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ABSTRACT
A major challenge in personalized cancer medicine is to establish a systematic 

approach to translate huge oncogenomic datasets to clinical situations and facilitate 
drug discovery for cancers such as endometrial carcinoma. We performed a genome-
wide somatic mutation-expression association study in a total of 219 endometrial 
cancer patients from TCGA database, by evaluating the correlation between ~5,800 
somatic mutations to ~13,500 gene expression levels (in total, ~78, 500, 000 pairs).  
A bioinformatics pipeline was devised to identify expression-associated single 
nucleotide variations (eSNVs) which are crucial for endometrial cancer progression 
and patient prognoses. We further prioritized 394 biologically risky mutational 
candidates which mapped to 275 gene loci and demonstrated that these genes 
collaborated with expression features were significantly enriched in targets of drugs 
approved for solid tumors, suggesting the plausibility of drug repurposing. Taken 
together, we integrated a fundamental endometrial cancer genomic profile into clinical 
circumstances, further shedding light for clinical implementation of genomic-based 
therapies and guidance for drug discovery.

INTRODUCTION

In the United States, uterine corpus endometrial 
carcinoma (UCEC) or endometrial cancer is the third 
most common malignancy and the most prevalent genital-
system tumor among females, with an estimated 54,870 
new cases and 10,170 deaths in 2015 [1]. Endometrial 

cancer transformation arises from the normal uterine 
corpus through a progressive accumulation of somatic and 
epigenetic aberrations. 

On the basis of disease stage, early-stage 
endometrial cancer can generally be cured, while recurrent 
and advanced endometrial cancer is clinically aggressive, 
and progress in developing treatment approaches has 
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been limited [2]. The dearth of new clinical drugs has led 
to a new approach called drug repurposing, the alleged 
new uses for old drugs, to increase usable therapeutic 
agent access for endometrial cancers. The rationality 
of drug repurposing of approved anticancer drugs is 
based on the concept that different cancers may possess 
similar pathological molecular or pathway origins. 
The most noticeable feature of drug repurposing is the 
clear understanding of pharmacological mechanisms, 
pharmacokinetic profiles, metabolism pathways and 
toxic reactions of approved drugs [3]. In estimation, 
approximately 90% of old drugs can be developed for 
secondary purposes [4], further provide evidence for the 
feasibility of drug repurposing as a drug discovery tool.

The Cancer Genome Atlas (TCGA) database is a 
large-scale genomic database that primarily envisions 
somatic changes of cancers including endometrial cancer 
[5]. The final goal of these tremendous efforts is to tailor 
patient treatment in a personalized manner, and drive 
customization of disease care by implementing tumor 
genetic information. Importantly, the identified drivers 
can act as drug targets for disease amelioration, treatment 
biomarkers for patient categorization, and prognostic 
markers for patient survival. Although the landscape 
of somatic aberrations in endometrial cancer has been 
depicted, the potential utilization of relevant biomarkers 
into clinical situations has been limited. Moreover, 
studying large amount of cancer genomic data remains 
analytically challenging. The genetic architecture of 
transcription profiles is thoroughly affected by several 
kinds of genetic and epigenetic polymorphisms [6, 7]. 
Consequently, the presence of other genetic determinants 
may increase the difficulty in clarifying the effects of 
somatic mutations on gene expressions. 

Taken together, the above-described situations 
motivated this integrative study to determine expression-
associated somatic alterations and quantify their 
aberrations on the cancer transcriptome. These expression-
associated (e)SNVs were further prioritized by a scoring 
system based on 7 criteria to identify biologically risky 
mutational candidates and provide crucial information for 
drug discovery.

RESULTS

Identification of eSNVs in endometrial cancer

We applied a 2-step linear regression to correlate the 
somatic mutation status with the residual expression value 
while adjusting for 2 genetic determinants (Figure 1B). 
Using Equations 1 and 2 (Supplementary Figure 1D), we 
identified 74,713 significant SNV-gene pairs (0.095% from 
the total 78,571, 584 SNV-gene pairs), which mapped to 
4,153 eSNVs (71.3%) and 2,612 unique genes (19.4%). A 
Q-Q plot of all raw p values revealed a low possibility of 
sample relatedness (λGC = 0.91, Figure 1C). The effects of 

mutational eSNVs were estimated and these respectively 
revealed 0.861% and 0.848% explanations of the mean 
total variation of the residual relative transcript abundance 
by cis- and trans-acting eSNVs (Figure 1D).

We identified expression levels of 4,335 genes 
(32.13% of all genes) that were significantly correlated 
with their somatic copy number (with an FDR of < 0.05), 
which accounted for 6.204% of the mean total variation of 
expression levels. Respectively, expression levels of 327 
genes (2.42% of all genes) were significantly correlated 
with methylation of CpG islands (with an FDR of < 0.05), 
which explained 1.386% of the mean of total variation of 
expression levels (Figure 1D). Among those genes that 
showed correlations of their expression values with both 
the somatic copy number and methylation, 5 (ERBB2, 
PDXK, HDAC4, PLXNA1 and TNFAIP2) were also 
correlated with mutational eSNVs (Figure 1E).

Gene-based prioritization and mutational cluster 
identification

We distinguished driver mutations from functionally 
neutral passenger mutations with the DawnRank 
algorithm, and included prior-identified genes from TCGA 
in the prioritization step. As a result, a gene list containing 
1,619 genes was generated for endometrial cancer 
(Figure 2A and Supplementary Figure 2A). The number 
of driver mutations showed a significant association 
with the tumor histology (Kruskal-Wallis rank sum 
p = 0.0011, Supplementary Figure 2B), but not disease 
stage (Kruskal-Wallis rank sum p = 0.7212) or tumor 
grade (Kruskal-Wallis rank sum p = 0.1017). Pairwise 
comparisons revealed significant difference between borne 
driver mutations of the endometrioid subtype compared 
to serous-like endometrial cancer (Bonferroni-adjusted 
Wilcoxon p = 0.0026, Figure 2B).

Next, we prioritized eSNVs based on their 
corresponding gene according to the DawnRank gene list 
and identified 542 driver eSNVs, which correlated with 
expression levels of 1,894 genes. This candidate driver 
mutational eSNV profile contained 9,488 significant 
associations (SNV-gene pairs). Of the 542 driver 
eSNVs (which mapped to 357 gene loci), 18 (3.32%) 
were associated with the transcript level of a single 
gene, and the remaining ones (96.68%) were associated 
with transcript levels of multiple genes. Of the 1894 
unique genes, 888 genes (46.88%) were correlated with 
the mutational status of a single driver eSNV, while 
the remaining ones (53.12%) were correlated with the 
mutation statuses of multiple driver eSNVs (Figure 2C). 
Among all prioritized driver eSNVs, 3 were cis-acting 
mutational loci (Table 1), which were separately located on 
ATF7IP (chr12:14576892 T > C), TP53 (chr17:7578271 
C > T), and XPO7 (chr8:21827087 C > T). These 3 cis-
acting eSNVs were also correlated with transcript levels 
of another 169 genes. The other 539 trans-acting driver 
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mutational eSNVs significantly correlated with the relative 
transcript abundances of 1894 genes (Supplementary 
Table 1).

We further conducted GO enrichment analysis 
(Figure 2D) and transcription factor-related annotation 
(Figure 2E) based on AnimalTFDB to explore the 542 
prioritized eSNVs. The ORA revealed 645 significantly 

enriched GO terms in biological processes, particular 
in cellular signaling, cellular apoptosis, cellular 
differentiation, and cellular proliferation processes, 
indicating the extensive dysregulation of cellular 
processes in endometrial cancer due to somatic alterations 
(Supplementary Figure 2C and Supplementary Table 2). In 
addition, an enrichment analysis based on 1,894 correlated 

Figure 1: Correlation between somatic mutations and transcripts in endometrial cancers. (A) Schematic showing filtering 
procedures of the expression, mutation, methylation, and somatic copy number alteration profiles. Expression data of primary tumors from 
transcription sequencing were normalized by expression values of available adjacent normal tissues. Mutated genes extracted from DNA 
sequencing underwent data sanitization before being intersected with expression data. In total, we retrieved 219 endometrial cancer samples 
for analyses. To conduct the multivariate linear regression analysis, gene methylation data (normalized by beta values from available 
normal adjacent tissues) and somatic copy number data were filtered against 219 samples, resulting in a merged profile that included  
128 samples with 13,491 gene profiles and 5,824 somatic mutations. Expression-associated single-nucleotide variations were detected by 
the merged profile and further explored in 219 samples. (B) Equation for the multivariate linear regression. In Equation 1, residual relative 
transcript abundance values of methylation levels and somatic copy number alterations were further correlated with single-nucleotide-based 
somatic mutation statuses as shown in Equation 2. (C) To evaluate overdispersion and other sources of bias or confounding, a quantile-
quantile plot was drawn for single-nucleotide variant (SNV) analytical results of all 13,491 genes. A genomic control inflation factor  
(λ value = 0.91) was calculated by the ratio of the observed mean to the corresponding expected value. (D) A pie chart showing the relative 
(area) and absolute (percentage labeled) fraction of the variance explained by 3 determinants: SCNAs, CpG methylation and SNVs. The 
effects of cis-acting and trans-acting SNVs were separately estimated. (E) Venn diagram showing the number of genes under regulation of 
3 determinants: SCNAs [yellow], CpG methylation [blue] and SNVs [green].
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genes also provided over-representative evidence of 559 
biological processes. Further inquiry of 2 significant 
GO lists revealed 281 intersecting biological processes 
(hypergeometric test p < 0.001, Figure 2D). We further 
explored 542 candidate driver eSNVs by combining 
information from AnimalTFDB (Supplementary 

Figure 2D). As a result, we identified 50 genes mapped 
by 99 eSNVs that were TF-related (Supplementary 
Figure 2E). We further assessed mutation type proportions 
in all eSNVs, the TF-related group, and the non-TF-related 
group (Figure 2E). The mutation type proportion of the 
non-TF-related group was similar to the distribution of all 

Figure 2: Gene-based prioritization and mutational cluster identification. (A) Schematic showing prioritization procedures and 
a subsequent cluster identification analysis. Significant expression-associated single-nucleotide variations (eSNVs) that met the Bonferroni 
criteria were further prioritized by candidate driver mutations identified by the DawnRank algorithm and TCGA mutational signatures. The 
resulting 542 eSNVs underwent spherical k-means clustering in 219 endometrial cancer samples. To elucidate the contribution of patients’ 
mutation profiles to clinical statuses (disease stage, tumor histology, tumor grade, and survival), correlation analyses were conducted using 
3 identified mutational clusters. (B) Correlation between number of driver mutations and patients clinical profiles. Kruskal-Wallis rank 
sum tests followed by pairwise Wilcoxon tests with Bonferroni correction were carried out to elucidate the correlation between driver 
gene number and patients’ disease stage, tumor histology and tumor grade [left]. As a result, patients with endometrioid and serious-type 
endometrial cancer showed significant enrichment in driver mutations (pairwise Wilcoxon p-value [Bonferroni-adjusted] = 0.0026). Box 
plots showed the distribution pattern of driver mutations in each subcategory of patients’ clinical profiles [right]. (C) Pie charts showing 
proportions of 1,894 genes associated with single or multiple eSNV(s) [top] and 542 eSNVs correlated with transcript levels of single 
or multiple genes [bottom]. (D) Venn diagram showing significant over-represented gene ontology terms by 357 genes mapped from 
542 eSNVs [blue], and 1,894 genes with expression levels correlated with identified eSNVs [yellow]. (E) Bar plots showing frequency 
distributions of mutation types in all 542 eSNVs (“All”), 443 eSNVs that did not map to transcription function-related genes (“non-TF”), 
and 99 eSNVs that mapped to genes annotated to be transcription function-related (“TF”). Corresponding relative frequencies of each 
mutation type are labeled. **P < 0.01.
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542 eSNVs, and the top 3 most enriched mutation types 
in decreasing order were missense (56.43%, multiple 
of change (MC) = 0.93), silent (23.48%, MC = 1.09), 
and nonsense (12.42%, MC = 0.90). Depiction of the 
distribution of the TF-related group disclosed a slightly 
different pattern than that of the non-TF-related group, 
which the top 3 enriched mutation types in decreasing 
order were missense (60.61%, MC = 1.15), nonsense 
(19.19%, MC = 0.64) and silent (15.15%, MC = 1.5). 
However, no significant difference in distribution patterns 
across TF-related and non-TF-related groups was detected 
based on the hypergeometric test (all p values > 0.05).

We then conducted an unsupervised spherical 
k-means clustering to classify endometrial cancer 
patients (n = 219) based on their mutation profile of 542 
driver eSNVs into 3 main clusters, denoted clusters 1, 
2, and 3 (Figure 3A). The identified mutational clusters 
showed significant correlations with endometrial cancer 
patients’ clinical profiles, including disease stage 
(Fisher’s exact p = 0.0207) and tumor histology (Fisher’s 
exact p = 0.0065), but not tumor grade (Fisher’s exact 
p = 0.3861). Based on these results, cluster 2 showed 
significant enrichment in late-stage patients (stages III 
and IV, 24 in cluster 2 vs. 10 and 9 in clusters 1 and 3, 
respectively) and serous-like endometrial cancers (19 in 
cluster 2 vs. 6 and 9 in clusters 1 and 3, respectively), 
which was correlated with a poor prognosis in patients.

We also observed a significant progression-free 
survival-related characteristic of mutational clusters 
(Figure 3B). However, the identified clusters showed 
no association with the overall survival of patients (data 
not shown). Patients in clusters 2 and 3 showed increase 
risks of death compared to patients in cluster 1 (hazard 
ratio (HR)2vs1 = 3.57 and 95% confidence interval 
(CI)2vs1 = 1.40~9.14, p2vs1 = 0.00783). Similarly, cluster 3 
was associated with a poorer prognosis compared to cluster 

1 (HR3vs1 = 3.03, 95% CI3vs1 = 1.15~7.98, p3vs1 = 0.02493). 
As mutational clusters were also associated with disease 
aggressiveness, these factors were further adjusted for to 
avoid biased estimations of the effects of the identified 
clusters on the prognostic potential. Consistently, 
mutational clusters showed an association after adjusting 
for clinical profiles, with cluster 1 showing a significantly 
better prognosis (adjusted p2vs1 = 0.0399; adjusted 
p3vs1 = 0.0363) compared to the other 2 clusters (adjusted 
HR2vs1 = 2.88; adjusted HR3vs1 = = 2.91, adjusted 95% 
CI2vs1 = 1.05~7.91; adjusted 95% CI3vs1 = 1.07~7.91).

We then assessed the concordance between the 
identified mutational clusters and survival in a time-
dependent manner. Before adjustment, the 10-year 
time-dependent ROC curve revealed that the prediction 
accuracy of mutational clusters increased with year, 
which ranged 56%~70% (Figure 3C). In addition, the 
10-year time-dependent AUC curve calculated by Uno’s 
method also revealed a sequentially increasing pattern 
by year, with a summary measure of the concordance 
index equal to 0.6175 (Figure 3D). Intriguingly, after 
adjusting for the disease stage and tumor histology, 
the 10-year time-dependent ROC analysis revealed a 
higher prediction accuracy than that without adjustment 
(Figure 3E), which ranged 67%~82%. The summary 
measure of the concordance index calculated by Uno’s 
method was 0.7867 (Figure 3F). Therefore, a series of 
analyses suggested that a prominent role of patients’ 
mutation profiles contributed to disease biology discovery 
in endometrial cancer.

Integrative analyses for drug discovery

To identify biological candidate risk mutational 
variations in endometrial cancer patients, we conducted 
integrative analyses based on 542 candidate driver eSNVs 

Table 1: Prioritized cis-acting expression-associated single-nucleotide variations (SNVs)
Chr:Pos SNV Gene locus β Coef 95% CI p value VarExplained

12:14576892 12:14576892  
C > T ATF7IP 0.607 0.48–0.74 7.87E-16 0.404

17:7578271 17:7578271  
T > C TP53 2.29 1.72–2.86 9.94E-13 0.333

8:21827087 8:21827087  
C > T XPO7 0.78 0.57–0.99 1.32E-11 0.306

Chr:Pos: Chromosome:Position.
SNV: SNVs lacking a reference single-nucleotide polymorphism number are illustrated by Chr:Pos. The allele change in 
the primary tumor is shown.
Gene locus: Gene locus where the SNV is located.
β Coef: Beta-coefficient calculated from a linear regression correlation analysis. 
95%CI: 95% confidence interval.
p value: Raw p value calculated from a linear regression correlation analysis.
VarExplained: Explanation of the mean total variation (r2) of the residual relative expression of the corresponding gene.
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and 1,894 genes the transcript levels of which were 
correlated with the mutational statuses of eSNVs. To 
identify biological candidate risk mutational variations in 
endometrial cancer patients, we first evaluated prognostic-
related eSNV signatures using a Cox-regression. We 
identified 13 eSNVs which were significantly associated 
with prognostic-free survival in endometrial cancer 
patients (Supplementary Table 3). These 13 eSNVs 
mapped to 10 genes: YEATS2, FBXW7, PIK3R1, GTF2I, 
TP53, OGDHL, PTEN, CHD4, MEGF8 and MORC2. We 
classified patients into 2 groups based on the prognostic-
related signature profiles. Patients who bore at least 1 
mutation in their prognostic-related signatures were 
compared to patients with no mutation on the 13 eSNVs. 
As shown, the mutation profiles of 13 eSNVs were 
significantly associated with progression-free survival 
of endometrial cancer patients (HR = 9.3927, 95% 
CI = 4.82~18.31, p = 4.86×10–11, Figure 4A). A time-
dependent ROC analysis revealed a summary measure 

of the AUC curve of 0.7365 (Figure 4B–4C). This result 
indicated a significant correlation between mutations and 
UCEC patient survival outcomes, and further confirmed 
the potential clinical utility of the 10 identified genes in an 
eSNV-based manner.

We then evaluated mutational cluster-related eSNV 
signatures. We identified 20 eSNVs that were significantly 
correlated with identified mutational clusters (Fisher’s 
exact test < 0.05, Supplementary Figure 3A). These 20 
eSNVs were mapped to 13 genes. In particular, CTNNB1 
(5 eSNVs), PIK3CA (2 eSNVs), and TP53 (3 eSNVs) 
contained more than 1 eSNV which were cluster-related. 
Surprisingly, patients who bore the CTNNB1 mutation were 
significantly enriched in cluster 1 compared to clusters 2 
and 3 (Chi-square p = 2.75 × 10–5). Similarly, the PIK3CA 
mutation was significantly enriched in patients in cluster 3 
(Chi-square p = 3.62 × 10–4). In contrast, the number of 
patients with the TP53 mutation was higher in cluster 2 
compared to clusters 1 and 3 (not significant, Chi-square 

Figure 3: Mutation signatures of endometrial cancers and its prognostic potential. (A) Heatmap of 542 eSNVs revealed the 
sparse nature of the mutation profiles. Patients were sorted into 3 identified mutational clusters. Sample clinical profiles against 3 clusters 
are shown, and Fisher’s exact test was used to evaluate the significance. (B) Kaplan-Meier plot [top] showing progression-free survival 
curves of endometrial cancer patients in the 3 mutational clusters. Summary statistics are shown in the table [bottom]. (C), (E). Time-
dependent receiver operating characteristic curves and cumulative/dynamic areas under the curve of identified mutation clusters without 
(C) or with adjustment (E) for clinical profiles. (D), (F) Cumulative case/ dynamic control AUC of three identified mutational clusters were 
calculated by Uno’s method to assess the predictive accuracy of mutation profile to progression-free survival in a 10-year time-dependent 
manner without adjustment (D) or with adjustment (F) *P < 0.05, **P < 0.01.
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p = 0.1926). Notably, our results matched previous 
observations that mutations of TP53 and PPP2R1A were 
more common in the serous-like, which was enriched in 
cluster 2. Comparatively, mutations of PTEN and ARID1A 
were more common in endometrioid endometrial cancer, 
which was enriched in clusters 1 and 3. Cluster-related 
and prognostic-related signatures were combined and 
are illustrated with mutational clusters (Figure 4D and 
Supplementary Figure 3B). We ascertained a mutually 
exclusive pattern of some somatic mutations among the 
3 clusters, suggesting the importance of eSNV-based 
investigations of somatic mutations, as different mutations 
in the same gene may result in different prognostic 
outcomes. For instance, 4 of 6 eSNVs in CTNNB1 were 
enriched in cluster 1 patients and showed mutually 
exclusive patterns. Notably, Liu et al. [8] reported 
that CTNNB1 is a somatic driver that characterizes an 
aggressive subgroup in endometrioid-type endometrial 
cancer, which is enriched in cluster 1. However, a 
CTNNB1 mutation on rs12191339 was observed only in 
cluster 2 patients, which correlated with a poorer survival 
rate. In addition, although most patients possessing 
TP53 mutations were enriched in cluster 2, this confirms 

previous results that the TP53 mutation is linked to poorer 
outcomes; however, the TP53 rs121913343 variation was 
only observed in cluster 1 patients. Taken together, these 
results support the significance of assessing eSNV-based 
mutational profiles (compared to gene-based mutational 
profiles) in order to gain biological insights into disease 
profiles.

To identify cooperative dysregulation of eSNVs and 
gene transcription which may contribute to tumorigenesis 
and cancer progression, we derived a cluster-centric 
pairwise mutation-mutation correlation analysis based 
on β-coefficients of transcript levels of associated genes 
(Supplementary Figure 3C). As a result, eSNVs were 
categorized into 4 consensus clusters and we identified 
3,706 significant pairwise co-occurrences (453 eSNVs), 
with overlapping correlated gene numbers ranging 10~78 
(Supplementary Figure 3D).

To clarify the SL interaction profile in endometrial 
cancer, we first indicated bimodal genes in the 
transcription profile, and then nominated candidate SL 
pairs according to the bimodal expression exclusively with 
an eSNV-based mutation. We identified 203 significant 
candidate SL eSNV-gene pairs, which contained 129 

Figure 4: Integrative analyses for drug discovery. (A) Kaplan-Meier estimator [top] showing survival curves of endometrial 
cancer patients categorized according to 13 prognostic-related signatures. Summarized statistics are shown in the table [bottom]. (B) Time-
dependent receiver operating characteristic (ROC) curves of 13 prognostic-related signatures. The cumulative/dynamic the area under the 
ROC (AUC) curves were calculated to assess discrimination of 10-year cumulative incidences. (C) Cumulative case/ dynamic control AUC 
of 13 prognostic-related signatures were calculated by Uno’s method to assess the predictive accuracy of mutation profile to progression-
free survival in a 10-year time-dependent manner. (D) Bar plots showing distribution of cluster-related and prognostic-related expression-
associated single-nucleotide variations (eSNVs) in 3 clusters. Each patient is represented by 1 block in the bar. The x-axis represents eSNVs 
annotated by located genes, and the y-axis is the proportion of mutations in each cluster. **P < 0.01.
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unique eSNVs (mapped to 109 genes) and 63 unique 
bimodal genes (Supplementary Table 4).

According to these findings, we adopted a scoring 
system based on the following 7 criteria to prioritize 
each of the 542 eSNVs (Figure 5A, Supplementary 
Figure 4A-D and Supplementary Table 5): (i) missense 
eSNVs (n = 308); (ii) nonsense eSNVs (n = 74); (iii) cis-
eSNVs (n = 3); (iv) eSNVs prioritized by correlation to 
survival (n = 13); (v) eSNVs prioritized by correlation 
to identified mutational clusters (n = 20); (vi) eSNVs 
prioritized by consensus clustering followed by a co-
occurrence analysis (n = 453); and (vii) eSNVs prioritized 
by SL (n = 129). In total, 394 (72.69%) eSNVs had a score 
of ≥ 2, which mapped to 275 gene loci and correlated 
with transcript levels of 1,305 genes (Supplementary 
Figure 4E). We defined these eSNVs as biological UCEC 
risk mutational eSNVs.

Finally, we integrated drug target information 
[9–11] with UCEC biologically risky gene profiles 
constructed by 275 driver genes and 1305 associated 
genes. As anticipated, 14/79 (17.72%, hypergeometric test 
p = 0.0026) genes overlapped with drug target genes of 
approved solid-tumor drugs, including CMPK1, IL2RG, 
LCK, MAP2, MMP17, MMP19, MMP2, MMP26, MMP27, 
MMP3, PRKCG, TOP2B, TSHR, and VEGFA. These 14 
genes were targets of 9 solid-tumor drugs (Figure 5B–5C  
and Figure S4F in Supplementary Figure 4F). These 
results indicated the rationality of clinical implementation 
of pharmacogenomic aspects into pharmacotherapy of 
these drugs by considering the heterogeneity of mutational 
profiles across endometrial cancer patients. 

We also assessed how approved drugs for 
hematologic tumors, which were assigned as a control 
in our study, might be linked to biological UCEC 
risk mutational profiles. We highlighted 5 (11.11%, 
hypergeometric test p = 0.2632) genes from the 
UCEC profile that were drug target genes of approved 
hematologic-tumor drugs (45 genes in total, Figure 5D and 
Supplementary Figure 4G). Comparing overlapping genes 
between solid-tumor drug target genes and hematologic-
tumor drug target genes revealed that 3 genes (IL2RG, 
LCK, and VEGFA) were duplicated, which accounted for 
60% (3/5, hypergeometric test p = 0.0110, Supplementary 
Figure 4H) of overlapping genes from the UCEC profile 
connected to hematologic-tumor drug target genes. Taken 
together, these results provided biological plausibility 
for repositioning cancer drugs for other indications to 
endometrial cancer pharmacotherapy.

DISCUSSION

In this study, first, we profiled UCEC-related driver 
somatic mutations in a personalized fashion, and gene 
transcript levels were associated with mutation statuses 
of identified eSNVs. Second, we showed that patients’ 
mutation profiles can be used to stratify UCECs, further 

linking disease aggressiveness and patient prognoses, 
thus providing a rationale to facilitate the fast-tracking 
of potential therapeutic targets in endometrial cancer. 
Third, we emphasized the importance of depicting 
somatic mutation profiles in an SNV-based manner, 
as different mutations in the same genes may link to 
distinct aggressiveness and prognostic outcomes in cancer 
patients. Finally, we adopted a scoring system to prioritize 
eSNVs, which may contribute to therapeutic switching.

In 3 identified endometrial cancer-related cis-eSNVs, 
we mentioned that alterations in TP53 (tumor protein p53) 
are well-studied in endometrial cancer, and our results 
revealed that 14 eSNVs were significantly correlated 
with transcript levels of 267 genes, demonstrating a 
wide regulatory role of TP53 somatic alterations in 
endometrial cancer. ATF7IP (activating transcription 
factor 7 interacting protein), a multifunctional nuclear 
protein associated with heterochromatin, was reported 
to be associated with testicular germ cell cancer [12]. 
Two eSNVs (chr12:14576892 and chr12:14649176) on 
ATF7IP were identified to cause dysregulation of 100 
genes. Therefore, our study suggested ATF7IP as a new 
susceptibility locus in endometrial cancer. It is noteworthy 
that TP53 and ATF7IP were annotated as transcription 
function-related genes (Figure 2E), which further 
explained thefunctional impacts of their alterations on 
downstream expression levels of many genes. In addition, 
1 somatic alteration (chr8:21827087) on XPO7 (Ran 
GTPase binding protein) was identified to be expression-
associated in endometrial cancer, which was correlated 
with expression levels of 32 genes. Indeed, XPO7 has 
been shown to be associated with serous epithelial ovarian 
cancer patient prognoses [13]. Here, we figured that the 
TP53-, ATF7IP-, and XPO7-associated expression profiles 
contribute to the discrepancy mutation statuses of these 
genes, demonstrating a wide range of perturbations of 
gene expression levels caused by somatic alterations.

In 13 identified cluster-related signatures, TP53, 
CTNNB1, PIK3CA, ARID1A, FBXW7, and PPP2R1A 
(which accounted for 65.0% (13/20) of eSNVs) are well-
established recurrently mutated genes in endometrial 
cancers [5]. In this study. we demonstrated that these 
mutations embody the disease aggressiveness of 
endometrial cancers. Since late-stage (stages III + IV) 
and serous-like endometrial cancer patients were enriched 
in cluster 2 compared to clusters 1 and 3, the recurrent 
gain of these mutations may therefore be reflected by 
the disease progression, and further linked to disease 
aggressiveness in patients. To clarify the eSNVs that 
had the strongest prognostic values, we discovered 13 
prognostic-related signatures (mapped to 10 genes) that 
could predict survival outcomes of endometrial cancer 
patients (see Supplementary note: 13 prognostic-related 
signatures). Notably, when comparing the prognostic 
potentials between identified clusters and 13 prognostic-
related signatures, we ascertained a higher clinical value 
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of 13 prognostic-related eSNVs compared to mutational 
clusters, with summary measures of the AUC equal to 
0.736 and 0.618, respectively. A time-dependent AUC also 
revealed that these 13 eSNVs possessed higher abilities 
to predict survival compared to mutation clusters, with 
first-year AUC values equal to 0.76 and 0.58, respectively. 
Taken together, we have enumerated 31 cluster-related 
and/or prognostic-related eSNV-based mutational 
signatures, and linking their mutational changes to 
various genes transcription level changes can highlight the 
underlying mechanism of how these somatic alterations 
incarnate disease aggressiveness and prognostic potential 
in endometrial cancer patients.

Most cancer-related mutational studies were 
conducted in a gene-based manner. Here, we adopted an 
SNV-based association test to gain more-detailed insights 
into endometrial cancer biology. After determining 31 
cluster-related and prognosis-related signatures, we 

observed that most of the eSNVs showed clear mutual 
exclusivity between clusters, which correlated with 
different clinical outcomes (Figure 4D). As an illustration, 
somatic alterations, including chr4:153249510 (FBXW7), 
chr5:67591246 (PIK3R1), rs28934576 and rs11540652 
(TP53), rs121913399 (CTNNB1), and chr19:52716323 
(PPP2R1A), were specifically enriched in cluster 2, which 
was linked to higher tumor aggression and poor prognoses. 
However, rs121913343 in TP53 and rs121913403, 
rs28931588, and 121913413 in CTNNB1 were specifically 
enriched in cluster 1, which was identified to be less 
aggressive (see Supplementary note: SNV-based somatic 
mutation profiles). 

We employed 7 biological criteria to prioritize 
eSNVs and construct biological risk candidates 
for drug discovery (Figure 5A–5C). Among 1,580 
genes (275 driver genes and 1,305 correlated genes), 
14 were determined to be solid-tumor drug target 

Figure 5: Biological candidate signatures for drug-repurposing to endometrial cancers. (A) Prioritized biological uterine 
corpus endometrial carcinoma (UCEC) candidate eSNVs (partial). eSNVs in E are listed, and summary scores derived from 7 criteria are 
shown. Filled boxes indicate fulfilled criteria. eSNVs with a score ≥ 2 were defined as “biological UCEC risk mutational eSNVs”. For 
complete information, see Supplementary Table 5. (B) Connection plot showing relationships of identified eSNVs (blue), located genes 
(purple), and genes whose expression levels significantly correlated with the eSNV mutation status (green) with approved antineoplastic 
drugs (orange). eSNVs that were correlated with transcript levels of genes outside of MMP gene family are shown. For eSNVs that were 
solely correlated with transcript levels of the MMP gene family, see Supplementary Figure 4F. (C), (D) Figures showing numbers of 
overlapping genes between the query gene list constructed from 275 driver eSNV genes and 1,305 correlated genes and solid-tumor drug 
target genes (C) and hematologic-tumor drug target genes (D) Overlapping genes are listed, and proportions of numbers of overlapping 
genes to total drug target genes of solid tumors and hematologic tumors are visualized. P values were calculated by a hypergeometric test. 
**P < 0.01.
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genes. In total, 9 drugs, including gemcitabine, 
dexrazoxane, thyrotropin-alfa, tamoxifen, bevacizumab, 
extramustine, marimastat, denileukin diftitox, 
and dasatinib, were identified to bind endometrial 
cancer-relevant altered genes that were associated 
with somatic mutations (Supplementary Table 6).  
We interpreted the findings from 2 following aspects. First, 
our result suggested a possibility for indication switching 
for endometrial cancer. For the solid-tumor drugs 
identified, most were approved therapeutic agents for other 
cancer types (e.g., breast cancer [tamoxifen], colorectal 
cancer [bevacizumab], and prostate cancer [estramustine]). 
For endorsement of re-profiling of our findings to 
endometrial cancer, a VEGFA inhibitor, bevacizumab, 
was shown to be well tolerated and active in recurrent 
or persistent endometrial cancer based on progression-
free survival at 6 months [14]. A phase II randomized 
clinical trial is currently ongoing to assess the antitumor 
efficacy of combining bevacizumab with conventional 
chemotherapies in advanced or recurrent endometrial 
cancer (ClinicalTrials.gov identifier: NCT01770171). 
In addition, gemcitabine was shown to be well tolerated 
and showed modest activity in advanced endometrial 
cancer [15]. In addition, a retrospective phase II trial also 
revealed a high potency of combining gemcitabine with 
cisplatin in endometrial cancer patients [16]. Estramustine, 
an anti-microtubule chemotherapeutic agent was identified 
in our study, and was shown to exert growth-inhibitory 
effects in endoplasmic reticular-positive endometrial 
cancer cells in vitro [17]. Interestingly, tamoxifen was 
identified in our study, and it is widely used to treat breast 
cancer, and was shown to increase the endometrial cancer 
incidence. The results should be carefully interpreted as 
the mechanism of endometrium hyperplasia induction is 
due to the weak estrogenic effect of tamoxifen but not the 
target of tamoxifen, i.e., PRKCG, which was identified as 
a potential therapeutic biomarker in our study. In addition, 
low-grade endometrial cancer was also demonstrated 
to respond to tamoxifen treatment [18]. Here, we noted 
the pitfall of drug repurposing based solely on aberrant 
molecular signatures without considering multiple 
and complex biological effects of therapeutic agents. 
Nonetheless, we have described a powerful prioritization 
method for identifying promising therapeutic candidates 
which may benefit endometrial cancer treatment. 

Second, we mentioned a latent pharmacogenomic 
issue for the identified therapeutic agents when 
implementing clinical cancer treatment. Investigation of 
somatic alterations revealed a highly heterogeneous cancer 
profile across patients, providing a rationale to incorporate 
somatic mutation information into clinical use for more-
efficient cancer treatments. For example, we discovered 
that LCK is a candidate therapeutic gene in endometrial 
cancer, and the expression level of LCK was significantly 
correlated with a somatic alteration of chr10:82187096. 
LCK is inhibited by dasatinib, a Src family protein 

(including p56Lck) and an EphA2 receptor blocker that 
inhibits a large array of targets. In support of dasatinib’s 
therapeutic switching, a clinical trial (ClinicalTrials.gov 
identifier: NCT01440998) of dasatinib in late-stage and 
recurrent endometrial cancer is ongoing [2]. Due to the 
promising molecular scheme, the clinical applicability of 
dasatinib in cancer treatment may therefore depend on 
harbored mutations of patients.

There have some limitations of this study. Based 
on its retrospective design, we showed the associations 
among identified drivers and clinical variables, further 
functional studies (in basic field or clinical study) and 
validations are required to assess the possibility of clinical 
application and implementation of our findings.

In summary, our study provides new insights into 
pharmacogenomic-guided pharmacotherapies based 
on driver eSNV profiles of endometrial cancer patients 
and closes the gap between oncogenomic research and 
traditional personalized trials.

CONCLUSIONS

In summary, our results reveal an integrative 
framework of correlation between SNV-based somatic 
mutations and transcripts’ levels in endometrial cancer. 
Since a number of driver eSNVs showed different 
aberration potential to transcripts, we illustrated the 
correlation between driver eSNV and clinicopathological 
features, e.g. disease stage, tumor histology and patients’ 
survival. In addition, we prioritized driver eSNVs and 
together their correlated probes, showing that these genes 
were enriched in known targets of approved solid tumor 
drugs. This approach can narrow down the candidate 
drugs before conducting clinical trial, thereby providing 
new avenues for the drug development of endometrial 
cancer, boosting drug discovery process and providing 
potential gene targets and drug candidates for the drug-
repurposing and treatment of endometrial cancer. Besides, 
this approach can also be applied to other cancer types 
to prioritize drug candidates and facilitate their clinical 
applications and implementations.

MATERIALS AND METHODS

Datasets

Our study included 219 UCEC patients with 
primary tumor RNA expression data and mutation 
data (Supplementary Figure 1A). We queried the  
RNA-sequencing expression profiles (assay platform: 
RNASeq vers. 2) from TCGA public database with TCGA-
Assembler package [19] Normalized relative square error 
of the mean (RSEM) gene expression data of primary 
solid tumors (370 samples) and normal adjacent solid 
tissues (11 samples) were queried and further processed 
by the “ProcessRNASeqData” function implemented in  
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TCGA-Assembler package. A principal component analysis 
was conducted with the ade4 package to avoid artifactual 
results caused by sample relatedness, and the top 3 
principal components using 370 UCEC patients’ primary 
tumor part expression values were illustrated by a 2-way 
scatter plot (Supplementary Figure 1B). Methylation 
profiles (Infinium HumanMethylation450 BeadChip) and 
related annotation files (https://tcga-data.nci.nih.gov/tcga/
tcgaPlatformDesign.jsp) of UCEC patients, including 
256 samples of primary solid tumors and 26 normal 
adjacent solid tissues, were download form TCGA data 
portal (https://tcga-data.nci.nih.gov/tcga/) in data level 3 
[5]. Methylation data were further processed with TCGA-
Assembler. In brief, measurement of a CpG site was 
duplicated if it corresponded to more than 1 gene using the 
“ProcessMethylation450Data” function, and then gene-
based average methylation values were calculated based 
on the beta value within 1, 500 bp of a transcription start 
site using the “CalculateSingleValueMethylationData” 
function. As a result, average beta values of 15, 625 genes 
were obtained for further study. TCGA UCEC somatic 
copy number alteration (SCNA) data of 492 samples 
generated by the GISTIC algorithm and mutation profiles 
of 248 TCGA endometrial cancer patients, represented as 
SNVs were also queried from the public access TCGA 
database (https://www.synapse.org/#!Home:0) and further 
processed in R. The genomic coordinate was based on 
NCBI build 37 (hg19). The expression or methylation 
value of primary tissue was then normalized by the 
expression or methylation value of adjacent normal tissue 
to construct a standardized absolute differential expression 
or methylation profile [20]. Furthermore, sole SNVs, 
SNVs annotated as insertion/deletion or germline/others, 
and all SNVs located outside of chromosomes 1~23 were 
excluded from the mutation profile. Then, we removed 
genes located within the major histocompatibility complex 
(MHC) region in the expression, SCNA, methylation, and 
mutation profiles. After data sanitization, UCEC samples 
with were retrieved for further eSNV identification. 
A density plot of methylation, somatic copy number 
alteration, and expression profiles were constructed 
based on the probability density for evaluation of the 
data distribution (Supplementary Figure 1B). Besides, 
we conducted principal component analysis (PCA) to 
assess the underlying sample substructure (Supplementary 
Figure 1C).

SNV-based correlation analysis

Correlations of somatic mutations and RNA 
expressions in UCEC patients were carried out to 
reveal the disease biology which contributed to drug 
discovery. We selected 219 samples with both mutation 
and expression data from TCGA UCEC dataset. The 
following analyses were all conducted using these 219 
sample profiles if not specified. In order to adjust for other 

genetic determinants that also correlate with transcript 
abundances, we further extracted 128 samples with fully 
annotated somatic copy number alteration and methylation 
profiles to undergo a multivariate linear regression 
analysis (Figure 1A).

We conducted a 2-step linear regression analysis 
modified from Li et al. [21] to examine the correlation 
between somatic SNVs and gene expressions in 
endometrial cancer patients. For each gene i, a multivariate 
linear regression (Equation 1) was first applied to compute 
the residual expression value (εi) of somatic copy number 
alterations (SCNAi) and relative methylation levels (Mi). 
Then, residual expression values (εi) were regressed by 
each mutation locus j (Equation 2) to identify expression-
associated (e)SNVs, as shown in the following equations:

RTi  = SCNAi + Mi + εi and (1)
εi  = SNVj + ɣj; (2)

where RTi is the relative transcript abundance, 
SCNAi is the somatic copy number alteration GISTIC 
score, Mi is the relative methylation beta value, εi is 
the residual relative expression value, SNVj is a single-
nucleotide variation, and ɣj is the random error.

In Equation 1, an analysis of variance (ANOVA) test 
was used to separately estimate the effects of somatic copy 
number changes and methylation on the transcript level, 
and therefore the mean of explanation of total variation 
of both genetic determinants was calculated. In addition, 
Benjamini & Hochberg adjusted p values were used to 
control the false-positive rate. In Equation 2, we tested for 
78, 571, 548 pairs of SNV-gene associations by adopting 
a linear regression model (5, 824 SNV and 13, 491 genes), 
followed by the Bonferroni correction for multiple testing 
corrections. A genomic inflation factor lambda value 
was calculated (carried out with the snpStats package) 
to explore the possibility of cryptic sample relatedness 
that may bias the results of the association study. We then 
categorized significant associations based on their eSNV-
gene relationships. We defined SNVs located within the 
gene that showed an association with the transcript level as 
“cis-acting eSNVs” and SNVs located outside of the gene 
showing correlations with the expression value as “trans-
acting eSNVs”. We also intersected significant genes 
correlated with 3 genetic determinants (CpG methylation, 
somatic copy number alterations, and mutational eSNVs). 
For data presentation, pie charts were constructed with the 
plotrix package and a Venn diagram was illustrated with 
Venny (http://bioinfogp.cnb.csic.es/tools/venny/).

Gene-based prioritization

After performing an SNV-based association analysis 
to identify expression-associated somatic alterations, we 
used the package DawnRank [20] to identify candidate 
personalized driver mutational genes in 219 TCGA UCEC 
samples (with both expression and mutation profiles 
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available). RNA-sequencing expression data of primary 
tumors were normalized by available adjacent normal 
solid-tissue data using the “DawnNormalize” function, 
which returns a standardized differential expression 
matrix. The full gene network required by the DawnRank 
algorithm was downloaded from the DawnRank homepage 
(http://bioen-compbio.bioen.illinois.edu/DawnRank/) 
which contained curated information from Reactome 
Database (http://www.reactome.org/), the Pathway 
Interaction Database (http://pid.nci.nih.gov/), and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
(http://www.genome.jp/kegg/). In short, the DawnRank 
algorithm evaluated the connectivity and number of 
differentially expressed genes to measure the impact 
of a mutation, utilized a dynamic damping factor to 
rank mutated genes based on their ability to perturb 
downstream genes, and returned personalized ranked 
mutated gene lists of every single UCEC sample. After the 
DawnRank analysis, we adopted the maxstats package to 
calculate maximally selected rank statistics of each patient 
in order to distinguish passenger from driver mutations 
with a cutoff of 0.95. In addition, predefined genes 
identified by TCGA, including TP53, CTNNB1, PIK3CA, 
PIK3R1, PTEN, POLE, ARID1A, KRAS, CTCF, FBXW7, 
PPP2R1A, and ARID5B (RPL22 was excluded as no SNV 
was detected to be correlated with its transcript level), 
were collaboratively included to prioritize eSNVs based 
on their corresponding gene loci. The number of candidate 
personalized driver genes identified by DawnRank was 
further correlated with UCEC patients’ clinical profiles 
(disease stage, tumor histology, and tumor grade) by a 
Kruskal-Wallis rank sum test, and pairwise significance 
was determined by a Wilcoxon test (with the Bonferroni 
correction method for multiple testing corrections).

We then conducted an over-representation analysis 
(ORA) based on gene ontology (GO) biological process (BP) 
terms using the ClusterProfiler package [22]. We selected 
0.01 as the significant Benjamini & Hochberg adjusted p 
value cutoff to identify significantly enriched GO terms. We 
also downloaded a gene list of 1, 470 transcription factors 
(TFs), 297 transcription co-factors, and 118 chromatin-
remodeling factors from The Animal Transcription Factor 
Database (Homo sapiens, AnimalTFDB) on 4 May 2015 
[23] a comprehensive transcription factor database. We 
categorized 542 eSNVs into 2 categories: 99 TF-related 
eSNVs which mapped genes were annotated to be essential 
in gene transcription processes or gene transcription 
regulation (i.e. genes belonging to one of either “TF”, 
“transcription co-factor”, or “chromatin remodeling 
factor”) and remaining 443 non TF-related eSNVs. The 
proportions of mutation types (missense, silent, nonsense, 
3’ untranslated region (UTR), intron, RNA, splice site and 
5’ UTR mutations) in all, TF-related, and non-TF-related 
categories were separately calculated.

Mutation cluster analysis

We conducted a clustering analysis based on 542 
prioritized driver eSNVs to categorize UCEC patients 
into 3 groups based on their mutation profiles. In 
considering the sparse nature of the mutation matrix, we 
applied an unsupervised spherical k-means algorithm 
as implemented in the skmeans package to the mutation 
data with parameters k = 3 and method = ‘pclust’. The 
clustering result was visualized with the NMF package, 
with UCEC samples seriated within each cluster with the 
seriation package. A heatmap was constructed based on 
identified patient clusters and 542 eSNVs. In the heatmap 
visualization, black indicates mutations that occurred, 
while white indicates that no mutation was recorded. 
Unsupervised agglomerative hierarchical clustering of 
eSNVs was conducted with the parameters scale = ‘row’, 
distfun = ‘correlation’, and hclustfun = ‘ward.D’. We then 
correlated the 3-cluster configuration with patients’ clinical 
profiles including the disease stage, tumor histology, 
tumor grade (by Fisher’s exact test), and survival data (by 
a Cox-regression test). Cox-proportional hazard models in 
the rms and survival packages were applied to evaluate 
the prognostic potential of the identified cluster against 
progression-free survival data with or without adjusting 
for the disease stage and tumor histology. The Kaplan-
Meier estimator was illustrated with the ggplot2 package. 
To further elucidate the prognostic potential of the 
identified cluster, we carried out a 10-year time-dependent 
receiver operating characteristic (ROC) curve analysis, 
with time-dependent accuracy summarized through 
correct classification rates defined as sensitivity and 
specificity was calculated, and calculated the cumulative 
case/dynamic control area under the ROC curve (AUC) 
as implemented in the survivalROC package [24]. ROC 
curves constructed using the true positive rate (y-axis) and 
false positive rate (x-axis) can be utilized to evaluate the 
performance of a predictor against censored survival data. 
C-statistics which had scores of 0.5~1.0 were calculated 
to assess the accuracy of the identified clusters against the 
survival phenotype. The ROC curve lay on the 45° line 
indicated that the analyzed classifier was unable to predict 
survival outcomes. In addition, the summary measure of 
the censoring-adjusted C-statistic was calculated by Uno’s 
method as implemented in the survAUC package.

Prioritization of biological candidate eSNVs

To identify cluster-related eSNV signatures, we 
applied Fisher’s exact test to correlate 542 eSNVs with 
identified patient clusters and selected a significance 
threshold of 0.05. Additionally, prognostic-related 
signatures were identified by applying a Cox-proportional 
hazards model. The null hypothesis, that there was no 
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correlation between the mutation status and survival, was 
tested. We selected eSNVs that showed significance (with 
a Cox-regression p value of < 0.05) against progression-
free survival with or without adjusting for clinical profiles. 
According to the 13 identified prognostic-related eSNV 
signatures, we classified patients into 2 groups: “with 
mutation(s)” (which mutation(s) could be found in at least 
one of the prognostic-related signatures) and the remaining 
as “without a mutation”. To construct the Kaplan-Meier 
distribution, UCEC patients were assigned to 2 groups, 
and the significance level of the progression-free survival 
difference between the 2 groups was calculated based on 
the Cox-regression model. Furthermore, to assess how 
well the 2-group configuration predicted the survival 
time for UCEC patients, a 10-year cumulative/dynamic 
ROC analysis of prognostic-related eSNV signatures was 
carried out, and summary measures of AUC were also 
calculated as described above.

To access the cooperative dysregulation of 
somatic mutations and relative expressions, we carried 
out a pairwise eSNV-eSNV correlation analysis based 
on the overlapping number of their associated genes. 
Fisher’s exact test on a 2-by-2 contingency table was 
used to identify significant mutational eSNV pairs that 
co-occurred (Bonferroni corrected p < 0.05). Then, we 
applied 2 additional analytical steps to minimize latent 
false positive coincident eSNV pairs. In considering 
the direction and magnitude of the coefficient, an 
unsupervised consensus clustering analysis of eSNVs 
using associated genes (beta coefficients) was conducted. 
We used the ConsensusClusterPlus package with 80% 
subsampling over 1, 000 iterations of k-means upon 
Euclidean distance matrix for subclasses identification 
with parameter maxK = 7. We successfully identified 4 
robust clusters that accounted for positive or negative 
relationships between the eSNVs and associated genes. 
We thus excluded eSNV pairs that belonged to different 
consensus clusters. We further excluded eSNV pairs with 
overlapping associated gene numbers of < 10 to declare 
significant co-occurrence.

We applied the BISEP-BEEM (bimodality subsetting 
expression-bimodal expression exclusive with mutation) 
algorithm as implemented in the BiSEp package to identify 
candidate synthetic lethality (SL). Two genes were 
defined as having SL if mutations in both genes caused 
cell death but a mutation in either gene alone did not lead 
to cell death. To harmonize the RNA-sequencing data 
to the downstream analysis, we used the sRAP package 
to normalize RPKM values of primary tumors in UCEC 
patients. We rounded the expression value to < 0.1 to 
avoid bias caused by low-coverage genes, followed by 
log2 transformation. The log2-normalized expression 
profiles of samples were inputted into BiSEp to detect 
bimodality (2 mixture components) and non-normality in 
all genes by model-based hierarchical clustering. Then, the 
BEEM algorithm was applied to detect eSNVs enriched in 

either of the bimodal gene expression modes. A threshold 
of Fisher’s exact p value of < 0.05 was used to select 
candidate SL eSNV-gene pairs.

Each driver eSNV identified from UCEC patients 
was scored by the following 7 criteria (the adopted scoring 
system was modified from Yukinori Okada et al. [25]): (i) 
eSNVs were annotated as missense variants; (ii) eSNVs 
were annotated as nonsense variants; (iii) eSNVs showed 
significant associations with gene expressions that were 
located within associated genes (cis-acting); (iv) eSNVs 
were prioritized by identifying mutational clusters 
(cluster-related) with p < 0.05; (v) eSNVs were prioritized 
by a Cox-regression with or without adjusting for clinical 
profiles (prognostic-related) with p < 0.05; (vi) eSNVs 
were prioritized by a pairwise mutational co-occurrence 
analysis with adjusted p < 0.05 and which showed 
consensus associated gene profiles; and (vii) eSNVs were 
prioritized by a candidate SL eSNV-gene pair nomination 
analysis with p < 0.05. Correlations among these 7 criteria 
were calculated and visualized with the corrplot package, 
with a hierarchical clustering order for the correlation 
matrix. We carried out a pairwise significance test using 
a Phi correlation coefficient for the association among the 
7 criteria (significant p < 0.01). We calculated the number 
of criteria that were satisfied and assigned a score to each 
driver eSNV, which ranged 0~7. We defined those eSNVs 
with a score of  ≥ 2 as “biological UCEC risk mutational 
eSNVs”.

Candidate tumor drug mining

Drug target gene information was obtained from 
the DrugBank database (http://www.drugbank.ca/) and 
Therapeutic Target Database (http://bidd.nus.edu.sg/group/
cjttd/) on 28 April 2015 [10, 26]. Drug target genes were 
filtered by several criteria including human species and 
targeted by approved drugs. We manually extracted genes 
which were annotated as the target of an antineoplastic 
drug based on the indication. Then, the drug target profile 
was separated into a “solid-tumor drug target profile” 
(n = 79) and a “hematologic-tumor drug target profile” 
(n = 45) based on annotated indications. The hematologic-
tumor drug target profile was constructed based on the 
keywords ‘leukemia’, ‘lymphatic leukemia’, ‘multiple 
myeloma’, ‘lymphoma’, ‘leukemias and lymphomas’, 
and ‘hematologic malignancies’, while the remaining were 
extracted to build a solid-tumor drug target profile. We 
evaluated whether genes from the biologically risky gene 
profiles were pharmacologically therapeutic targets of 
approved solid-cancer drugs. In total, 275 genes (mapped 
by 394 prioritized biological eSNVs) and 1, 305 correlated 
genes were used to separately query corresponding drugs 
in the solid-tumor and hematologic-tumor drug target 
profiles. Overlapping genes between the query gene list 
and solid-tumor or hematologic-tumor drug target profiles 
were extracted and counted. In addition, drugs that 
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targeted genes in the query gene list were also illustrated. 
Enrichment of overlapping genes extracted from the solid-
tumor and hematologic-tumor profiles were calculated by 
a hypergeometric test.

Statistical analyses

We performed all analytic workflows in this study 
under the R environment (http://www.r-project.org/ and 
http://cran.r-project.org/) and Bioconductor (http://www.
bioconductor.org/).
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