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Abstract: Chitosanase hydrolyzes β-(1,4)-linked glycosidic bonds are used in chitosan chains to
release oligosaccharide mixtures. Here, we cloned and expressed a cold-adapted chitosanase (CDA,
Genbank: MW094131) using multi-copy expression plasmids (CDA1/2/3/4) in Pichia pastoris. We
identified elevated CDA expression levels in multi-copy strains, with strain PCDA4 selected for high-
density fermentation and enzyme-activity studies. The high-density fermentation approach generated
a CDA yield of 20014.8 U/mL, with temperature and pH optimization experiments revealing the
highest CDA activity at 20 ◦C and 5.0, respectively. CDA was stable at 10 ◦C and 20 ◦C. Thus,
CDA could be used at low temperatures. CDA was then displayed on P. pastoris using multi-copy
expression plasmids. Then, multi-copy strains were constructed and labelled as PCDA(1-3)-AGα1.
Further studies showed that the expression of CDA(1-3)-AGα1 in multi-copy strains was increased,
and that strain PCDA3-AGα1 was chosen for high-density fermentation and enzyme activity studies.
By using a multi-copy expression and high-density fermentation approach, we observed CDA-AGα1
expression yields of 102415 U/g dry cell weight. These data showed that the displayed CDA exhibited
improved thermostability and was more stable over wider temperature and pH ranges than free
CDA. In addition, displayed CDA could be reused. Thus, the data showed that displaying enzymes
on P. pastoris may have applications in industrial settings.

Keywords: chitosanase; chiton oligosaccharides; high-density fermentation; multi-copy strains;
Pichia pastoris; displayed enzyme

1. Introduction

Chitin is a linear homopolymer of acetylated β-(1,4)-linked glucosamine residues, is
one of the most abundant polysaccharides in the world [1], and is found primarily in insects,
crustaceans, nematodes, and fungi. Following deacetylation, chitosan can be generated in
a soluble form, suitable for multiple applications. Derived chitosan oligosaccharides are
water soluble and exhibit multiple biological functions, including anti-tumor, anti-bacterial,
and anti-fungal activities. These features make chitosan and associated oligosaccharides
useful in the agriculture, food, and pharmaceutical industries.

Chemical treatment and enzymatic hydrolysis are two primary methods used to derive
oligosaccharides from chitosan. However, chemical treatments require large volumes of
acids and bases, which are not environmentally friendly [2,3]. Therefore, efforts have been
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made to derive high efficiency chitosan-degrading enzymes for chitosan oligosaccharide
production [4–6]. Chitosanase hydrolyzes β-(1,4)-linked glycosidic bonds in chitosan chains
to release oligosaccharide mixtures. Chitosanase enzymes are grouped into seven glycoside
hydrolase families (i.e., 3, 5, 7, 8, 46, 75, and 80). Families 46, 75, and 80 include most of the
known chitosanase enzymes which have been isolated and heterologously expressed, based
on their ability to efficiently process chitosan into oligosaccharide mixtures for industrial
applications [7–11]. However, polymerization levels in chitooligosaccharide mixtures dy-
namically change during enzymatic hydrolysis processes. Final hydrophytic mixtures are
often (GlcN)2 and (GlcN)3 rich, which means they cannot be used in the food, agriculture
and medical industries. To generate chitooligosaccharide mixtures with specific polymer-
ization levels, enzymatic hydrolysis processes have to be stringently regulated. Several
methods have been applied (e.g., adding alkali or using high temperature treatments to
prevent chitosanase activity), albeit with little success. However, cold-active enzymes have
been used under mild reaction conditions to generate different mixtures, suggesting this
approach could be valid in producing specific chitooligosaccharide mixtures.

Our lab obtained a Bacillus glycinifermentans BT2019 strain with high chitosanase
activity at 20 ◦C. We first cloned the CDA gene (Genbank: MW094131) using a pair of de-
generate primers, expressed the cold-active chitosanase using P. pastoris, and characterized
the generated recombinant enzyme. Our analyses showed that CDA converted chitosan
to chitooligosaccharides, with different degrees of polymerization, under mild conditions.
Then, CDA was surface displayed on P. pastoris and used to perform the subsequent re-
actions. Our data showed that surfaces displaying CDA could also be used to produce
specific chitooligosaccharide mixtures. Free and surface displayed CDA were compared
and showed potential efficacy for the industrial production of chitosan.

2. Materials and Methods
2.1. Strains, Reagents and Media

P. pastoris, GS115 and Escherichia coli, DH5α strains were purchased from Invitrogen
(Carlsbad, CA, USA). The pHBM905BDM plasmid was constructed in our laboratory.
All culture media, including minimal dextrose (MD,1.34% YNB, 2% dextrose, 4 × 10−5%
biotin), buffered minimal glycerol (BMGY, 1% yeast extract, 2% peptone, 100 mM potassium
phosphate, pH 6.0, 1.34% YNB, 4 × 10−5% biotin, 1% glycerol), and buffered minimal
methanol (BMMY, 1% yeast extract, 2% peptone, 100 mM potassium phosphate, pH 6.0,
1.34% YNB, 4 × 10−5% biotin, 0.5% methanol) were prepared, as described in the P. pastoris
expression manual (Invitrogen).

2.2. Construction of pHBM905BDM Expression Vectors for Free and Surface Displayed
CDA Expression

The CDA sequence (GenBank: MW094131) was modified based on P. pastoris codon-
usage preference, and synthesized [12] by Sangon BioTech (Shanghai, China). Primers
Cdaf/Cdar were synthesized to amplify CDA, which was treated by T4 DNA polymerase
for 20 min. The PCR product was ligated into CpoI/NotI-treated restriction sites of the
pHBM905BDM plasmid, and transformed into E. coli. The generated pHBM905BDM-CDA
plasmid was digested with EcoRI/SpeI or XbaI/BamHI to produce expression cassettes
containing the promoter, the leading signal sequence, the target open reading frame and the
terminator (Figure 1). pHBM905BDM-CDA1 was further digested with EcoRI and BamHI
to produce fragments ligated to the expression cassette, to produce pHBM905BDM-CDA2,
containing two CDA copies. The method generated recombinant plasmids bearing three
and four CDA copies, respectively. The method to verify the multi-copy plasmid included
cutting the expression cassette containing the cda gene with XbaI/BamHI, and then cutting
the vector backbone with SpeI/BamHI. After double digestion, the size of the products was
calculated, and separated on an agarose gel to determine whether the bands were consistent
with the calculated products. After confirming the recombinant vectors, they were labelled
pHBM905BDM-CDA2, pHBM905BDM-CDA3, and pHBM905BDM-CDA4 [13–15].
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Figure 1. The construction of pHBM905BDM expression vectors.

DNA fragments encoding CDA-AGα1 fusion sequence were synthesized by San-
gon BioTech. Using the mentioned method, recombinant expression plasmids were gen-
erated containing one, two and three CDA-AGα1 copies. These plasmids were called
pHBM905BDM-CDA1-AGα1, pHBM905BDM-CDA2-AGα1, and pHBM905BDM-CDA3-
AGα1 [16].

2.3. Confirmation of the Number of Copies of the Recombinant Strains Using qPCR

The genomic DNA was extracted from yeast cells using a yeast genomic DNA kit
(Omega, New York, NY, USA). The glyceraldehydes-3-phosphate dehydrogenase (GAP)
gene of P. pastoris was used as the reference gene for qPCR. All real-time PCR reactions
were performed using the FX96TM real-time PCR Detection System (Bio-rad, Hercules, CA,
USA). The program was carried out as follows: 95 ◦C for 5 min; 40 cycles of denaturation at
95 ◦C for 30 s; annealing at 58 ◦C for 30 s; and elongation at 72 ◦C for 20 s. Fluorescent signal
measurements were carried out during each elongation step. Plasmids bearing GAP and
the target gene were used to generate the standard curves. The total gene copy numbers
of GAP and the target gene in the genomic DNA samples were determined by relating Ct
values to the standard curves. The target gene copy numbers that were integrated into the
genomes of recombinant P. pastoris were calculated based on the ratio of the copy number
of the target gene relative to GAP.

2.4. Expression of CDA and CDA-AGα1 Fusion Proteins

Recombinant P. pastoris strains PCDA(1–4)/PCDA(1–3)-AGα1 were cultured in 100 mL
BMGY shaking flasks. When the OD600 reached 40, cells were harvested and cultured in
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50 mL BMMY medium, to which 0.5% methanol was added to induce protein expression
every 12 h. When fermentation was terminated, supernatants or cells were harvested by
centrifugation at 4 ◦C and 10,000 g for 5 min. The supernatants were treated and separated
by 12% (w/v) sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The
input protein concentrations were determined using the Bradford kit (Beyotime, China)
with bovine serum albumin as the standard.

2.5. High Density Fermentation of Recombinant Strains

Fed-batch fermentation was performed according to previously described methods.
Each recombinant strain, PCDA(1–4)/PCDA(1–3)-AGα1 was cultured in 100 mL flasks
containing YEPD medium at 30 ◦C for 12 h. The seed medium was transferred to 12 L
BMGY medium in a 20 L fermenter, and fermentation performed at 28 ◦C, pH 6.0, under
30% dissolved O2. When the optical density reached target density, 1% methanol with
PTM1 trace salts were fed to cells at a rate of 3 mL/h/L. Approximately 20 mL cultures
were collected every 12 h for enzyme activity assay.

2.6. Enzymatic Characterization of Free and Displayed CDA

CDA activity was assayed as follows: Activity was measured at 20 ◦C in a hetero-
geneous incubation mixture, containing 50 mg 60% deacetylated chitosan, 1 mL enzyme
preparation or harvested cells, and 5 mL 50 mM Tris-HCl buffer (pH 8.5). One activity unit
(U) of generated acetic acid was defined as the amount of enzyme required to produce
1 µmol acetic acid per min.

The optimal pH for enzyme activity was determined using different buffering systems
(i.e., 0.02 M Na2HPO4-citric acid (pH 4.0–6.0), sodium phosphate (pH 6.0–7.5), Tris-HCl
(pH 7.5–8.8), and glycine-NaOH (pH 8.8–10.6)). To determine the optimal temperature,
enzyme activity was measured between 10 ◦C and 80 ◦C. Following enzyme incubation at
different temperatures for a defined time, remaining enzyme activity was measured to infer
thermal stability. The effects of various metal ions and substances on CDA activity were
assessed using final 5 mM and 0.5% (w/w) concentrations, respectively. All experiments
were performed in triplicate.

2.7. Determination of Kinetic Parameters

The kinetic parameters of the enzymes were determined using colloidal chitosan
concentrations of 1 to 10 mg/mL at 20 ◦C and pH 5.0. Each determination was performed
in triplicate. All data were fitted to the Michaelis-Menten equation using non-linear
regression to calculate the Km and Vm [17].

2.8. TLC Examination

The supernatants of the chitosan hydrolysate (1 µL) were poured on a silica gel plate.
Ethyl acetate: ethanol: water: ammonia (5:5:4:0.3, v/v) was used as the developing solvent,
and 0.1% ninhydrin was used as the chromogenic agent. Color was developed in 10 min at
105 ◦C.

2.9. Assessment of Displayed CDA Using Immunofluorescence and Fluorescence Microscopy

Recombinant cells were labeled for immunofluorescence analysis. Cells were har-
vested by centrifugation, washed several times in 0.01 M PBS, and resuspended and
blocked in PBS containing 1% BSA for 30 min. Then, 1 mL cell suspension was incu-
bated with 5 µL anti-FLAG IgG at 25 ◦C for 90 min, after which cells were washed and
resuspended in PBS containing Alexa FluorTM 488-conjugated goat anti-mouse IgG and
incubated for 90 min at 25 ◦C. Cells were observed under a fluorescence microscope at
excitation and emission wavelengths of 488 nm and 510–535 nm, respectively.
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3. Results and Discussion
3.1. Cloning and Identification of the CDA Gene

Chitosanases effectively convert chitosan to chiton oligosaccharides. These latter
molecules are widely used in the agriculture, food, chemical, energy, environmental pro-
tection, medicine, and other sectors. In considering the wide range of uses of chiton
oligosaccharides, scientists have made considerable efforts to generate chitosanases with
high conversion efficiencies and stable properties.

In recent years, our laboratory has cloned several chitosanases. Most enzymes were
thermostable, and others were mesophilic enzymes. These enzymes had little or no indus-
trial applications. Thus, we sought to generate a cold-active chitosanase with activities
at low temperatures to save energy and precisely control the reaction process. To do this,
we used a microbiological selective media approach, where colloidal chitosan was used to
screen hundreds of strains to identify a cold-active chitosanase. After extensive screening,
we identified a Bacillus glycinifermentans BT2019 strain that exhibited the highest enzyme
activity at 20 ◦C. However, this wild strain produced very low levels of chitosanase, with
limited industrial application. Therefore, we elevated the expression levels using recombi-
nant protein expression systems. By analyzing genomic information of B. glycinifermentans
BT2019, a hypothetical protein was identified as chitosanase based on sequence similarities.
Based on the protein sequence (WP_048352981.1), we designed a pair of degenerate primers:
ATGAARATHCGNCTNAARAARA and HTANTGYTTYAANGGYATRAGR. Using this
pair of primers, we amplified a DNA fragment from Bacillus glycinifermentans BT2019 and
sequence alignments revealed that it encoded a novel chitosanase. The nucleotide sequence
of CDA was deposited in GenBank and assigned the accession number, MW094131.

The full-length CDA gene had an open reading frame of 834 base pairs (bp), encoding
278 amino acids, with a theoretical molecular mass of 32 kDa. A signal peptide of 36 amino
acids was predicted using SignalP analysis. BLAST results showed that CDA shared 25%
identity with a chitosanase from Streptomyces N174 [18], and 79% identity with a chitosanase
from Bacillus nakamurai (KXZ20106.1).

3.2. Construction of Recombinant Strains

Previous studies showed that a cold-active chitosanase was expressed in E. coli and
converted chitosan into chitooligosaccharides, with different levels of polymerization [19].
However, no related studies have been reported to have produced cold-active chitosanases
using P. pastoris. Here, a P. pastoris multi-copy expression system and high-density fermen-
tation have been used for other enzyme processes in our laboratory. Thus for the first time,
we demonstrate effective expression and evaluation of CDA in P. pastoris, with potential for
industrial applications.

To improve CDA expression levels, expression plasmids harboring multiple copies of
CDA were constructed. The multi-copy plasmids were identified using agarose gel elec-
trophoresis (Figure 2). Then, they were confirmed using enzyme-digestion, as described in
Section 2.2 (data not shown). P. pastoris GS115 cells were transformed with the recombinant
plasmids, resulting in the recombinant strains, PCDA1, PCDA2, PCDA3, and PCDA4. In
addition, plasmid pHBM905BDM was also transformed into GS115, generating the control
strain, PCCC.

qPCR was performed as described in Section 2.3. We confirmed the CDA copy number
in recombinant strains; standard curves for CDA and GAP were generated, showing
the correlations between Ct values and copy numbers. The CDA Ct values of strains
PCDA1, PCDA2, PCDA3, and PCDA4 were 1.1, 1.99, 2.98, and 3.61 fold higher than
GAP, respectively (Figure 3), thus confirming that CDA was present in multiple copies in
our strains.
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Figure 2. Multi-copy plasmid verification. Lane M, DNA Marker; lane 1, linearized pHBM905BDM-
CDA1; lane 2, linearized pHBM905BDM-CDA2; lane 3, linearized pHBM905BDM-CDA3; lane 4,
linearized pHBM905BDM-CDA4.

Figure 3. qPCR-based evaluations of the copy numbers of the recombinant strains. (A) qPCR of the
CDA expression cassettes integrated into the host strains. (B) qPCR of the CDA-AGα 1 expression
cassettes integrated in the host strains.

Strains were cultured, and after four days of induction using methanol, and reaching
an OD600 of ~40, strain supernatants were subject to SDS-PAGE and enzyme activity analy-
sis. SDS-PAGE (Figure 4) revealed that all supernatant samples contained a band of 32 kDa,
with band intensities increasing with an increasing CDA copy number. Enzyme activity
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analyses showed that high copy CDA strains produced greater enzyme levels (Table 1).
Enzyme activities for PCDA2, PCDA3, and PCDA4 were 1.88, 2.92, and 3.86 times higher
than that of PCDA1, which were lower than the theoretical value of the gene dosage. This
was because elevated protein expression levels influenced host strain metabolism. We
previously used the pHBM905BDM plasmid to produce several recombinant enzymes,
including amino acid oxidase, glutamate oxidase and a thermostable chitosanase [20,21].
This reagent effectively elevated recombinant protein expression levels via the construction
of multi-copy plasmids. In this study, this strategy was used to CDA expression, demon-
strating that increased gene copy numbers improved CDA yields. As PCDA4 produced the
highest CDA levels, it was chosen for subsequent experiments.

Figure 4. SDS-PAGE analysis of CDA secreted into cell culture supernatants. M, protein molecular
weight marker. Lanes 1–4, PCDA1, PCDA2, PCDA3, and PCDA4, respectively.

Table 1. Comparisons of the enzyme activity of PCDA1, PCDA2, PCDA3, and PCDA4.

Strain Final Cell Density (g/L) Protein Concentration (mg/mL) Enzyme Activity (U/mL)

PCDA1 46.2 ± 1.22 0.029 ± 0.002 66.8 ± 5
PCDA2 43.1 ± 1.31 0.048 ± 0.015 125.6 ± 6
PCDA3 43.4 ± 1.18 0.075 ± 0.046 195.1 ± 2.5
PCDA4 42.2 ± 1.15 0.121 ± 0.096 258.5 ± 2.1

3.3. High Density Fermentation Using the PCDA4 Strain

We evaluated PCDA4 high-density fermentation to assess CDA expression levels
according to fermentation strategy according to the Section 2.5 (Figure 5). First, methanol
was added to induce CDA production when the cell density reached 150 g/L. After fer-
mentation, cell density increased from 150 g/L to 210 g/L, generating a 4.7-fold increase
relative to shake-flask fermentation. CDA enzyme activity reached 18512.6 U/mL, which
was a 71-fold increase when compared with shake-flask data. Then, protein induction was
initiated by adding methanol when the cell density reached 200 g/L. After fermentation,
final cell density and enzyme activity reached 250 g/L and 20014.8 U/mL, respectively.
This represented a 5.9- and a 77-fold increase, respectively. According to these results,
an induction density of 200 g/L was optimal, and was used for subsequent fermentation
processes. Under fed batch conditions, more oxygen and methanol were provided to the
yeast cells than in flasks. Thus, the expression level per cell was improved. Based on our
multi-copy expression strategy, high density fermentation further improved cell density
and CDA enzyme activity when compared to shake-flasks.
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Figure 5. Time course of free CDA fermentation. (A) Induction was initiated when OD600 = 150;
(B) induction was initiated when OD600 = 200.

3.4. CDA Characterization

CDA activity was measured at 10, 20, 30, 40, 50, 60, 70, and 80 ◦C and a pH range of 3,
4, 5, 6, 7, 8, and 9 (Figure 6). Our data showed that maximum CDA activity occurred at
20 ◦C. When the temperature >70 ◦C, activity was lost. Furthermore, the optimal pH was 5,
while 70% of CDA activity was retained between pH 4 and 6.5. All CDA activity was lost
when the pH was >8.5.

Figure 6. (A) Temperature optimization for CDA enzyme activity. Enzyme activity at 30 ◦C was set
to 100%; (B) pH optimization for CDA enzyme activity. Enzyme activity at pH 5.0 was set to 100%.

We next studied CDA thermostability at different temperatures, including 10, 20, 30,
40, and 50 ◦C for different times (Figure 7). Our data showed that 95% of CDA activity
was maintained after the enzyme was incubated at 10 ◦C for 120 min, and almost 91%
activity remained after 300 min. At 30 ◦C, 85% of CDA activity remained after incubation
for 150 min. At 50 ◦C, CDA activity diminished rapidly (e.g., 15% of CDA activity was
maintained for 120 min, and was lost after 270 min). This observation demonstrated that P.
pastoris CDA exhibited good cold-active properties.
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Figure 7. Temperature stability of CDA. The initial enzyme activity was set to 100%.

We investigated the influence of metal ions on CDA expression (Table 2). Our data
demonstrated that Mg2+ significantly improved CDA activity by approximately 20%. How-
ever, Mn2+ restrain CDA activity by 98%. Other metal ions, such as Cu2+, and Fe2+ inhibited
CDA activity by 60% and 55%, respectively. Accordingly, Mg2+ was added to reaction
mixtures to accelerate chitooligosaccharide formation.

Table 2. The effect of metal salts and chemical agents on the activity of free CDA.

Metal Ion Concentration Relative Activity (%)

No addition 0 mM 100
Fe2+ 5 mM 43.9
Cu2+ 5 mM 35.9
Mg2+ 5 mM 121.2
Ca2+ 5 mM 115.1
Mn2+ 5 mM 98.5
Co2+ 5 mM 21.5
Cr2+ 5 mM 11.4
Zn2+ 5 mM 8.9
Fe3+ 5 mM 6.5

We also investigated CDA kinetic parameters. Under conditions described in the
Materials and Methods Section 2.7, the Michaelis constant (Km) was 1.92 ± 0.07 mg/mL,
and the Vmax reaction rate was 395.65 ± 7.34 µmol/min.

During chitosan hydrolysis reactions, the pH of the chitosan reaction mixture must
be low. Indeed, chitosan substrates cannot dissolve in high pH buffers (pH > 5.5), as such
mixtures cannot be hydrolyzed by chitosanase. However, the optimal pH of many chi-
tosanases is >5.5. For example, the optimal pH of several reported chitosanases (i.e., CsnW2
from Aspergillus sp. W-2 and MsChoA (pH 5.5) from Mitsuaria sp. 141) are >5.5 [9,11,19].
Thus, these enzymes are unsuitable for chitosan reactions, and only those enzymes with
the highest activity under acidic conditions (<5.5) have potential industrial applications.
In general, most of the normal enzymes exhibit optimal activities at temperatures of
30–60 ◦C. In the past, researchers preferred thermo-chitosanases because high temper-
atures accelerated reactions, thereby preventing contamination and decreasing reaction
mixture viscosity. However, in recent years, cold-active enzymes have attracted greater
attention, because lower reaction temperatures save on energy consumption, with more
controlled chitooloigosaccharide production. Our cloned CDA proved to be an acidic (pH 5)
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cold-active (20 ◦C) chitosanase. Thus, these key characteristics made it a good candidate
for controlled chitooloigosaccharide production (next section).

3.5. Large-Scale Hydrolysis and Analysis of Chitosan Oligosaccharides with TLC

We suspended 10 kg chitosan powder in 100 L water, 50 L acetic acid, and 1 L of CDA
supernatant from high density fermentation. The reaction was performed three times at
20 ◦C for 24 and 36 h. Reactions were terminated by incubation at 80 ◦C for 1 h. We then
performed TLC to detect chitosan products. Our results showed that (GlcN)2 to (GlcN)6
were the main products for reactions performed for 24 h (Figure 8). For 36-h reactions,
the hydrolytic products were mainly (GlcN)2, (GlcN)3, (GlcN)4, and (GlcN)5. Therefore,
performing reactions at 24 h generated optimal polymerization production.

Figure 8. TLC analysis of the products from a large-scale hydrolysis study using free CDA. Lane M,
standard mixture of chitosan oligosaccharides; lane 1, hydrolysis products of chitosan for 24 h; lane 2,
hydrolysis products of chitosan for 36 h.

Several studies have shown that monosaccharides and disaccharides have low bio-
logical activities [1–3]. Chitosan oligosaccharides, with a degree of polymerization of 2–6,
exhibit significant antibiotic effects, which enhance protection against microbial infections
in mice, and increase the human body’s resistance. The molecules also appear to regulate
the production of plant rhizobia, and activate plant resistance against pathogenic microor-
ganisms. These shell oligosaccharides also prevent constipation, heart disease, induce
weight loss, reduce LDL levels, promote calcium absorption, improve health, and enhance
immunity and other functions. Thus, prepared chitosan oligosaccharides are vitally impor-
tant to several commercial sectors. However, many chitosanase exo-chitosanase activity;
the generated chitosan oligosaccharide mixtures consist mainly of GlcN and (GlcN)2, with
no biological activity.

Using CDA, we generated chitosan oligosaccharide mixtures mainly containing
(GlcN)2, (GlcN)3, (GlcN)4, (GlcN)5, and (GlcN)6. Therefore, this enzymatic reaction can be
applied to the industrialized production of oligochitosan products.
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3.6. Construction and Expression of a CDA Surface Display System in P. pastoris

Yeast cell surface display systems are widely used to display foreign proteins [16].
Here, we tried to display CDA on the surface of P. pastoris. For this, we used the N-
terminal fusion display α-agglutinin from S. cerevisiae as the anchor protein to P. pastoris. A
fusion fragment containing CDA, a Gly-Gly-Gly-Ser sequence, a FLAG tag, and the Agα1
domain from S. cerevisiae was synthesized. We then constructed multi-copy expression
plasmids of these fusion genes. These plasmids contained one, two, and three copies of
the CDA-Agα1 fusion gene; pHBM905BMD-CDA1-AGα1, pHBM905BMD-CDA2-AGα1,
and pHBM905BMD-CDA3-AGα1, respectively. Plasmids were then electro-transformed
into P. pastoris to produce the recombinant strains, PCDA1-AGα1, PCDA2-AGα1, and
PCDA3-AGα1, respectively. qPCR confirmed that each strain contained the corresponding
CDA-AGα1 copy numbers (Figure 3B).

Recombinant strains were cultured and induced in shake-flasks, the cells were har-
vested, and CDA activity was assessed. Our data showed that biomass densities from
multi-copy strains were similar; however, the strain carrying three CDA1-Agα1 copies
showed the highest CDA activity (Table 3). When compared with the other shake-flask
cultures, the enzyme activities of PCDA2-Agα1 and PCDA3-Agα1 were 1.75 and 2.2-fold
higher than PCDA1-Agα1. We therefore used PCDA3-Agα1 for subsequent high-density
fermentation. Being consistent with free CDA expression, multi-copy expression approach
could also improve total displayed CDA activity. This was the first time an in vitro multi-
copy expression system was applied to chitosanase surface display.

Table 3. Comparations of the enzyme activity of PCDA1- AGα1, PCDA2-AGα1, and PCDA3-AGα1.

Strain Final Cell Density (g/L) Enzyme Activity (U/g)

PCDA1- AGα1 58.5 ± 2.21 29012.2 ± 3.21
PCDA2-AGα1 57.3 ± 2.13 50810.8 ± 3.12
PCDA3-AGα1 59.9 ± 2.21 64112.1 ± 3.25

As free enzymes are unstable and cannot be used repeatedly, it was inconvenient to
separate the enzyme and the reaction product. Thus, enzymes were immobilized using
several methods (e.g., surface display on yeast). This method enhanced protein affinity and
thermostability. Here, we applied the in vitro multi-copy expression approach to display
chitosanase on the cell surface, demonstrating improvements in surface display productivity.

3.7. Detection of Displayed CDA Using Immunofluorescence and Fluorescence Microscopy

We used immunofluorescence to detect CDA on the yeast cell surface. Figure 9
revealed fluorescence (Alexa FluorTM 488 excited) on the cell surface of PCDA3-AGα 1, but
not control cells (P. pastoris transformed with pHBM905BMD-AGα1). Strains PCDA1-AGα1
and PCDA2-AGα1 were also subjected to immunofluorescence, and showed fluorescence
on the yeast surface (data not shown). These data indicated that CDA was successfully
displayed on the P. pastoris surface.

3.8. High Cell Density Fermentation of Strains Expressing Recombinant Surface Displayed CDA

The fermentation strategy (Section 2.5) was applied to recombinant strain PCDA3-
AGα1 fermentation (Figure 10). When the cell density reached 200 g/L after glycerol
feeding periods, methanol was added to induce CDA-AGα1 expression. The cell density
increased to 290 g/L, which was a 4.8-fold increase over shake-flasks. CDA activity reached
102415 U/g dry cell weight after 96 h of fermentation, which was a 1.6-fold increase over
shake-flasks. Thus, high cell density fermentation markedly improved cell densities and
CDA activity, when compared to shake-flasks. Therefore, combining multi-copy expression
strains and high-density fermentation significantly improved displayed CDA productivity.
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Figure 9. Laser confocal analysis of recombinant cells (displayed CDA) and control cells. Recombinant
cells (displayed CDA): (A) the excitation source was turned on. Fluorescent cells indicate that CDA
was successfully surface displayed on yeast; (B) the natural light source was turned on. Control cells:
(C) the excitation source was turned on, and (D) the natural light source was turned on.

Figure 10. Time course of displayed CDA fermentations based on a fermentation strategy described
in the Section 2.5.

3.9. Displayed CDA Characterization on the P. pastoris Cell Surface

We examined the displayed CDA features. Our data indicated that most features were
the same as that of free CDA, however, displayed CDA was more stable (Figures 5 and 6);
e.g., the displayed CDA retained 90% of its maximum activity at temperatures 20–40 ◦C,



Molecules 2022, 27, 800 13 of 15

and pH 4–8. This activity decreased rapidly when the temperature was >50 ◦C or pH > 8.
Displayed CDA thermostability was better than free CDA. It retained 90% initial activity
for 300 min at 20–40 ◦C; but 60% of activity was lost when temperatures >50 ◦C. When
displayed CDA was incubated at 60 ◦C above for 30 min, its activity was mostly lost. These
data revealed that displayed CDA showed improved thermostability, and was stable over
wider temperature and pH ranges, than free CDA.

3.10. Recycling of Displayed CDA and Conversion of Chitosan into Different Chitooligosaccharides

By using displayed CDA, we successfully converted 10 kg of chitosan (100 L water,
50 L acetic acid, and 100 g supernatant CDA) into chitooligosaccharide mixtures in 24 h.
The experiments revealed that (GlcN)2–(GlcN)6 were the main reaction products over
this timeframe (data not shown) and performing reactions over this timeframe generated
optimal polymerization products. In addition, as surface display enzymes may be used
several times, the recycling efficiency was evaluated (Figure 11). Our data showed that
displayed CDA activity remained high after reactions were performed several times. For
example, ~76% displayed CDA activity was retained after six reaction cycles. Displayed
CDA can be used several times to produce chitooligosaccharide mixtures with different
polymerization levels. Additionally, displayed CDA facilitated easy purification of chi-
tooligosaccharide products. The displayed and free CDA characterizations were similar,
but the displayed CDA could be reused more frequently. Thus, in future studies and
industrialization application methods, displayed CDA should be considered instead of
free CDA.

Figure 11. Reusability of displayed CDA. The remaining activity represents the displayed CDA
activity after being used for N cycles/unused displayed CDA activity.

4. Conclusions

We present data on a cold-adapted chitosanase application for chitooligosaccharide
mixture production. CDA was expressed as free and surface-displayed in P. pistoris. Multi-
copy expression and high cell density fermentations were used in a combinatorial approach
to assess free and surface-displayed CDA expression levels. We achieved free CDA expres-
sion yields of 20014.8 U/mL and displayed CDA expression yields of 102415 U/g dry cell
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weight. Free and displayed CDA may be used to produce chitooligosaccharide mixtures
with different polymerization levels, for different purposes. At 20 ◦C for 24 h, chitin was
converted to chitooligosaccharide mixtures, primarily consisting of (GlcN)2–(GlcN)6, which
are suitable for industrialization.
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