. Our study can help guide 
the future development of microbiome-based monitoring of wildlife populations and 
supports hypothetical expectations found in host-microbiome theory.
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1  |  INTRODUC TION

Plummeting global biodiversity has created an overwhelming de-
mand for improved species conservation (Pimm et al., 2014). Lacking 
the required funding to meet increasing conservation demands, 
managers and conservationists have necessarily adopted more 
spartan conservation strategies to stretch their limited personnel 
and budgets, analogous to medical “triage” and “hospice” (Gameiro 
et al., 2020; Peterson et al., 2020). These conservation strategies 
seemingly are stopgap measures, since the numerous anthropogenic 
forces that erode the sustainability of wildlife populations still loom 
large (Ceballos et al., 2015).

Non-invasive monitoring methods can support conservation 
efforts by helping to fill gaps in knowledge vital to protecting and 
managing species of concern. These methods have been rapidly 
gaining traction in applied wildlife conservation and are becoming 
more cost-effective thanks to breakthroughs in molecular and ge-
nomic technologies (Carroll et al., 2018). One such method is fecal 
microbiome analysis, which may help to strike a balance between the 
competing themes of hyper-efficient management needs and costly 
monitoring data, while also meeting public expectations for animal 
welfare (Dubois & Harshaw, 2013).

Metagenomics and other culture-independent techniques for 
studying host-microbiomes have begun to provide insights rele-
vant to non-invasive wildlife conservation (Bahrndorff et al., 2016; 
Redford et al., 2012; Trevelline et al., 2019; West et al., 2019). 
Numerous studies have established that microbiomes reflect and 
sometimes dictate interactions connecting the host organism with 
its environment, which impacts host fitness (Zilber-Rosenberg & 
Rosenberg, 2008). The host and its microbial complement are co-
evolving entities that embody a single evolutionary unit that se-
lection acts upon, leading to the emerging “holobiont” concept 
(Bordenstein & Theis, 2015). The relevance of host microbiomes to 
conservation efforts resides in the numerous opportunities to ob-
tain conservation-relevant information from wildlife bacterial com-
munities using non-invasive fecal samples (Lynch & Hsiao, 2019).

Non-invasive approaches are quickly becoming vital compo-
nents in modern conservation practice for both practical reasons 
and due to their resonance with public sensitivities about animal 
welfare (Allendorf et al., 2010; Dubois & Harshaw, 2013). In addition 
to helping to meet changing public priorities for animal welfare in 
conservation, the practical value of non-invasive methods includes 
relatively low-cost, low-effort sampling (i.e., of feces, feathers, hair, 
urine, saliva, etc.) for estimation of individual and population sta-
tistics, often with improved performance and sample sizes relative 
to more invasive methods of gathering data (Allendorf et al., 2010).

In addition to already established non-invasive methods, host-
microbiome associations may overlap with, or provide access to, ad-
ditional estimates relevant for wildlife conservation (Redford et al., 
2012). Specifically, microbiome findings have expanded on this over-
lap to describe finer-scale associations between microbiomes and 
host diet, sex, stress, age, disease, physical condition, and biogeogra-
phy (Zhu, Wang, & Bahrndorff, 2021). Alongside other non-invasive 

sample sources and methods such as analyzing hair snags or feath-
ers, microbiome studies intersect promisingly with the needs of con-
servation practitioners. Microbiomes can provide an additional layer 
of information about animal condition, senescence, stress, and dis-
ease that may become useful for monitoring wild and captive popu-
lations in the future (Youngblut et al., 2019).

To investigate the potential of the microbiome for applied con-
servation and monitoring, we sought to further develop and apply 
bioinformatic tools to associate ingesta-free body-fat percentage 
(hereafter body-fat), age, sex, and biogeography, with the fecal mi-
crobiomes from four populations of Rocky Mountain elk (Cervus 
canadensis). Although different host-microbiome associations are 
represented in the literature, it is rare for multiple conservation-
relevant microbiome associations to be tested across multiple popu-
lations within a single study species, as was done here.

Elk are large mammalian ungulates in the Family Cervidae. Six 
subspecies of elk thrived across most of North America prior to 
European settlement, after which overexploitation and habitat loss 
severely bottle-necked population numbers, causing extinction in 
two sub-species (Anderson, 1972; Toweill & Thomas, 2002). Elk are 
once again broadly distributed thanks to active management, with 
reintroductions helping to repopulate their native range in the east-
ern United States, hereafter US (Popp et al., 2014). Wherever elk 
occur in North America, they have earned an iconic status among big 
game hunters (Popp et al., 2014). Elk are managed to maintain sta-
ble populations despite significant variation in annual harvest rates 
that can exceed 80 percent (Slabach et al., 2018). Elk management, 
particularly in the western US, is further complicated by population-
specific instances of overpopulation, property damage, and disease 
spread (Higgins et al., 2012; Proffitt et al., 2011).

Elk and other wild ungulates are an integral part of ecosystems 
and can provide the majority of biomass in non-human predator 
diets (Metz et al., 2012; Stewart et al., 2006). The importance of 
elk management is thus both ecological and economic. Elk manage-
ment success depends on developing and deploying efficient means 
of population-specific management, especially considering that 
competing interests and stakeholder groups (e.g., hunters vs. non-
consumptive users) often require geographically specific outcomes. 
Development of non-invasive methods to produce population-
specific monitoring data is a natural response to this challenge.

In the current study, we performed a survey of elk fecal bacterial 
microbiomes using 16S rRNA gene sequencing across four discrete 
Montana populations. Microbial communities are complex, with 
hundreds to thousands of interacting species (Boon et al., 2014). 
Both host and environmental factors influence community com-
position, with community differences often driven by a subset of 
taxa (Morris et al., 2012). Discovering individual taxa or subsets of 
microbes that are consistently associated with difficult-to-measure 
factors in elk could let those taxa be non-invasive proxies for those 
factors. To test whether individual elk data could be correlated with 
non-invasive fecal microbiome data, we used a feature selection (FS) 
algorithm to select the most informative microbes, and then used 
linear discriminate analysis classifiers (LDA) with cross-validation 
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(CV) (similar to Liu et al., 2014) to test whether this reduced microbi-
ome could predict population, age, body-condition, and sex.

2  |  METHODS

2.1  |  Field collection of fecal samples and 
physiological measurements

Collection of scat samples (n = 110), sex determination (n = 104), 
age data (n = 34), body-condition data (n = 73), and radio-collaring 
of elk were conducted in February 2014 by Montana Fish Wildlife 
and Parks (MT FWP) during a helicopter capture operation. We 
received fecal pellet samples and physiological measurements for 
elk from four populations: Bitterroot Mountains (n = 13), Sapphire 
Mountains (n = 54), Black's Ford area of the Madison River (n = 
25), and Tobacco Root Mountains (n = 18) (Figure 1). Animal cap-
ture and sampling were conducted using currently available and 
accepted methods for animal capture and restraint, body-fat es-
timates, sex classification, and age (Cook et al., 2001, 2010). Elk 
sex was observed and recorded in the field during captures (87 fe-
males, 17 males) but sex was not recorded for all individuals, thus 
these elk of unknown sex were filtered from sex-specific statistical 
comparisons (n = 104). Body condition data were collected in fe-
males from Sapphire Mountains, Black's Ford, and Tobacco Root 
Mountains (n = 73) during capture using a portable ultrasound 
machine to estimate levels of ingesta-free body-fat (Cook et al., 
2001, 2010). Body-fat data was not collected for males since these 
measurements are not informative for bull elk (Cook, 2002). Age 
information was collected by observing tooth eruption and wear 
patterns for a subset of female elk in the Sapphire Mountains 

population (Hamlin et al., 2000). Fecal samples were aseptically 
collected for all elk with a cleanly gloved hand and placed in whirl-
pak sample bags. Samples were placed on wet ice in a cooler in the 
field, then frozen at −20°C after each sampling day prior to delivery 
on wet ice to the lab.

2.2  |  Sample preparation, DNA extraction, ​
and sequencing

Frozen elk fecal pellets (−20°C) were prepared for DNA extrac-
tions by separating a standard weight (250 mg) from one randomly 
selected pellet per individual using a sterile petri dish (10 cm) and 
sterile safety razor blade for each sample. This fraction was placed 
into the designated sample tube from the Qiagen PowerSoil DNA 
extraction kit (Qiagen Inc., Germantown, MD) and processed using 
the manufacturer's recommended protocol. The resulting purified 
metagenomic DNA was eluted with 100 µl PCR-grade water and 
stored at −20°C prior to further analysis.

To assess the bacterial community present in the fecal DNA ex-
traction, we used a generally conserved (i.e., “universal”) 16S/18S 
barcoded primer set (536F and 907R) and PCR designed for the V4 
and V5 variable regions of the rRNA gene (Holben et al., 2004) using 
1μl of elk fecal sample metagenomic DNA standardized to 25 ng/μl. 
Once amplified, the resulting amplicons were size-fractionated on 
1.5% agarose gels, with 16S bacterial amplicons excised and gel pu-
rified using the QIAGEN Gel Purification kit (QIAGEN, Germantown, 
MD) following the manufacturer's recommended protocol for down-
stream direct sequencing. An Illumina MiSeq platform (San Diego, 
CA, USA) was used to obtain 300 base-pair (bp) paired-end sequenc-
ing using the Illumina MiSeq Reagent Kit.

F I G U R E  1 Sampling location map. 
Map of the Montana study area. Four 
elk populations were sampled in 2014 as 
indicated by colored polygons
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2.3  |  Sequence analysis

Primer sequences were removed using Cutadapt software and 
any reads without a mate-pair or recognizable primer sequence 
were discarded (Martin, 2011). Read quality was summarized 
visually with FastQC and MultiQC (Andrews, 2010; Ewels et al., 
2016). The DADA2 package (Callahan et al., 2016) was used in the 
R environment to further quality filter and trim paired reads ac-
cording to the published workflow (Callahan, 2021). The remain-
ing sequences were denoised and dereplicated. We next identified 
amplicon sequence variants (ASVs) from the resulting high-quality 
sequences, merged forward and reverse reads, and removed chi-
meric sequences. ASVs were taxonomically assigned with the 
DADA2 instance of the Naïve-Bayes classifier and the Ribosomal 
Database Project II release (Cole et al., 2009). A matrix was pro-
duced containing counts corresponding to the abundance of each 
ASV present in each elk sample and an additional paired matrix 
with each ASV’s taxonomic classification.

The Phyloseq R package (McMurdie & Holmes, 2013) was used 
to further filter and summarize ASV tables, measure sample, and 
group diversities and perform statistical analyses. A small number 
of non-bacterial ASVs that belonged to Kingdom Archaea or in the 
Chloroplast Class were removed from this bacterial analysis. ASVs 
assigned to unknown phyla were removed since these are not in-
formative for our analyses. All ASVs that failed phylogenetic as-
signment at the genus level were standardized to “g_unknown” in 
the taxonomy matrix and retained for diversity analyses. A sepa-
rate data set with unknown genera removed was produced for use 
with FS-LDA classification. We chose genus-level classification for 
our analysis to balance the specificity of phylogenetic assignment 
with missing classifications (caused by the typically low number 
of species-level assignments) to best assess biological relevance 
in our classifiers.

Normalization methods are a topic of hot debate in the field 
of molecular ecology since sequencing effort (reads/sample) 
is decoupled from biological sampling effort. There is no con-
sensus approach for normalizing the large variance in reads for 
ecological count data without tradeoffs, but some popular meth-
ods are known to be unreliable (e.g., rarefaction) due to a high 
false discovery rate (FDR) (Lin & Peddada, 2020). Although sev-
eral data normalization techniques have been suggested (e.g., 
Compositional Data Analysis (CoDA), variance stabilizing tech-
nique (VST), Analysis of Compositions of Microbiomes with Bias 
Correction (ANCOM-BC), and cumulative-sum averaging), they 
all include counterproductive tradeoffs. Thus, richness, alpha-
diversity (Shannon), and accompanying statistical tests between 
groups were calculated without rarefying sample data. Richness 
at the genus level was calculated per sample with breakaway, a 
nonlinear regression model that provides standard error (SE) and 
p-values (Willis & Bunge, 2015). The betta function in the break-
away package was used to test for differences in sample richness 
(observed and unobserved diversity) across populations. Alpha-
diversity (Shannon) was calculated per sample using the DivNet 

package, which incorporates diversity estimates with correction 
for incomplete sampling (Willis & Martin, 2020). The betta func-
tion was used to calculate the significance (p-values) of the alpha-
diversity estimates.

Beta diversity comparisons and Adonis tests (PERMANOVA) 
were performed after adjusting log-transformed abundances by 
sample fractions calculated with the ANCOM-BC method (Lin & 
Peddada, 2020). We calculated Unifrac, Unweighted Unifrac, and 
Bray-Curtis distances using the vegan R package (Oksanen et al., 
2017). These distances were reduced and plotted using PCoA (and 
RDA for Bray-Curtis). Adonis tests were performed on the distances 
between covariates (999 permutations) using the Phyloseq R pack-
age (McMurdie & Holmes, 2013). Permutation tests for homogene-
ity of multivariate dispersions were conducted on each of the three 
distances (999 permutations) to indicate applicability of the Adonis 
test for each distance matrix.

2.4  |  Feature selection and cross-validation

In microbiomes, not all taxa are associated with specific 
conservation-relevant measurements in the host because some 
genera or species may perform a different unrelated, often un-
known, function (Sharpton, 2018). The complete microbiome is 
thus assumed to contain “noisy” genera that sometimes obscure 
the biological patterns and associations present. We used a form 
of the Sequential Forward Floating Search algorithm (i.e., Feature 
Selection—FS; Pudil et al., 1994) to select for informative genera 
from the elk microbiome. This algorithm selects a subset of genera 
from the total pool using a heuristic method that maintains or im-
proves the performance of the complete data set. FS avoids nest-
ing issues where features (in this case, bacterial taxa) are falsely 
fixed early in the selection process creating a local maxima, which 
is an issue with other feature selection methods that results in 
reduced performance (Pudil et al., 1994; Saeys et al., 2007). By 
allowing all features to be added or subtracted as the algorithm 
progresses (essentially “floating” the selections), features interact 
to produce dynamic and unbiased performance results that are 
not dependent on starting conditions. The FS algorithm employed 
herein uses J3 scores, a form of scatter matrices that rewards close 
clustering within groups of data points and rewards increased dis-
tance between groups of data points using Euclidean distances in 
multidimensional space (Fukunaga, 1990). We produced feature 
tables of FS genera sequentially with 2 through 30 features (one 
table of FS genera for each number of features in the range).

For each set of genera in a feature table, a linear discriminate 
classifier was created and tested on the underlying count data with 
sample cross-validation (CV), which uses a leave-one-out method 
of training and testing to reduce over-fitting of the model to the 
training data set (Liu et al., 2014; Saeys et al., 2007). This method 
removes a sample (an individual elk's microbiome subset) from the 
training data, builds the model with the remaining samples (N-1) 
then tries to predict the classification of the removed sample. This 
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leave-one-out method is iterated across all samples (N) to calculate 
the CV accuracy.

We balanced classifier performance and over-fitting by compar-
ing the CV performance differences between multiple numbers of 
features for signs of overfitting (Braga-Neto & Dougherty, 2004). 
Variance in model accuracies at each possible feature number (2 
through 30) was obtained by running models with progressively 
zero pruned data sets from 0% - 16% at each number of features, 
which also helped to assess model sensitivity. To help choose the 
optimal number of features for the final LDA visualizations, we 
generated a three-dimensional Pareto front (Hwang et al., 1979) 
for multi-parameter optimization including accuracy, number of 
features, and variance (not shown). Any set of features selected on 
the Pareto front was thus optimized for these parameters and had 
impartial support. We visualized this relationship with box plots of 
accuracy at different numbers of features (Figure S1).

2.5  |  Classifiers for each elk factor

Each classifier varied somewhat according to the desired fac-
tor to be predicted (i.e., biogeography, body-fat, sex, or age). In 
some cases, multiple models were built to explore the results of 
different binning criteria on continuous data types (i.e., body-
fat and age). In the simplest case of categorical classification, we 
predicted population using the four available sampling locations 
known for all samples, including Bitterroot Mountains, Sapphire 
Mountains, Black's Ford area (Madison River), and the Tobacco 
Root Mountains. Similarly, categorical sex classification was done 
using adult male and female elk across the four Montana popula-
tions (n = 104 after filtering). Due to female elk being more abun-
dant and prioritized during sampling, the sample data was skewed 
toward females (87:17). To provide equally weighted classifier 
training groups we chose to normalize bin sizes between males 
and females both by sampling males with replacement (bootstrap-
ping) up to 87 samples or by randomly rarefying female samples 
to 19 individuals (not shown). Three random bootstrap iterations 
were performed in each case to determine the sensitivity of sam-
pling individuals with replacement or rarefaction.

To classify elk factors with continuous data types (i.e., body-
fat and age) we chose to use three different models for predicting 
body-fat in female elk from three populations (Bitterroot not sam-
pled) and a single binary model for age. The body-fat models had 
2, 3, or 4 body-fat classes (only the 4 class model shown; 2 and 3 
not shown). These classes were chosen to provide balance in bin 
sizes for classifier training and less for biological significance. The 
bin cutoff values for body-fat were: 2-class model >8% or <8%, 
3-class model >7%, 7–9%, and <9%, and lastly the 4-class model 
>7%, 7–8%, 8–9%, and <9%. We chose to use a two-class model 
for female elk age: early reproductive age (3–6 years) and prime 
reproductive age (7–10) females. We chose 2 age bins based on 
the available female age data and prioritized balanced bin sizes for 
age ranges.

3  |  RESULTS

3.1  |  Study populations and field measurements

Sampling and sequencing included 110 animals, but due to incom-
plete sexing data, only 87 females and 17 males (n = 104) are repre-
sented in the analyses with female ages ranging from 3 to 10 years 
(sample mean 6.38). Female elk body-fat ranged from 5.70% to 
13.29% (sample mean 7.95%). The results of the field measurements 
taken are summarized in Table S1.

3.2  |  Sequencing and quality control

Sequencing and QA/QC sequence processing of partial 16S rRNA 
amplicons from each fecal sample provided a total of 8,774,731 
paired-end sequences (forward and reverse reads) across all elk 
sampled, with sample depths varying from 5571 to 128,069  se-
quences per individual (mean depth 79,770). Primers were trimmed 
from paired-end sequences with filtering parameters that required 
a read to have a primer present, a minimum length of 100 bp, and 
a mate-pair, which resulted in 8,690,840  sequences remaining. 
Filtering and trimming on quality (max of 2 errors, no Ns, truncate 
at the instance of quality = 2) and length (minimum of 80 bp after 
quality trimming) reduced the number of sequences retained to 
7,599,271. The remaining sequences were dereplicated and am-
plicon sequence variants (ASVs) were inferred independently with 
forward and reverse reads (by sequencing run) using the DADA2 
error model. Forward and reverse reads were merged into single 
reads (4,374,192 remaining), sequencing runs were combined, and 
chimeric sequences were removed, resulting in 3,386,467  high-
quality paired sequences remaining. Read depths per animal 
ranged from 1,103 to 66,124 (mean = 30,786; four samples below 
1500 reads) after these quality filters. Sequence filtering results 
are summarized in Table S2.

3.3  |  16S gene survey of elk ASVs

Sequencing of partial 16S rRNA amplicons from each fecal sam-
ple provided a survey of bacterial presence and abundance in the 
elk fecal microbiome. ASV counts per animal ranged from 1008 to 
65,894 after quality filtering with a mean count of 30,736. After 
filtering, a total of 11,957 unique ASVs were indicated across all 
samples. The distribution of unique ASVs (observed richness) 
within individual samples ranged from 30 to 1290, with a mean 
of 714.8 unique ASVs per individual (see Table S2). After assign-
ing phylogeny to ASVs, there were 136 unique genera. The top 
10 most abundant ASVs across all samples (after VST) were classi-
fied to the genera Sporobacter, Bacteroides, Phascolarctobacterium, or 
"g(enus)__Unknown", all within the phyla Bacteroidetes, Firmicutes 
or Proteobacteria (For bacterial genera proportional abundance see 
Figure S2).
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Richness at the genus level was calculated using breakaway rich-
ness (Willis & Bunge, 2015) and is summarized in Figure S3. Global 
breakaway richness for the elk in this study, defined as the total di-
versity including the unobserved (unsampled) count, was estimated 
at 461 genera (compared to the 136 genera observed). All popula-
tions varied significantly (p ≤ .01) in richness from the Bitterroot 
population (breakaway richness estimate intercept 866.2), except 
the Tobacco-Root population (p = .082). The breakaway Shannon 
diversity estimate was calculated for each sample (Figure S4) and 
similar to richness, was significantly different (p ≤ .001) between all 
populations, except for the Tobacco-Root population (p = .255).

Beta-diversity, the diversity between bacterial communities of 
individual elk was calculated between samples on the abundance-
adjusted dataset using Unifrac, unweighted-Unifrac, and Bray-Curtis 
distances. The resulting PCoA and RDA plots show clustering at the 
population level (Figure S5). When comparing between elk popula-
tions with Adonis tests, bacterial community distances before and 
after feature selection were more similar within elk populations than 
between populations, and mean distances between the populations 
were significant (p = .001) for all distances. Elk sex was included as 
a covariate in all Adonis models and was significant for Bray-Curtis 
(p = .002) and weighted-Unifrac (p = .018) but not for unweighted-
Unifrac (p = .266). Similarly, permutation tests on beta dispersions 
were significant (p = .001) for Bray-Curtis and weighted-Unifrac, but 
lower for unweighted-Unifrac (p = .05).

3.4  |  Classifiers for elk ecological factors

Elk populations included in the biogeography classifier were the 
Bitterroot Mountains, Sapphire Mountains, Black's Ford area of 
the Madison River, and the Tobacco Root Mountains. Analysis with 
FS-LDA (Figure 2) and PCoA of total elk bacterial microbiome data 
(Figure S5) showed strong patterns of elk population structure (bio-
geography) with the FS-LDA method showing a tighter relationship. 
The elk FS-LDA population classifier performed with 81% CV accu-
racy using 23 bacterial genera. Consistent accuracy values across all 
FS dimensions from 2 to 30 were observed (Figure S1).

Age estimates for female elk in the sapphire population (N = 34) 
ranged from 3 to 10 years. The model was trained on 2-classes, fe-
male elk aged 3–6 years and 7–10 years. The model used 8 taxa and 
performed with 87% CV accuracy (Figure 3).

FS-LDA was used to classify bacteria as a function of body-fat 
from female elk across three populations and was trained using ei-
ther two, three, or four classes of body-fat (Figure 4, some data not 
shown). The performance of the classifier for two elk body-fat cat-
egories (above or below 8% body-fat) was supported by low levels 
of overlap between clusters and by high CV accuracy of 91% (where 
50% is the expected null hypothesis). The three-class model of body-
fat (below 7%, 7%–9%, and above 9%) was performed at 77.8% ac-
curacy (compared to a 33% null) with 30 taxa. The four-class model 
(body-fat below 7%, 7%–8%, 8%–9%, and above 9%) was performed 
at 58.3% accuracy (25% null) with 28 taxa.

Classification of sex was obtained with high CV accuracy 
after normalizing bin sizes between males and females by either 
sampling males with replacement (bootstrapping) up to 87  sam-
ples (Figure 5, iterative data not shown), or by randomly rarefy-
ing female samples to 17 individuals (not shown). Bootstrapping 
produced ordination clustering by sex with 90% CV accuracy. 
Multiple random bootstrap iterations were performed with little 
change to the outcome of the classifier, indicating the classifier for 
sex was not sensitive to the random effects of sampling with re-
placement (some data not shown). Random rarefaction produced 
similar results in the visualization, with a comparable CV accuracy 
of 89%, which was qualitatively repeated across multiple random 
rarefaction iterations.

For a list of genera selected in each classifier see Table S3.

4  |  DISCUSSION

This study provides strong evidence for linkages between several 
elk physiological measurements and the host microbiome, as well 
as support for biogeographical structuring of the host microbi-
ome. Analyses attempting to discover various individual factors 
influencing host-microbiome structure in animals are common 
(Corl et al., 2020; Fountain-Jones et al., 2020; Ren et al., 2017; 
Yuan et al., 2015), with previous research supporting both bio-
geographic structuring (Martiny et al., 2006; Moeller et al., 2017) 
and host-associated responses (Cho & Blaser, 2012; Mshelia 
et al., 2018a). Despite a strong theoretical expectation, synergistic 

F I G U R E  2 FS-LDA ordination plot of female elk microbiome 
samples from 4 populations in Montana as a function of geographic 
location. Colored circles represent different populations as 
indicated; black circles are the centroid of each cluster, and colored 
ellipses depict 1 standard deviation from the cluster centroid. 
This classifier was trained using leave-one-out cross-validation, 
producing 81% model accuracy using 23 genera
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support for multiple intrinsic and extrinsic factors structuring host-
microbiomes is rarely demonstrated in a single study as demon-
strated here.

The Montana elk intestinal bacterial microbiome is dominated by 
phyla Firmicutes, Bacteroidetes, and Proteobacteria, typical of rumi-
nant animals that degrade complex carbohydrates anaerobically into 
volatile fatty acids (Henderson et al., 2015). Our findings for total 
fecal microbiome composition were largely consistent with the only 
other known surveys of North American elk microbiomes to date 
(Gruninger et al., 2014; Kim et al., 2019). Our deeper survey uncov-
ered a large proportion of unclassified genera and species despite 
using current methods and databases, suggesting that this system is 
still ripe for future microbial description.

Our study discovered strong patterns of biogeography in four pop-
ulations of elk using two mechanistically different approaches (PCoA 
and FS-LDA). This suggests that environmental and site-specific effects 
are important in structuring fecal microbiome communities within an 
individual's home range. Alpha and beta diversity results corroborate 
this by demonstrating that bacterial diversity is more similar among in-
dividuals within a population than between populations. Adonis tests 
between populations and breakaway measurements of richness and 
Shannon diversity were significant (p = .0001, p ≤ .01) between all 
populations except for the Tobacco-Root population which had high 
variation among individuals (p =  .255). Our results corroborate theo-
retical expectations and limited findings of spatially structured wildlife 
microbiomes, including the existence of endemic taxa, non-random 
similarity across taxa from different landscape types, maintenance 
of host-microbiome diversity by dispersal limitation in mammals, and 
biogeography as observed in the European house mouse (Linnenbrink 
et al., 2013; Martiny et al., 2006; Moeller et al., 2017).

F I G U R E  3 FS-LDA ordination plots of female elk microbiomes 
from the Sapphire population as a function of age. Colored circles 
represent elk age group as indicated. Black circles are the centroid 
of each cluster, and ellipses depict 1 standard deviation from the 
centroid. The classifier was trained using leave-one-out cross-
validation, producing 87% model accuracy using 8 genera
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F I G U R E  4 FS-LDA ordination plot of female elk microbiomes 
(n = 73) from 3 populations as a function of ingesta-free body-
fat (body-fat). Filled circles are elk microbiomes predicted into 
ingesta-free body-fat categories including body-fat below 7% (red), 
between 7 and 8% (green), between 8 and 9% (blue), and above 9% 
(orange). Black circles are the centroid of each cluster, and ellipses 
depict 1 standard deviation from the centroid. The classifier was 
trained using leave-one-out cross-validation, producing 58.3% 
model accuracy with 28 genera

F I G U R E  5 FS-LDA ordination plots of elk microbiomes 
from 4 populations as a function of sex. Colored circles are elk 
microbiomes while colors represent elk sex: red = female and 
green = male. Black circles are the centroid of each cluster, and 
ellipses depict 1 standard deviation from the centroid. Nineteen 
male elk were bootstrapped (sampled with replacement) to n 
= 87 to provide equal weight to the classifier training groups. 
The classifier was trained using leave-one-out cross-validation, 
producing 90% model accuracy with 24 genera
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Other studies have found environmental variables like tem-
perature, salinity, and changes related to captivity to be important 
in determining microbiome species composition and distribution 
(Haworth et al., 2019; Kivistik et al., 2020; Zhu, Zhu, et al., 2021). 
However, comparisons from studies sampling multiple discrete pop-
ulations of the same study species are rare (Linnenbrink et al., 2013). 
Prediction accuracies for our population classifier were consistently 
high across all FS dimensions tested (2 taxa through 30 taxa), in-
dicating that the contribution of biogeography and its effects are 
widespread throughout the elk microbiome. Although not measured 
in this study, the biogeographic patterns found in the elk bacterial 
microbiome may be partly influenced by small-scale differences in 
forage types and availability between the sampled populations of 
elk, since diet is known to influence gut microbiomes (Petri et al., 
2013). Our study highlights the importance of microbiome biogeog-
raphy between populations despite relatively small ecological differ-
ences between each population's respective environment. Further, 
we encourage future consideration and quantification of the im-
portance of microbiomes during translocations of individuals, even 
between genetically compatible populations from similar ecotypes 
(Wang et al., 2019).

Limited interaction between animals from isolated populations 
may also contribute to phylogenetic divergence between popula-
tions by limiting the homogenizing effects of species dispersal thus 
increasing genetic drift (Moeller et al., 2017). Conversely, within 
socially structured populations or close-kin, the increased transmis-
sion of microbes can create strong local patterns of microbial diver-
sity (Blaser, 2015; Tesson et al., 2015). Ad-hoc support for limited 
transmission between the sampled elk populations can be found in 
a study by Hand et al. (2014), who described limited female-specific 
gene flow (mitochondrial FST = 0.161) in 23 elk populations near our 
study area. Thus, in our system, microbiome patterns may be main-
tained by limited female movement and geographic distance, but 
this remains to be tested and may not hold across all elk populations. 
Seasonal variation in microbiomes is also well-documented (Amato 
et al., 2015; Maurice et al., 2015; Ren et al., 2017), and annual vari-
ation also seems likely, but the importance of these factors remains 
unknown in elk. Microbiome structure between elk populations is 
likely not due to host genetic differences since low overall genetic 
diversity (nuclear FST = 0.002) has also been reported between pop-
ulations of elk from the study area (Hand et al., 2014). Ultimately, a 
number of these and other factors may be involved in structuring 
microbiome composition in the populations we sampled and might 
explain the increased microbiome variation we observed in the 
Tobacco-root elk population.

The results of the LDA models tested support a strong biological 
connection between fecal microbiomes and elk sex, body-fat, and 
age. Classifier accuracies for sex and body-fat were high, despite com-
bining data from multiple elk populations that, as discussed, included 
the strong (and potentially confounding) signal of biogeographic 
diversity in the total microbiome. Our positive model results are 
unique compared to some other studies attempting to associate the 
microbiomes of host animals to body condition, sex, and age (Bennett 

et al., 2016; Fountain-Jones et al., 2020; Mshelia et al., 2018a). For 
example, previous studies found either no significant connection 
between the microbiome, host age, social group, and environment 
(Bennett et al., 2016), or incomplete support (Fountain-Jones et al., 
2020; Mshelia et al., 2018a; Ren et al., 2017). Substantive differences 
between our study methods and bioinformatic approaches likely con-
tributed to these seemingly contradictory outcomes. These different 
approaches and conclusions illustrate the importance of applying 
various mechanistically diverse methods and their continued devel-
opment for host-microbiome linkages.

Consistent with our findings, a culture-based study of gut mi-
crobiomes in horses (Equus caballus) found significant associations 
with sex, age, and body-condition scores (Mshelia et al., 2018b). This 
study provides promising corroborative results to our own, despite 
the horse study being based on culture-dependent microbes and the 
physiological differences between horses and elk (hind-gut fermen-
ter vs ungulate). Our combined findings also strengthen arguments 
for the holobiont theory, which suggests a fundamental evolutionary 
relationship between the microbiome and many host factors (Carrier 
& Reitzel, 2017; Zilber-Rosenberg & Rosenberg, 2008).

Sex-specific microbiomes were found in the elk sampled in this 
study based on both FS-LDA sex classifier results and significant 
Adonis tests of beta-diversity when sex was used as a covariate 
(Bray-Curtis, p = .002; weighted-Unifrac, p = .018). Thus, there is 
value in examining sex-specific differences in microbiomes, since 
these differences may affect the success of conservation-related 
microbiome augmentation in captive populations (Haworth et al., 
2019). Also of relevance, since ungulate (and other species) popula-
tion management requires diverse outcomes, monitoring population-
specific sex ratios can help inform the management action (Toïgo & 
Gaillard, 2003). This is especially pertinent because adult female elk 
survival is typically the best predictor of future population growth 
rate (Gaillard et al., 2000). It is therefore useful to identify sex via 
non-invasive fecal sampling. Although alternatives for sex determi-
nation exist (e.g., SRY gene PCR) and significant hurdles remain to 
the application of microbiome-based estimates of sex-ratios (e.g., 
randomized sampling schema) it remains a promising possibility.

Estimates of animal body-fat and age are both important for elk 
population management (J. G. Cook et al., 2016). Female body con-
dition is a good predictor of pregnancy, which becomes population 
growth rate (Morano et al., 2013) and differences in fertility of fe-
male ungulates between age classes are most often caused by age-
specific variation in body condition (Albon et al., 1983; Cook et al., 
2004; DelGiudice et al., 2007; Ropstad, 2000). We found evidence 
for an association between elk body-fat and the microbiome using 
three models of the FS-LDA classifier (2-, 3-, or 4-class models with 
91%, 77%, and 58.3% CV accuracy, respectively). Specific bacte-
rial taxa associated with elk body-fat were similar across all three 
models tested (e.g., Bacteroides, Butyricimonas, Clostridium_XIVa, 
Grancilibacter, and Tannerella; Table S3). This provides support for 
those taxa having a role in the functional phenomena behind body-
fat measurement, although such experiments were beyond the 
scope of this study.
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We also demonstrated that adult female elk age differences can 
be detected in the microbiome using a 2-class model. Age-related 
differences in the microbiome have been demonstrated in humans 
and other model animals (Lan et al., 2013; Xing et al., 2020), but evi-
dence in wildlife is still emerging (Xing et al., 2020). Adult age classes 
undergo microbial succession in response to diverse physiological 
and environmental forces (Lan et al., 2013; Stephens et al., 2016). 
Our study provides additional support for the role of adult succes-
sional change using the elk bacterial microbiome. Changes in diet 
and corresponding microbial succession during early transitional de-
velopment are somewhat more obvious in mammals (like elk calves) 
that initially consume mothers’ milk, then change to plant foraging 
(Blaser, 2015; Koenig et al., 2011). A limitation of our elk age model 
is the incomplete representation of bookend classes including calves 
and older elk. Although we did not sample elk calves, the diet tran-
sition from milk to forage and the physiological development of the 
rumen chambers both suggest a dramatic change in microflora oc-
curs. Once the 0–1 age-class is included in the model, we expect that 
a non-invasive survey technique may be possible to support further 
investigation of age-related population dynamics that improve man-
agement in hard to observe elk populations.

5  |  CONCLUSION

Our results show that elk microbiomes respond to both the strong 
extrinsic factor of biogeography and simultaneously occurring, but 
more subtle, intrinsic forces of individual body-fat, sex, and age-
class. Thus, we have developed and described herein an approach 
that allows us to disentangle microbiome responses attributed to 
multiple factors of varying strength from the same bacterial micro-
biome sequence data set. In future cases, once strongly associating 
microbial taxa are vetted for stability among populations in space 
and time, analysis of fecal microbiome biomarkers may represent a 
less invasive alternative for acquiring information on wildlife popu-
lations than traditional sampling methodologies. Understanding 
the seasonal stability of the microbiome and the reproducibility of 
our FS-LDA models in these and other elk populations would be 
prudent before applying the results and methods of this study. 
Nonetheless, the research approach and bioinformatic tools re-
ported here provide a foundation for the continued development of 
microbiome associations in elk for future monitoring and conserva-
tion. We are hopeful that these methods can be expanded to inves-
tigate a diverse range of wildlife species (including non-mammals) 
that have strong host-microbiome mutualism. Additionally, our find-
ings across multiple host factors from the same fecal microbiome 
dataset help unite some formerly unconfirmed expectations from 
host-microbiome theory regarding the diverse interconnections of 
microbiomes and hosts. The products of such efforts could even-
tually provide insights and novel solutions to current wildlife man-
agement issues and allow threatened and endangered species to be 
studied with less perturbation.
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