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Abstract
Fecal	microbial	biomarkers	represent	a	less	invasive	alternative	for	acquiring	informa-
tion	on	wildlife	populations	than	many	traditional	sampling	methodologies.	Our	goal	
was	to	evaluate	linkages	between	fecal	microbiome	communities	in	Rocky	Mountain	
elk	 (Cervus canadensis)	 and	 four	 host	 factors	 including	 sex,	 age,	 population,	 and	
physical	condition	(body-	fat).	We	paired	a	feature-	selection	algorithm	with	an	LDA-	
classifier	trained	on	elk	differential	bacterial	abundance	(16S-	rRNA	amplicon	survey)	
to	predict	host	health	factors	from	104	elk	microbiomes	across	four	elk	populations.	
We	 validated	 the	 accuracy	 of	 the	 various	 classifier	 predictions	with	 leave-	one-	out	
cross-	validation	using	known	measurements.	We	demonstrate	that	the	elk	fecal	mi-
crobiome	can	predict	the	four	host	factors	tested.	Our	results	show	that	elk	microbi-
omes	respond	to	both	the	strong	extrinsic	factor	of	biogeography	and	simultaneously	
occurring,	but	more	subtle,	intrinsic	forces	of	individual	body-	fat,	sex,	and	age-	class.	
Thus,	we	have	developed	and	described	herein	 a	 generalizable	 approach	 to	disen-
tangle	microbiome	responses	attributed	to	multiple	host	factors	of	varying	strength	
from	the	same	bacterial	sequence	data	set.	Wildlife	conservation	and	management	
presents	many	challenges,	but	we	demonstrate	that	non-	invasive	microbiome	surveys	
from	scat	samples	can	provide	alternative	options	for	wildlife	population	monitoring.	
We	believe	that,	with	further	validation,	this	method	could	be	broadly	applicable	in	
other	species	and	potentially	predict	other	measurements.	Our	study	can	help	guide	
the	future	development	of	microbiome-	based	monitoring	of	wildlife	populations	and	
supports	hypothetical	expectations	found	in	host-	microbiome	theory.
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1  |  INTRODUC TION

Plummeting	 global	 biodiversity	 has	 created	 an	 overwhelming	 de-
mand	for	improved	species	conservation	(Pimm	et	al.,	2014).	Lacking	
the	 required	 funding	 to	 meet	 increasing	 conservation	 demands,	
managers	 and	 conservationists	 have	 necessarily	 adopted	 more	
spartan	 conservation	 strategies	 to	 stretch	 their	 limited	 personnel	
and	budgets,	 analogous	 to	medical	 “triage”	 and	 “hospice”	 (Gameiro	
et	 al.,	 2020;	 Peterson	 et	 al.,	 2020).	 These	 conservation	 strategies	
seemingly	are	stopgap	measures,	since	the	numerous	anthropogenic	
forces	that	erode	the	sustainability	of	wildlife	populations	still	loom	
large	(Ceballos	et	al.,	2015).

Non-	invasive	 monitoring	 methods	 can	 support	 conservation	
efforts	by	helping	to	fill	gaps	 in	knowledge	vital	 to	protecting	and	
managing	 species	 of	 concern.	 These	 methods	 have	 been	 rapidly	
gaining	 traction	 in	applied	wildlife	conservation	and	are	becoming	
more	cost-	effective	 thanks	 to	breakthroughs	 in	molecular	and	ge-
nomic	technologies	(Carroll	et	al.,	2018).	One	such	method	is	fecal	
microbiome	analysis,	which	may	help	to	strike	a	balance	between	the	
competing	themes	of	hyper-	efficient	management	needs	and	costly	
monitoring	data,	while	also	meeting	public	expectations	for	animal	
welfare	(Dubois	&	Harshaw,	2013).

Metagenomics	 and	 other	 culture-	independent	 techniques	 for	
studying	 host-	microbiomes	 have	 begun	 to	 provide	 insights	 rele-
vant	to	non-	invasive	wildlife	conservation	(Bahrndorff	et	al.,	2016;	
Redford	 et	 al.,	 2012;	 Trevelline	 et	 al.,	 2019;	 West	 et	 al.,	 2019).	
Numerous	 studies	 have	 established	 that	 microbiomes	 reflect	 and	
sometimes	dictate	 interactions	connecting	the	host	organism	with	
its	 environment,	 which	 impacts	 host	 fitness	 (Zilber-	Rosenberg	 &	
Rosenberg,	2008).	The	host	 and	 its	microbial	 complement	are	 co-	
evolving	 entities	 that	 embody	 a	 single	 evolutionary	 unit	 that	 se-
lection	 acts	 upon,	 leading	 to	 the	 emerging	 “holobiont”	 concept	
(Bordenstein	&	Theis,	2015).	The	relevance	of	host	microbiomes	to	
conservation	efforts	 resides	 in	 the	numerous	opportunities	 to	ob-
tain	conservation-	relevant	information	from	wildlife	bacterial	com-
munities	using	non-	invasive	fecal	samples	(Lynch	&	Hsiao,	2019).

Non-	invasive	 approaches	 are	 quickly	 becoming	 vital	 compo-
nents	 in	modern	 conservation	 practice	 for	 both	 practical	 reasons	
and	 due	 to	 their	 resonance	 with	 public	 sensitivities	 about	 animal	
welfare	(Allendorf	et	al.,	2010;	Dubois	&	Harshaw,	2013).	In	addition	
to	helping	 to	meet	changing	public	priorities	 for	animal	welfare	 in	
conservation,	the	practical	value	of	non-	invasive	methods	includes	
relatively	low-	cost,	low-	effort	sampling	(i.e.,	of	feces,	feathers,	hair,	
urine,	 saliva,	 etc.)	 for	 estimation	 of	 individual	 and	 population	 sta-
tistics,	often	with	improved	performance	and	sample	sizes	relative	
to	more	invasive	methods	of	gathering	data	(Allendorf	et	al.,	2010).

In	 addition	 to	 already	established	non-	invasive	methods,	 host-	
microbiome	associations	may	overlap	with,	or	provide	access	to,	ad-
ditional	estimates	relevant	for	wildlife	conservation	(Redford	et	al.,	
2012).	Specifically,	microbiome	findings	have	expanded	on	this	over-
lap	 to	 describe	 finer-	scale	 associations	 between	microbiomes	 and	
host	diet,	sex,	stress,	age,	disease,	physical	condition,	and	biogeogra-
phy	(Zhu,	Wang,	&	Bahrndorff,	2021).	Alongside	other	non-	invasive	

sample	sources	and	methods	such	as	analyzing	hair	snags	or	feath-
ers,	microbiome	studies	intersect	promisingly	with	the	needs	of	con-
servation	practitioners.	Microbiomes	can	provide	an	additional	layer	
of	information	about	animal	condition,	senescence,	stress,	and	dis-
ease	that	may	become	useful	for	monitoring	wild	and	captive	popu-
lations	in	the	future	(Youngblut	et	al.,	2019).

To	investigate	the	potential	of	the	microbiome	for	applied	con-
servation	and	monitoring,	we	sought	to	further	develop	and	apply	
bioinformatic	 tools	 to	 associate	 ingesta-	free	 body-	fat	 percentage	
(hereafter	body-	fat),	age,	sex,	and	biogeography,	with	the	fecal	mi-
crobiomes	 from	 four	 populations	 of	 Rocky	 Mountain	 elk	 (Cervus 
canadensis).	 Although	 different	 host-	microbiome	 associations	 are	
represented	 in	 the	 literature,	 it	 is	 rare	 for	 multiple	 conservation-	
relevant	microbiome	associations	to	be	tested	across	multiple	popu-
lations	within	a	single	study	species,	as	was	done	here.

Elk	 are	 large	mammalian	 ungulates	 in	 the	 Family	Cervidae.	 Six	
subspecies	 of	 elk	 thrived	 across	 most	 of	 North	 America	 prior	 to	
European	settlement,	after	which	overexploitation	and	habitat	loss	
severely	 bottle-	necked	 population	 numbers,	 causing	 extinction	 in	
two	sub-	species	(Anderson,	1972;	Toweill	&	Thomas,	2002).	Elk	are	
once	again	broadly	distributed	thanks	to	active	management,	with	
reintroductions helping to repopulate their native range in the east-
ern	United	 States,	 hereafter	US	 (Popp	 et	 al.,	 2014).	Wherever	 elk	
occur	in	North	America,	they	have	earned	an	iconic	status	among	big	
game	hunters	(Popp	et	al.,	2014).	Elk	are	managed	to	maintain	sta-
ble	populations	despite	significant	variation	in	annual	harvest	rates	
that	can	exceed	80	percent	(Slabach	et	al.,	2018).	Elk	management,	
particularly	in	the	western	US,	is	further	complicated	by	population-	
specific	instances	of	overpopulation,	property	damage,	and	disease	
spread	(Higgins	et	al.,	2012;	Proffitt	et	al.,	2011).

Elk	and	other	wild	ungulates	are	an	integral	part	of	ecosystems	
and	 can	 provide	 the	 majority	 of	 biomass	 in	 non-	human	 predator	
diets	 (Metz	 et	 al.,	 2012;	 Stewart	 et	 al.,	 2006).	 The	 importance	 of	
elk	management	is	thus	both	ecological	and	economic.	Elk	manage-
ment	success	depends	on	developing	and	deploying	efficient	means	
of	 population-	specific	 management,	 especially	 considering	 that	
competing	 interests	and	stakeholder	groups	 (e.g.,	hunters	vs.	non-	
consumptive	users)	often	require	geographically	specific	outcomes.	
Development	 of	 non-	invasive	 methods	 to	 produce	 population-	
specific	monitoring	data	is	a	natural	response	to	this	challenge.

In	the	current	study,	we	performed	a	survey	of	elk	fecal	bacterial	
microbiomes	using	16S	rRNA	gene	sequencing	across	four	discrete	
Montana	 populations.	 Microbial	 communities	 are	 complex,	 with	
hundreds	 to	 thousands	 of	 interacting	 species	 (Boon	 et	 al.,	 2014).	
Both	 host	 and	 environmental	 factors	 influence	 community	 com-
position,	with	 community	 differences	 often	 driven	 by	 a	 subset	 of	
taxa	(Morris	et	al.,	2012).	Discovering	individual	taxa	or	subsets	of	
microbes	that	are	consistently	associated	with	difficult-	to-	measure	
factors	in	elk	could	let	those	taxa	be	non-	invasive	proxies	for	those	
factors.	To	test	whether	individual	elk	data	could	be	correlated	with	
non-	invasive	fecal	microbiome	data,	we	used	a	feature	selection	(FS)	
algorithm	 to	 select	 the	most	 informative	microbes,	 and	 then	used	
linear	 discriminate	 analysis	 classifiers	 (LDA)	 with	 cross-	validation	
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(CV)	(similar	to	Liu	et	al.,	2014)	to	test	whether	this	reduced	microbi-
ome	could	predict	population,	age,	body-	condition,	and	sex.

2  |  METHODS

2.1  |  Field collection of fecal samples and 
physiological measurements

Collection	of	scat	samples	(n =	110),	sex	determination	(n =	104),	
age	data	(n =	34),	body-	condition	data	(n =	73),	and	radio-	collaring	
of	elk	were	conducted	in	February	2014	by	Montana	Fish	Wildlife	
and	 Parks	 (MT	 FWP)	 during	 a	 helicopter	 capture	 operation.	We	
received	fecal	pellet	samples	and	physiological	measurements	for	
elk	from	four	populations:	Bitterroot	Mountains	(n =	13),	Sapphire	
Mountains	 (n =	 54),	Black's	Ford	area	of	 the	Madison	River	 (n = 
25),	and	Tobacco	Root	Mountains	(n =	18)	(Figure	1).	Animal	cap-
ture	 and	 sampling	were	 conducted	 using	 currently	 available	 and	
accepted	methods	 for	 animal	 capture	 and	 restraint,	 body-	fat	 es-
timates,	 sex	 classification,	 and	 age	 (Cook	 et	 al.,	 2001,	 2010).	 Elk	
sex	was	observed	and	recorded	in	the	field	during	captures	(87	fe-
males,	17	males)	but	sex	was	not	recorded	for	all	individuals,	thus	
these	elk	of	unknown	sex	were	filtered	from	sex-	specific	statistical	
comparisons	(n =	104).	Body	condition	data	were	collected	in	fe-
males	 from	Sapphire	Mountains,	Black's	 Ford,	 and	Tobacco	Root	
Mountains	 (n =	 73)	 during	 capture	 using	 a	 portable	 ultrasound	
machine	 to	 estimate	 levels	 of	 ingesta-	free	 body-	fat	 (Cook	 et	 al.,	
2001,	2010).	Body-	fat	data	was	not	collected	for	males	since	these	
measurements	are	not	 informative	 for	bull	elk	 (Cook,	2002).	Age	
information	was	 collected	by	observing	 tooth	eruption	and	wear	
patterns	 for	 a	 subset	 of	 female	 elk	 in	 the	 Sapphire	 Mountains	

population	 (Hamlin	 et	 al.,	 2000).	 Fecal	 samples	 were	 aseptically	
collected	for	all	elk	with	a	cleanly	gloved	hand	and	placed	in	whirl-	
pak	sample	bags.	Samples	were	placed	on	wet	ice	in	a	cooler	in	the	
field,	then	frozen	at	−20°C	after	each	sampling	day	prior	to	delivery	
on	wet	ice	to	the	lab.

2.2  |  Sample preparation, DNA extraction,  
and sequencing

Frozen	 elk	 fecal	 pellets	 (−20°C)	 were	 prepared	 for	 DNA	 extrac-
tions	by	separating	a	standard	weight	(250	mg)	from	one	randomly	
selected	pellet	per	 individual	using	a	sterile	petri	dish	 (10	cm)	and	
sterile	safety	razor	blade	for	each	sample.	This	fraction	was	placed	
into	 the	designated	 sample	 tube	 from	 the	Qiagen	PowerSoil	DNA	
extraction	kit	(Qiagen	Inc.,	Germantown,	MD)	and	processed	using	
the	manufacturer's	 recommended	 protocol.	 The	 resulting	 purified	
metagenomic	 DNA	was	 eluted	with	 100	 µl	 PCR-	grade	water	 and	
stored	at	−20°C	prior	to	further	analysis.

To	assess	the	bacterial	community	present	in	the	fecal	DNA	ex-
traction,	we	used	 a	 generally	 conserved	 (i.e.,	 “universal”)	 16S/18S	
barcoded	primer	set	(536F	and	907R)	and	PCR	designed	for	the	V4	
and	V5	variable	regions	of	the	rRNA	gene	(Holben	et	al.,	2004)	using	
1μl	of	elk	fecal	sample	metagenomic	DNA	standardized	to	25	ng/μl. 
Once	amplified,	 the	 resulting	 amplicons	were	 size-	fractionated	on	
1.5%	agarose	gels,	with	16S	bacterial	amplicons	excised	and	gel	pu-
rified	using	the	QIAGEN	Gel	Purification	kit	(QIAGEN,	Germantown,	
MD)	following	the	manufacturer's	recommended	protocol	for	down-
stream	direct	 sequencing.	An	 Illumina	MiSeq	platform	 (San	Diego,	
CA,	USA)	was	used	to	obtain	300	base-	pair	(bp)	paired-	end	sequenc-
ing	using	the	Illumina	MiSeq	Reagent	Kit.

F I G U R E  1 Sampling	location	map.	
Map	of	the	Montana	study	area.	Four	
elk	populations	were	sampled	in	2014	as	
indicated	by	colored	polygons
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2.3  |  Sequence analysis

Primer	 sequences	 were	 removed	 using	 Cutadapt	 software	 and	
any	 reads	without	 a	mate-	pair	 or	 recognizable	 primer	 sequence	
were	 discarded	 (Martin,	 2011).	 Read	 quality	 was	 summarized	
visually	with	FastQC	and	MultiQC	 (Andrews,	2010;	Ewels	 et	 al.,	
2016).	The	DADA2	package	(Callahan	et	al.,	2016)	was	used	in	the	
R	environment	 to	 further	quality	 filter	and	 trim	paired	 reads	ac-
cording	to	the	published	workflow	(Callahan,	2021).	The	remain-
ing	sequences	were	denoised	and	dereplicated.	We	next	identified	
amplicon	sequence	variants	(ASVs)	from	the	resulting	high-	quality	
sequences,	merged	forward	and	reverse	reads,	and	removed	chi-
meric	 sequences.	 ASVs	 were	 taxonomically	 assigned	 with	 the	
DADA2	instance	of	the	Naïve-	Bayes	classifier	and	the	Ribosomal	
Database	Project	II	release	(Cole	et	al.,	2009).	A	matrix	was	pro-
duced	containing	counts	corresponding	to	the	abundance	of	each	
ASV	present	 in	 each	 elk	 sample	 and	 an	 additional	 paired	matrix	
with	each	ASV’s	taxonomic	classification.

The	Phyloseq	R	package	(McMurdie	&	Holmes,	2013)	was	used	
to	further	filter	and	summarize	ASV	tables,	measure	sample,	and	
group	diversities	and	perform	statistical	analyses.	A	small	number	
of	non-	bacterial	ASVs	that	belonged	to	Kingdom	Archaea	or	in	the	
Chloroplast	Class	were	removed	from	this	bacterial	analysis.	ASVs	
assigned	to	unknown	phyla	were	removed	since	these	are	not	in-
formative	 for	our	analyses.	All	ASVs	 that	 failed	phylogenetic	as-
signment	at	the	genus	level	were	standardized	to	“g_unknown”	in	
the	taxonomy	matrix	and	retained	for	diversity	analyses.	A	sepa-
rate	data	set	with	unknown	genera	removed	was	produced	for	use	
with	FS-	LDA	classification.	We	chose	genus-	level	classification	for	
our	analysis	to	balance	the	specificity	of	phylogenetic	assignment	
with	missing	 classifications	 (caused	by	 the	 typically	 low	number	
of	 species-	level	 assignments)	 to	 best	 assess	 biological	 relevance	
in	our	classifiers.

Normalization	methods	are	a	 topic	of	hot	debate	 in	 the	 field	
of	 molecular	 ecology	 since	 sequencing	 effort	 (reads/sample)	
is	 decoupled	 from	 biological	 sampling	 effort.	 There	 is	 no	 con-
sensus	 approach	 for	 normalizing	 the	 large	 variance	 in	 reads	 for	
ecological	count	data	without	tradeoffs,	but	some	popular	meth-
ods	 are	 known	 to	 be	 unreliable	 (e.g.,	 rarefaction)	 due	 to	 a	 high	
false	discovery	 rate	 (FDR)	 (Lin	&	Peddada,	2020).	Although	 sev-
eral	 data	 normalization	 techniques	 have	 been	 suggested	 (e.g.,	
Compositional	 Data	 Analysis	 (CoDA),	 variance	 stabilizing	 tech-
nique	 (VST),	Analysis	of	Compositions	of	Microbiomes	with	Bias	
Correction	 (ANCOM-	BC),	 and	 cumulative-	sum	 averaging),	 they	
all	 include	 counterproductive	 tradeoffs.	 Thus,	 richness,	 alpha-	
diversity	 (Shannon),	 and	 accompanying	 statistical	 tests	 between	
groups	were	 calculated	without	 rarefying	 sample	data.	Richness	
at	 the	 genus	 level	 was	 calculated	 per	 sample	with	 breakaway,	 a	
nonlinear	regression	model	that	provides	standard	error	(SE)	and	
p-	values	 (Willis	&	Bunge,	2015).	The	betta	 function	 in	the	break-
away	package	was	used	to	test	for	differences	in	sample	richness	
(observed	 and	 unobserved	 diversity)	 across	 populations.	 Alpha-	
diversity	 (Shannon)	 was	 calculated	 per	 sample	 using	 the	DivNet 

package,	which	 incorporates	 diversity	 estimates	with	 correction	
for	 incomplete	sampling	 (Willis	&	Martin,	2020).	The	betta	 func-
tion	was	used	to	calculate	the	significance	(p-	values)	of	the	alpha-	
diversity	estimates.

Beta	 diversity	 comparisons	 and	 Adonis	 tests	 (PERMANOVA)	
were	 performed	 after	 adjusting	 log-	transformed	 abundances	 by	
sample	 fractions	 calculated	 with	 the	 ANCOM-	BC	 method	 (Lin	 &	
Peddada,	 2020).	We	 calculated	 Unifrac,	 Unweighted	 Unifrac,	 and	
Bray-	Curtis	 distances	 using	 the	 vegan	 R	 package	 (Oksanen	 et	 al.,	
2017).	These	distances	were	reduced	and	plotted	using	PCoA	(and	
RDA	for	Bray-	Curtis).	Adonis	tests	were	performed	on	the	distances	
between	covariates	(999	permutations)	using	the	Phyloseq	R	pack-
age	(McMurdie	&	Holmes,	2013).	Permutation	tests	for	homogene-
ity	of	multivariate	dispersions	were	conducted	on	each	of	the	three	
distances	(999	permutations)	to	indicate	applicability	of	the	Adonis	
test	for	each	distance	matrix.

2.4  |  Feature selection and cross- validation

In	 microbiomes,	 not	 all	 taxa	 are	 associated	 with	 specific	
conservation-	relevant	 measurements	 in	 the	 host	 because	 some	
genera	 or	 species	may	 perform	 a	 different	 unrelated,	 often	 un-
known,	 function	 (Sharpton,	 2018).	 The	 complete	 microbiome	 is	
thus	assumed	 to	contain	 “noisy”	genera	 that	 sometimes	obscure	
the	biological	patterns	and	associations	present.	We	used	a	form	
of	the	Sequential	Forward	Floating	Search	algorithm	(i.e.,	Feature	
Selection—	FS;	Pudil	et	al.,	1994)	to	select	for	 informative	genera	
from	the	elk	microbiome.	This	algorithm	selects	a	subset	of	genera	
from	the	total	pool	using	a	heuristic	method	that	maintains	or	im-
proves	the	performance	of	the	complete	data	set.	FS	avoids	nest-
ing	 issues	where	features	 (in	 this	case,	bacterial	 taxa)	are	falsely	
fixed	early	in	the	selection	process	creating	a	local	maxima,	which	
is	 an	 issue	with	 other	 feature	 selection	methods	 that	 results	 in	
reduced	 performance	 (Pudil	 et	 al.,	 1994;	 Saeys	 et	 al.,	 2007).	 By	
allowing	all	 features	 to	be	added	or	 subtracted	as	 the	algorithm	
progresses	(essentially	“floating”	the	selections),	features	interact	
to	 produce	 dynamic	 and	 unbiased	 performance	 results	 that	 are	
not	dependent	on	starting	conditions.	The	FS	algorithm	employed	
herein	uses	J3	scores,	a	form	of	scatter	matrices	that	rewards	close	
clustering	within	groups	of	data	points	and	rewards	increased	dis-
tance	between	groups	of	data	points	using	Euclidean	distances	in	
multidimensional	 space	 (Fukunaga,	 1990).	We	 produced	 feature	
tables	of	FS	genera	sequentially	with	2	through	30	features	(one	
table	of	FS	genera	for	each	number	of	features	in	the	range).

For	 each	 set	of	 genera	 in	 a	 feature	 table,	 a	 linear	discriminate	
classifier	was	created	and	tested	on	the	underlying	count	data	with	
sample	 cross-	validation	 (CV),	 which	 uses	 a	 leave-	one-	out	method	
of	 training	 and	 testing	 to	 reduce	 over-	fitting	 of	 the	model	 to	 the	
training	data	set	 (Liu	et	al.,	2014;	Saeys	et	al.,	2007).	This	method	
removes	a	sample	(an	individual	elk's	microbiome	subset)	from	the	
training	 data,	 builds	 the	 model	 with	 the	 remaining	 samples	 (N-	1)	
then	tries	to	predict	the	classification	of	the	removed	sample.	This	
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leave-	one-	out	method	is	iterated	across	all	samples	(N)	to	calculate	
the	CV	accuracy.

We	balanced	classifier	performance	and	over-	fitting	by	compar-
ing	the	CV	performance	differences	between	multiple	numbers	of	
features	for	signs	of	overfitting	(Braga-	Neto	&	Dougherty,	2004).	
Variance	 in	model	 accuracies	 at	 each	possible	 feature	number	 (2	
through	 30)	was	 obtained	 by	 running	models	with	 progressively	
zero	pruned	data	sets	from	0%	-		16%	at	each	number	of	features,	
which	also	helped	to	assess	model	sensitivity.	To	help	choose	the	
optimal	 number	 of	 features	 for	 the	 final	 LDA	 visualizations,	 we	
generated	 a	 three-	dimensional	 Pareto	 front	 (Hwang	 et	 al.,	 1979)	
for	 multi-	parameter	 optimization	 including	 accuracy,	 number	 of	
features,	and	variance	(not	shown).	Any	set	of	features	selected	on	
the	Pareto	front	was	thus	optimized	for	these	parameters	and	had	
impartial	support.	We	visualized	this	relationship	with	box	plots	of	
accuracy	at	different	numbers	of	features	(Figure	S1).

2.5  |  Classifiers for each elk factor

Each	 classifier	 varied	 somewhat	 according	 to	 the	 desired	 fac-
tor	 to	 be	 predicted	 (i.e.,	 biogeography,	 body-	fat,	 sex,	 or	 age).	 In	
some	cases,	multiple	models	were	built	 to	explore	 the	results	of	
different	 binning	 criteria	 on	 continuous	 data	 types	 (i.e.,	 body-	
fat	and	age).	In	the	simplest	case	of	categorical	classification,	we	
predicted	population	using	 the	 four	 available	 sampling	 locations	
known	 for	 all	 samples,	 including	Bitterroot	Mountains,	 Sapphire	
Mountains,	 Black's	 Ford	 area	 (Madison	 River),	 and	 the	 Tobacco	
Root	Mountains.	Similarly,	categorical	sex	classification	was	done	
using	adult	male	and	female	elk	across	the	four	Montana	popula-
tions	(n =	104	after	filtering).	Due	to	female	elk	being	more	abun-
dant	and	prioritized	during	sampling,	the	sample	data	was	skewed	
toward	 females	 (87:17).	 To	 provide	 equally	 weighted	 classifier	
training	 groups	we	 chose	 to	 normalize	 bin	 sizes	 between	males	
and	females	both	by	sampling	males	with	replacement	(bootstrap-
ping)	up	to	87	samples	or	by	randomly	rarefying	female	samples	
to	19	individuals	(not	shown).	Three	random	bootstrap	iterations	
were	performed	in	each	case	to	determine	the	sensitivity	of	sam-
pling	individuals	with	replacement	or	rarefaction.

To	classify	elk	factors	with	continuous	data	types	 (i.e.,	body-	
fat	and	age)	we	chose	to	use	three	different	models	for	predicting	
body-	fat	in	female	elk	from	three	populations	(Bitterroot	not	sam-
pled)	and	a	single	binary	model	for	age.	The	body-	fat	models	had	
2,	3,	or	4	body-	fat	classes	(only	the	4	class	model	shown;	2	and	3	
not	shown).	These	classes	were	chosen	to	provide	balance	in	bin	
sizes	for	classifier	training	and	less	for	biological	significance.	The	
bin	cutoff	values	 for	body-	fat	were:	2-	class	model	>8% or <8%,	
3-	class	model	>7%,	7–	9%,	and	<9%,	and	lastly	the	4-	class	model	
>7%,	7–	8%,	8–	9%,	and	<9%.	We	chose	to	use	a	two-	class	model	
for	 female	elk	age:	early	 reproductive	age	 (3–	6	years)	and	prime	
reproductive	 age	 (7–	10)	 females.	We	chose	2	 age	bins	based	on	
the	available	female	age	data	and	prioritized	balanced	bin	sizes	for	
age ranges.

3  |  RESULTS

3.1  |  Study populations and field measurements

Sampling	and	sequencing	 included	110	animals,	but	due	to	 incom-
plete	sexing	data,	only	87	females	and	17	males	(n = 104) are repre-
sented	in	the	analyses	with	female	ages	ranging	from	3	to	10	years	
(sample	 mean	 6.38).	 Female	 elk	 body-	fat	 ranged	 from	 5.70%	 to	
13.29%	(sample	mean	7.95%).	The	results	of	the	field	measurements	
taken	are	summarized	in	Table	S1.

3.2  |  Sequencing and quality control

Sequencing	and	QA/QC	sequence	processing	of	partial	16S	rRNA	
amplicons	 from	each	 fecal	 sample	provided	 a	 total	 of	 8,774,731	
paired-	end	 sequences	 (forward	 and	 reverse	 reads)	 across	 all	 elk	
sampled,	with	 sample	 depths	 varying	 from	5571	 to	 128,069	 se-
quences	per	individual	(mean	depth	79,770).	Primers	were	trimmed	
from	paired-	end	sequences	with	filtering	parameters	that	required	
a	read	to	have	a	primer	present,	a	minimum	length	of	100	bp,	and	
a	 mate-	pair,	 which	 resulted	 in	 8,690,840	 sequences	 remaining.	
Filtering	and	trimming	on	quality	(max	of	2	errors,	no	Ns,	truncate	
at	the	instance	of	quality	=	2)	and	length	(minimum	of	80	bp	after	
quality	 trimming)	 reduced	 the	 number	 of	 sequences	 retained	 to	
7,599,271.	 The	 remaining	 sequences	were	 dereplicated	 and	 am-
plicon	sequence	variants	(ASVs)	were	inferred	independently	with	
forward	and	reverse	reads	(by	sequencing	run)	using	the	DADA2	
error	model.	Forward	and	reverse	reads	were	merged	into	single	
reads	(4,374,192	remaining),	sequencing	runs	were	combined,	and	
chimeric	 sequences	were	 removed,	 resulting	 in	 3,386,467	 high-	
quality	 paired	 sequences	 remaining.	 Read	 depths	 per	 animal	
ranged	from	1,103	to	66,124	(mean	=	30,786;	four	samples	below	
1500	reads)	after	 these	quality	 filters.	Sequence	filtering	 results	
are	summarized	in	Table	S2.

3.3  |  16S gene survey of elk ASVs

Sequencing	 of	 partial	 16S	 rRNA	 amplicons	 from	 each	 fecal	 sam-
ple	provided	a	 survey	of	bacterial	presence	and	abundance	 in	 the	
elk	fecal	microbiome.	ASV	counts	per	animal	ranged	from	1008	to	
65,894	 after	 quality	 filtering	with	 a	mean	 count	 of	 30,736.	 After	
filtering,	 a	 total	 of	 11,957	 unique	 ASVs	 were	 indicated	 across	 all	
samples.	 The	 distribution	 of	 unique	 ASVs	 (observed	 richness)	
within	 individual	 samples	 ranged	 from	 30	 to	 1290,	 with	 a	 mean	
of	 714.8	 unique	 ASVs	 per	 individual	 (see	 Table	 S2).	 After	 assign-
ing	 phylogeny	 to	 ASVs,	 there	 were	 136	 unique	 genera.	 The	 top	
10	most	abundant	ASVs	across	all	samples	(after	VST)	were	classi-
fied	to	the	genera	Sporobacter,	Bacteroides,	Phascolarctobacterium,	or	
"g(enus)__Unknown",	all	within	the	phyla	Bacteroidetes,	Firmicutes	
or	Proteobacteria	(For	bacterial	genera	proportional	abundance	see	
Figure	S2).
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Richness	at	the	genus	level	was	calculated	using	breakaway rich-
ness	(Willis	&	Bunge,	2015)	and	is	summarized	in	Figure	S3.	Global	
breakaway	richness	for	the	elk	in	this	study,	defined	as	the	total	di-
versity	including	the	unobserved	(unsampled)	count,	was	estimated	
at	461	genera	(compared	to	the	136	genera	observed).	All	popula-
tions	 varied	 significantly	 (p	 ≤	 .01)	 in	 richness	 from	 the	 Bitterroot	
population	 (breakaway	 richness	 estimate	 intercept	 866.2),	 except	
the	 Tobacco-	Root	 population	 (p = .082). The breakaway	 Shannon	
diversity	 estimate	was	 calculated	 for	 each	 sample	 (Figure	 S4)	 and	
similar	to	richness,	was	significantly	different	(p	≤	.001)	between	all	
populations,	except	for	the	Tobacco-	Root	population	(p = .255).

Beta-	diversity,	 the	diversity	between	bacterial	 communities	of	
individual	elk	was	calculated	between	samples	on	 the	abundance-	
adjusted	dataset	using	Unifrac,	unweighted-	Unifrac,	and	Bray-	Curtis	
distances.	The	resulting	PCoA	and	RDA	plots	show	clustering	at	the	
population	level	(Figure	S5).	When	comparing	between	elk	popula-
tions	with	Adonis	tests,	bacterial	community	distances	before	and	
after	feature	selection	were	more	similar	within	elk	populations	than	
between	populations,	and	mean	distances	between	the	populations	
were	significant	(p =	.001)	for	all	distances.	Elk	sex	was	included	as	
a	covariate	in	all	Adonis	models	and	was	significant	for	Bray-	Curtis	
(p =	.002)	and	weighted-	Unifrac	(p =	.018)	but	not	for	unweighted-	
Unifrac	(p =	 .266).	Similarly,	permutation	tests	on	beta	dispersions	
were	significant	(p =	.001)	for	Bray-	Curtis	and	weighted-	Unifrac,	but	
lower	for	unweighted-	Unifrac	(p = .05).

3.4  |  Classifiers for elk ecological factors

Elk	 populations	 included	 in	 the	 biogeography	 classifier	 were	 the	
Bitterroot	 Mountains,	 Sapphire	 Mountains,	 Black's	 Ford	 area	 of	
the	Madison	River,	and	the	Tobacco	Root	Mountains.	Analysis	with	
FS-	LDA	(Figure	2)	and	PCoA	of	total	elk	bacterial	microbiome	data	
(Figure	S5)	showed	strong	patterns	of	elk	population	structure	(bio-
geography)	with	the	FS-	LDA	method	showing	a	tighter	relationship.	
The	elk	FS-	LDA	population	classifier	performed	with	81%	CV	accu-
racy	using	23	bacterial	genera.	Consistent	accuracy	values	across	all	
FS	dimensions	from	2	to	30	were	observed	(Figure	S1).

Age	estimates	for	female	elk	in	the	sapphire	population	(N = 34) 
ranged	from	3	to	10	years.	The	model	was	trained	on	2-	classes,	fe-
male	elk	aged	3–	6	years	and	7–	10	years.	The	model	used	8	taxa	and	
performed	with	87%	CV	accuracy	(Figure	3).

FS-	LDA	was	used	to	classify	bacteria	as	a	function	of	body-	fat	
from	female	elk	across	three	populations	and	was	trained	using	ei-
ther	two,	three,	or	four	classes	of	body-	fat	(Figure	4,	some	data	not	
shown).	The	performance	of	the	classifier	for	two	elk	body-	fat	cat-
egories	(above	or	below	8%	body-	fat)	was	supported	by	low	levels	
of	overlap	between	clusters	and	by	high	CV	accuracy	of	91%	(where	
50%	is	the	expected	null	hypothesis).	The	three-	class	model	of	body-	
fat	(below	7%,	7%–	9%,	and	above	9%)	was	performed	at	77.8%	ac-
curacy	(compared	to	a	33%	null)	with	30	taxa.	The	four-	class	model	
(body-	fat	below	7%,	7%–	8%,	8%–	9%,	and	above	9%)	was	performed	
at	58.3%	accuracy	(25%	null)	with	28	taxa.

Classification	 of	 sex	 was	 obtained	 with	 high	 CV	 accuracy	
after	normalizing	bin	sizes	between	males	and	 females	by	either	
sampling	males	with	 replacement	 (bootstrapping)	 up	 to	87	 sam-
ples	 (Figure	5,	 iterative	data	not	 shown),	or	by	 randomly	 rarefy-
ing	 female	 samples	 to	17	 individuals	 (not	 shown).	Bootstrapping	
produced	 ordination	 clustering	 by	 sex	 with	 90%	 CV	 accuracy.	
Multiple	 random	bootstrap	 iterations	were	performed	with	 little	
change	to	the	outcome	of	the	classifier,	indicating	the	classifier	for	
sex	was	not	sensitive	to	the	random	effects	of	sampling	with	re-
placement	(some	data	not	shown).	Random	rarefaction	produced	
similar	results	in	the	visualization,	with	a	comparable	CV	accuracy	
of	89%,	which	was	qualitatively	repeated	across	multiple	random	
rarefaction	iterations.

For	a	list	of	genera	selected	in	each	classifier	see	Table	S3.

4  |  DISCUSSION

This	study	provides	strong	evidence	for	linkages	between	several	
elk	physiological	measurements	and	the	host	microbiome,	as	well	
as	 support	 for	 biogeographical	 structuring	 of	 the	 host	 microbi-
ome.	 Analyses	 attempting	 to	 discover	 various	 individual	 factors	
influencing	 host-	microbiome	 structure	 in	 animals	 are	 common	
(Corl	 et	 al.,	 2020;	 Fountain-	Jones	 et	 al.,	 2020;	 Ren	 et	 al.,	 2017;	
Yuan	 et	 al.,	 2015),	 with	 previous	 research	 supporting	 both	 bio-
geographic	structuring	(Martiny	et	al.,	2006;	Moeller	et	al.,	2017)	
and	 host-	associated	 responses	 (Cho	 &	 Blaser,	 2012;	 Mshelia	
et	al.,	2018a).	Despite	a	strong	theoretical	expectation,	synergistic	

F I G U R E  2 FS-	LDA	ordination	plot	of	female	elk	microbiome	
samples	from	4	populations	in	Montana	as	a	function	of	geographic	
location.	Colored	circles	represent	different	populations	as	
indicated;	black	circles	are	the	centroid	of	each	cluster,	and	colored	
ellipses	depict	1	standard	deviation	from	the	cluster	centroid.	
This	classifier	was	trained	using	leave-	one-	out	cross-	validation,	
producing	81%	model	accuracy	using	23	genera
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support	for	multiple	intrinsic	and	extrinsic	factors	structuring	host-	
microbiomes	 is	 rarely	 demonstrated	 in	 a	 single	 study	 as	 demon-
strated here.

The	Montana	elk	intestinal	bacterial	microbiome	is	dominated	by	
phyla	Firmicutes,	Bacteroidetes,	and	Proteobacteria,	typical	of	rumi-
nant	animals	that	degrade	complex	carbohydrates	anaerobically	into	
volatile	 fatty	acids	 (Henderson	et	al.,	2015).	Our	 findings	 for	 total	
fecal	microbiome	composition	were	largely	consistent	with	the	only	
other	 known	 surveys	 of	North	American	 elk	microbiomes	 to	 date	
(Gruninger	et	al.,	2014;	Kim	et	al.,	2019).	Our	deeper	survey	uncov-
ered	a	 large	proportion	of	unclassified	genera	and	species	despite	
using	current	methods	and	databases,	suggesting	that	this	system	is	
still	ripe	for	future	microbial	description.

Our	study	discovered	strong	patterns	of	biogeography	in	four	pop-
ulations	of	elk	using	two	mechanistically	different	approaches	(PCoA	
and	FS-	LDA).	This	suggests	that	environmental	and	site-	specific	effects	
are	important	in	structuring	fecal	microbiome	communities	within	an	
individual's	home	range.	Alpha	and	beta	diversity	results	corroborate	
this	by	demonstrating	that	bacterial	diversity	is	more	similar	among	in-
dividuals	within	a	population	than	between	populations.	Adonis	tests	
between	populations	and	breakaway	measurements	of	 richness	and	
Shannon	diversity	were	 significant	 (p =	 .0001,	p	≤	 .01)	between	all	
populations	except	for	the	Tobacco-	Root	population	which	had	high	
variation	among	individuals	(p =	 .255).	Our	results	corroborate	theo-
retical	expectations	and	limited	findings	of	spatially	structured	wildlife	
microbiomes,	 including	 the	 existence	of	 endemic	 taxa,	 non-	random	
similarity	 across	 taxa	 from	 different	 landscape	 types,	 maintenance	
of	host-	microbiome	diversity	by	dispersal	limitation	in	mammals,	and	
biogeography	as	observed	in	the	European	house	mouse	(Linnenbrink	
et	al.,	2013;	Martiny	et	al.,	2006;	Moeller	et	al.,	2017).

F I G U R E  3 FS-	LDA	ordination	plots	of	female	elk	microbiomes	
from	the	Sapphire	population	as	a	function	of	age.	Colored	circles	
represent	elk	age	group	as	indicated.	Black	circles	are	the	centroid	
of	each	cluster,	and	ellipses	depict	1	standard	deviation	from	the	
centroid.	The	classifier	was	trained	using	leave-	one-	out	cross-	
validation,	producing	87%	model	accuracy	using	8	genera
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F I G U R E  4 FS-	LDA	ordination	plot	of	female	elk	microbiomes	
(n =	73)	from	3	populations	as	a	function	of	ingesta-	free	body-	
fat	(body-	fat).	Filled	circles	are	elk	microbiomes	predicted	into	
ingesta-	free	body-	fat	categories	including	body-	fat	below	7%	(red),	
between	7	and	8%	(green),	between	8	and	9%	(blue),	and	above	9%	
(orange).	Black	circles	are	the	centroid	of	each	cluster,	and	ellipses	
depict	1	standard	deviation	from	the	centroid.	The	classifier	was	
trained	using	leave-	one-	out	cross-	validation,	producing	58.3%	
model	accuracy	with	28	genera

F I G U R E  5 FS-	LDA	ordination	plots	of	elk	microbiomes	
from	4	populations	as	a	function	of	sex.	Colored	circles	are	elk	
microbiomes	while	colors	represent	elk	sex:	red	=	female	and	
green =	male.	Black	circles	are	the	centroid	of	each	cluster,	and	
ellipses	depict	1	standard	deviation	from	the	centroid.	Nineteen	
male	elk	were	bootstrapped	(sampled	with	replacement)	to	n 
=	87	to	provide	equal	weight	to	the	classifier	training	groups.	
The	classifier	was	trained	using	leave-	one-	out	cross-	validation,	
producing	90%	model	accuracy	with	24	genera
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Other	 studies	 have	 found	 environmental	 variables	 like	 tem-
perature,	salinity,	and	changes	related	to	captivity	to	be	important	
in	 determining	 microbiome	 species	 composition	 and	 distribution	
(Haworth	et	al.,	2019;	Kivistik	et	al.,	2020;	Zhu,	Zhu,	et	al.,	2021).	
However,	comparisons	from	studies	sampling	multiple	discrete	pop-
ulations	of	the	same	study	species	are	rare	(Linnenbrink	et	al.,	2013).	
Prediction	accuracies	for	our	population	classifier	were	consistently	
high	 across	 all	 FS	 dimensions	 tested	 (2	 taxa	 through	 30	 taxa),	 in-
dicating	 that	 the	 contribution	 of	 biogeography	 and	 its	 effects	 are	
widespread	throughout	the	elk	microbiome.	Although	not	measured	
in	this	study,	the	biogeographic	patterns	found	in	the	elk	bacterial	
microbiome	may	be	partly	 influenced	by	small-	scale	differences	 in	
forage	 types	 and	 availability	 between	 the	 sampled	populations	 of	
elk,	 since	diet	 is	 known	 to	 influence	gut	microbiomes	 (Petri	 et	 al.,	
2013).	Our	study	highlights	the	importance	of	microbiome	biogeog-
raphy	between	populations	despite	relatively	small	ecological	differ-
ences	between	each	population's	respective	environment.	Further,	
we	 encourage	 future	 consideration	 and	 quantification	 of	 the	 im-
portance	of	microbiomes	during	translocations	of	individuals,	even	
between	genetically	compatible	populations	 from	similar	ecotypes	
(Wang	et	al.,	2019).

Limited	 interaction	between	animals	 from	 isolated	populations	
may	 also	 contribute	 to	 phylogenetic	 divergence	 between	 popula-
tions	by	limiting	the	homogenizing	effects	of	species	dispersal	thus	
increasing	 genetic	 drift	 (Moeller	 et	 al.,	 2017).	 Conversely,	 within	
socially	structured	populations	or	close-	kin,	the	increased	transmis-
sion	of	microbes	can	create	strong	local	patterns	of	microbial	diver-
sity	 (Blaser,	2015;	Tesson	et	al.,	2015).	Ad-	hoc	support	 for	 limited	
transmission	between	the	sampled	elk	populations	can	be	found	in	
a	study	by	Hand	et	al.	(2014),	who	described	limited	female-	specific	
gene	flow	(mitochondrial	FST =	0.161)	in	23	elk	populations	near	our	
study	area.	Thus,	in	our	system,	microbiome	patterns	may	be	main-
tained	 by	 limited	 female	 movement	 and	 geographic	 distance,	 but	
this	remains	to	be	tested	and	may	not	hold	across	all	elk	populations.	
Seasonal	variation	in	microbiomes	is	also	well-	documented	(Amato	
et	al.,	2015;	Maurice	et	al.,	2015;	Ren	et	al.,	2017),	and	annual	vari-
ation	also	seems	likely,	but	the	importance	of	these	factors	remains	
unknown	 in	elk.	Microbiome	structure	between	elk	populations	 is	
likely	not	due	to	host	genetic	differences	since	low	overall	genetic	
diversity	(nuclear	FST =	0.002)	has	also	been	reported	between	pop-
ulations	of	elk	from	the	study	area	(Hand	et	al.,	2014).	Ultimately,	a	
number	of	 these	and	other	 factors	may	be	 involved	 in	structuring	
microbiome	composition	in	the	populations	we	sampled	and	might	
explain	 the	 increased	 microbiome	 variation	 we	 observed	 in	 the	
Tobacco-	root	elk	population.

The	results	of	the	LDA	models	tested	support	a	strong	biological	
connection	 between	 fecal	microbiomes	 and	 elk	 sex,	 body-	fat,	 and	
age.	Classifier	accuracies	for	sex	and	body-	fat	were	high,	despite	com-
bining	data	from	multiple	elk	populations	that,	as	discussed,	included	
the	 strong	 (and	 potentially	 confounding)	 signal	 of	 biogeographic	
diversity	 in	 the	 total	 microbiome.	 Our	 positive	 model	 results	 are	
unique	compared	to	some	other	studies	attempting	to	associate	the	
microbiomes	of	host	animals	to	body	condition,	sex,	and	age	(Bennett	

et	al.,	2016;	Fountain-	Jones	et	al.,	2020;	Mshelia	et	al.,	2018a).	For	
example,	 previous	 studies	 found	 either	 no	 significant	 connection	
between	 the	microbiome,	 host	 age,	 social	 group,	 and	environment	
(Bennett	et	al.,	2016),	or	incomplete	support	(Fountain-	Jones	et	al.,	
2020;	Mshelia	et	al.,	2018a;	Ren	et	al.,	2017).	Substantive	differences	
between	our	study	methods	and	bioinformatic	approaches	likely	con-
tributed	to	these	seemingly	contradictory	outcomes.	These	different	
approaches	 and	 conclusions	 illustrate	 the	 importance	 of	 applying	
various	mechanistically	diverse	methods	and	their	continued	devel-
opment	for	host-	microbiome	linkages.

Consistent	with	 our	 findings,	 a	 culture-	based	 study	of	 gut	mi-
crobiomes	 in	horses	 (Equus caballus)	 found	 significant	associations	
with	sex,	age,	and	body-	condition	scores	(Mshelia	et	al.,	2018b).	This	
study	provides	promising	corroborative	results	to	our	own,	despite	
the	horse	study	being	based	on	culture-	dependent	microbes	and	the	
physiological	differences	between	horses	and	elk	(hind-	gut	fermen-
ter	vs	ungulate).	Our	combined	findings	also	strengthen	arguments	
for	the	holobiont	theory,	which	suggests	a	fundamental	evolutionary	
relationship	between	the	microbiome	and	many	host	factors	(Carrier	
&	Reitzel,	2017;	Zilber-	Rosenberg	&	Rosenberg,	2008).

Sex-	specific	microbiomes	were	found	in	the	elk	sampled	in	this	
study	 based	 on	 both	 FS-	LDA	 sex	 classifier	 results	 and	 significant	
Adonis	 tests	 of	 beta-	diversity	 when	 sex	 was	 used	 as	 a	 covariate	
(Bray-	Curtis,	p =	 .002;	weighted-	Unifrac,	p =	 .018).	Thus,	 there	 is	
value	 in	 examining	 sex-	specific	 differences	 in	 microbiomes,	 since	
these	 differences	 may	 affect	 the	 success	 of	 conservation-	related	
microbiome	 augmentation	 in	 captive	 populations	 (Haworth	 et	 al.,	
2019).	Also	of	relevance,	since	ungulate	(and	other	species)	popula-
tion	management	requires	diverse	outcomes,	monitoring	population-	
specific	sex	ratios	can	help	inform	the	management	action	(Toïgo	&	
Gaillard,	2003).	This	is	especially	pertinent	because	adult	female	elk	
survival	 is	typically	the	best	predictor	of	future	population	growth	
rate	 (Gaillard	et	al.,	2000).	 It	 is	 therefore	useful	 to	 identify	sex	via	
non-	invasive	fecal	sampling.	Although	alternatives	for	sex	determi-
nation	exist	 (e.g.,	SRY	gene	PCR)	and	significant	hurdles	remain	to	
the	 application	 of	 microbiome-	based	 estimates	 of	 sex-	ratios	 (e.g.,	
randomized	sampling	schema)	it	remains	a	promising	possibility.

Estimates	of	animal	body-	fat	and	age	are	both	important	for	elk	
population	management	(J.	G.	Cook	et	al.,	2016).	Female	body	con-
dition	is	a	good	predictor	of	pregnancy,	which	becomes	population	
growth	rate	(Morano	et	al.,	2013)	and	differences	in	fertility	of	fe-
male	ungulates	between	age	classes	are	most	often	caused	by	age-	
specific	variation	in	body	condition	(Albon	et	al.,	1983;	Cook	et	al.,	
2004;	DelGiudice	et	al.,	2007;	Ropstad,	2000).	We	found	evidence	
for	an	association	between	elk	body-	fat	and	the	microbiome	using	
three	models	of	the	FS-	LDA	classifier	(2-	,	3-	,	or	4-	class	models	with	
91%,	 77%,	 and	 58.3%	 CV	 accuracy,	 respectively).	 Specific	 bacte-
rial	 taxa	 associated	with	elk	body-	fat	were	 similar	 across	 all	 three	
models	 tested	 (e.g.,	Bacteroides,	Butyricimonas,	Clostridium_XIVa,	
Grancilibacter,	and	Tannerella;	Table	S3).	This	provides	support	for	
those	taxa	having	a	role	in	the	functional	phenomena	behind	body-	
fat	 measurement,	 although	 such	 experiments	 were	 beyond	 the	
scope	of	this	study.
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We	also	demonstrated	that	adult	female	elk	age	differences	can	
be	detected	 in	 the	microbiome	using	a	2-	class	model.	Age-	related	
differences	in	the	microbiome	have	been	demonstrated	in	humans	
and	other	model	animals	(Lan	et	al.,	2013;	Xing	et	al.,	2020),	but	evi-
dence	in	wildlife	is	still	emerging	(Xing	et	al.,	2020).	Adult	age	classes	
undergo	microbial	 succession	 in	 response	 to	 diverse	 physiological	
and	environmental	 forces	 (Lan	et	al.,	2013;	Stephens	et	al.,	2016).	
Our	study	provides	additional	support	for	the	role	of	adult	succes-
sional	 change	 using	 the	 elk	 bacterial	microbiome.	Changes	 in	 diet	
and	corresponding	microbial	succession	during	early	transitional	de-
velopment	are	somewhat	more	obvious	in	mammals	(like	elk	calves)	
that	 initially	consume	mothers’	milk,	then	change	to	plant	foraging	
(Blaser,	2015;	Koenig	et	al.,	2011).	A	limitation	of	our	elk	age	model	
is	the	incomplete	representation	of	bookend	classes	including	calves	
and	older	elk.	Although	we	did	not	sample	elk	calves,	the	diet	tran-
sition	from	milk	to	forage	and	the	physiological	development	of	the	
rumen	chambers	both	suggest	a	dramatic	change	in	microflora	oc-
curs.	Once	the	0–	1	age-	class	is	included	in	the	model,	we	expect	that	
a	non-	invasive	survey	technique	may	be	possible	to	support	further	
investigation	of	age-	related	population	dynamics	that	improve	man-
agement	in	hard	to	observe	elk	populations.

5  |  CONCLUSION

Our	results	show	that	elk	microbiomes	respond	to	both	the	strong	
extrinsic	factor	of	biogeography	and	simultaneously	occurring,	but	
more	 subtle,	 intrinsic	 forces	 of	 individual	 body-	fat,	 sex,	 and	 age-	
class.	Thus,	we	have	developed	and	described	herein	an	approach	
that	 allows	us	 to	disentangle	microbiome	 responses	attributed	 to	
multiple	factors	of	varying	strength	from	the	same	bacterial	micro-
biome	sequence	data	set.	In	future	cases,	once	strongly	associating	
microbial	taxa	are	vetted	for	stability	among	populations	 in	space	
and	time,	analysis	of	fecal	microbiome	biomarkers	may	represent	a	
less	invasive	alternative	for	acquiring	information	on	wildlife	popu-
lations	 than	 traditional	 sampling	 methodologies.	 Understanding	
the	seasonal	stability	of	the	microbiome	and	the	reproducibility	of	
our	 FS-	LDA	models	 in	 these	 and	 other	 elk	 populations	would	 be	
prudent	 before	 applying	 the	 results	 and	 methods	 of	 this	 study.	
Nonetheless,	 the	 research	 approach	 and	 bioinformatic	 tools	 re-
ported	here	provide	a	foundation	for	the	continued	development	of	
microbiome	associations	in	elk	for	future	monitoring	and	conserva-
tion.	We	are	hopeful	that	these	methods	can	be	expanded	to	inves-
tigate	a	diverse	range	of	wildlife	species	 (including	non-	mammals)	
that	have	strong	host-	microbiome	mutualism.	Additionally,	our	find-
ings	across	multiple	host	 factors	 from	the	same	fecal	microbiome	
dataset	help	unite	 some	 formerly	unconfirmed	expectations	 from	
host-	microbiome	theory	regarding	the	diverse	interconnections	of	
microbiomes	and	hosts.	The	products	of	such	efforts	could	even-
tually	provide	insights	and	novel	solutions	to	current	wildlife	man-
agement	issues	and	allow	threatened	and	endangered	species	to	be	
studied	with	less	perturbation.
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