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Circuit variability interacts with 
excitatory-inhibitory diversity of 
interneurons to regulate network 
encoding capacity
Kuo-Ting Tsai1,2, Chin-Kun Hu2,3,4,5, Kuan-Wei Li1, Wen-Liang Hwang3,6 & Ya-Hui Chou1,3

Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, 
yet it is still unknown how these features impact information encoding capacity and reliability in a 
complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural 
network beginning with a ring network structure and then introduced distinct types of inhibitory 
interneurons and circuit variability to the simulated network. The continuity of activity within the 
node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of 
network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting 
the network from extremely short activation periods when the network wiring complexity is very 
high. In addition, distinct types of interneurons have differential effects on encoding capacity and 
reliability. Circuit variability may enhance the encoding reliability, with or without compromising 
encoding capacity. Therefore, we have described how circuit variability of interneurons may interact 
with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural 
networks. In this work, we evaluate the effects of different types and degrees of connection diversity 
on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other 
biological systems.

Animals sense environmental stimuli and initiate appropriate behavioral responses through the action of neural 
circuits. In the complex olfactory circuit, the number of olfactory receptors (ORs) in many species is far fewer 
than the environmental stimuli that the species can detect1, and the organism uses a limited number of ORs and 
olfactory receptor neurons (ORNs) to distinguish and encode target information from hundreds or thousands of 
background stimuli in a dynamic environment. Thus, the sensory circuit in the olfactory bulb, the first olfactory 
information processing center in mammals, should be able to reconcile possible trade-offs between encoding 
reliability and encoding capacity, while possessing a certain degree of coding flexibility1–3.

Compared to mammalian systems, the Drosophila olfactory system exhibits similar, but much simpler, circuit 
wiring4 (Fig. 1a). In Drosophila, odorants are represented non-linearly in input terminals and cognate output 
terminals, suggesting that signals passed to sensory neuron termini are modulated by interneurons in the input 
channels5,6. Such modulation occurs mainly through feedback inhibition from inhibitory local interneurons 
(LNs) to ORNs – a process known as gain control7,8 – or lateral inhibition and lateral excitation from LNs to 
projection neurons (PNs) or other LNs9–14. In addition, network flexibility has been recently demonstrated in the 
antennal lobe (AL)10,15–20, and it is not unique to the fly olfactory circuit. Indeed, mitral cells (the vertebrate analog 
of fly PNs) exhibit intrinsic heterogeneity, which decorrelates neuronal firing and increases coding capacity18. 
Intuitively, these regulatory processes should result in pattern decorrelation2, but collective variations in subsets 
of neurons within a circuit have been shown to produce consistent network activity, thus maintaining encoding 
reliability21. However, it is still an open question whether any trade-off exists between coding capacity (pattern 
decorrelation) and reliability in early olfactory information processing.
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Our previous work demonstrated that Drosophila olfactory LNs are highly diverse and variable, both in mor-
phology and electrical properties15. Yet it is not clear why the circuit needs highly diverse LNs, or how LN variabil-
ity may affect the encoding capacity. Few studies have considered the effects of interneuron diversity on network 
activity22–27, while much effort has been devoted to understanding the effects of heterogeneity on firing threshold 
value28–30 or intrinsic biophysical properties31,32. As such, heterogeneity has been found to largely affect firing 
rates and/or signal representation in the network28,32. Therefore, we focused our study on describing the effects of 
morphological diversity on network activity.

LNs, ORNs and PNs form multiple feedback and feed-forward loops, and the majority of previous simula-
tion work has been performed using networks that consist of ORNs, LNs and/or PNs. However, if we want to 
understand how LN network activity changes temporally and spatially, it is difficult to simultaneously consider 
time-dependent inputs from ORNs and PNs. Therefore, we began by using a ring model as a basic representation 
of an oscillating isolated LN network (interactions with ORNs and PNs were excluded). With this model, we 
asked (1) why biological networks might exhibit high levels of diversity, (2) if morphological diversity contributes 
to the encoding capacity of a network consisting of inhibitory and excitatory neurons, and (3) if so, whether and 
how circuit variability drives the circuit toward a balance between encoding capacity and reliability.

To address these questions, we constructed networks consisting of excitatory and inhibitory interneurons, and 
introduced distinct types of variability to the simulated networks. Our aims were to understand to what extent the 
transmission of neural firing could be modeled in these neural ensembles, and to develop a way to better understand 
the spatial and temporal dynamics of neural firing patterns. The continuity of activity within the node ensemble (oscil-
lation pattern) was used as a readout to describe the temporal dynamics of network activity. Our work may explain why 
LN diversity is required for the Drosophila olfactory circuit. In addition, our findings describe how circuit variability of 
LNs may combine with inhibition to enhance both the encoding capacity and distinguishability of LN networks. Such 
mechanisms are likely to be generalizable to interneuron networks in other circuits and other species.

Results
The ratio of excitatory and inhibitory LNs is approximately 1:5.4 in the AL.  Around the 
Drosophila AL, LNs are restricted to the lateral and ventral clusters, each containing ~100 LNs15 (Fig. 1b). In 
addition to excitatory cholinergic LNs and inhibitory GABAergic LNs, glutamatergic LNs were recently discov-
ered to be inhibitory15,33. In this study, we first determined the ratio of excitatory LNs and inhibitory LNs in the 
AL. We co-stained γ-aminobutyric acid (GABA) and Vesicular glutamate transporter (VGlut) to simultaneously 
visualize GABAergic and glutamatergic LNs. Thus, the entire population of inhibitory LNs was labeled in each 
brain (Fig. 1b). Quantification showed the ratio of excitatory to inhibitory LNs is approximately 1:5.4 (Fig. 1c).

Constructing the basic regular interneuron network.  We began our simulations with a regular ring 
network and progressively increased the complexity by diversifying connections. One may imagine that in a 
three-dimensional space, the most basic version of a neural circuit could be excitatory neurons within a neural 
ensemble that form regular connections and fire sequentially (Left, Fig. 2a). This network will easily produce 
oscillations that are observed in biological systems. As more complexity (i.e. inhibitory connections and irregular 
connectivity) is introduced, more irregularities in firing sequence and heterogeneous activity may occur (Right, 
Fig. 2a). Using this approach, we can begin to understand the effects of morphological diversity and wiring vari-
ability on spatial and temporal dynamics of neural firing patterns.

Herein, the term ‘network’ refers to a particular network topology (e.g. Nexc = 20, kreg = 2), while ‘network 
structure’ refers to 5000 simulated results generated from a given network. To determine how inhibition and 
circuit variability of LNs affects the dynamics of global neural activity in the AL, we first conceived a simplified 
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Figure 1.  Drosophila LN network exhibits high ratio of inhibitory to excitatory neurons. (a) Schematic of 
the Drosophila olfactory system. Dashed circles denote individual glomeruli in the AL, where axons of ORN 
(gray ovals), dendrites of PNs (gray circles), and the processes of excitatory LNs (green) and inhibitory LNs 
(magenta) form extensive synaptic connections. Different shades of green and magenta represent different 
types of corresponding neurons. MB, mushroom body. LH, lateral horn. (b) Adult fly brains were stained with 
anti-GABA (blue), anti-VGlut (red), and anti-mCD8 (green) antibodies to visualize GABAergic, glutamatergic 
and almost all LNs, respectively. White dashed line contours the AL. Arrows indicate lateral (L) and ventral 
(V) LN clusters. Scale bar, 10 μm. (c) The table shows estimated numbers of GABA- and/or VGlut-expression 
LNs within the AL (mean ± SD, n = 5). LNs expressing either GABA, VGlut or both are inhibitory LNs; GABA-
negative and VGlut-negative LNs are excitatory LNs.
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network that solely consists of excitatory LNs (i.e. lacking PNs, ORNs and inhibitory LNs; Supplementary 
Fig. S1a). To simulate this network, we constructed a regular circular network structure (Fig. 2b). Each node rep-
resents an excitatory LN, which connects to and activates to the closest and second closest neuron through two 
directed edges (kreg = 2). Accordingly, each neuron also receives excitatory inputs from two others.

We then modified the Hodgkin-Huxley model for neurons34 by dividing applied current I into two terms, a 
stimulating current Isti and a synaptic current Isyn, to enable integration of excitatory and inhibitory information in 
a node for later simulation (see Model and Table S1 for the parameters). Because this network structure is regular 
and symmetric, a single stimulus (red arrow in Fig. 2b) induced orderly firing of all the nodes (Fig. 2c). Previous 
electrophysiological experiments have demonstrated that LN ensembles are activated over a time period during 
and/or after odor stimulations6,15, so we used the continuity of activity within the ensemble as a readout to evalu-
ate the effects of two basic parameters, the number of nodes (Nexc) and the number of edges (kreg) (Supplementary 
Fig. S2). When Nexc was fixed at 200 and kreg varied, we observed three types of firing patterns (Fig. 2c). When kreg 
was 1, stimulation occurred sequentially, however, a single stimulation was not sufficient to activate all nodes, and 
dissipative transmission caused rapid extinction of activity in the ensemble. As kreg increased, the first activated 
node was sufficient to activate the next two and so on, creating a chain reaction-like activation pattern (kreg = 6 or 
23). When kreg was high (kreg = 24), network activation was initiated but died out soon after. This is likely because 
when kreg is large, signals are transmitted very fast. As a consequence, when the signal is transmitted back to the 
first node in the second cycle, the node is still hyperpolarized, preventing reactivation. Regular networks with 
Nexc = 20 or 100 exhibited similar types of firing patterns when kreg increased (Supplementary Fig. S2a,b). We 
further examined the firing patterns of individual nodes in the second type of activation (Nexc = 200, kreg = 6). As 
expected, the injected stimulus induced Node 1 firing, followed by simultaneous firing of Nodes 2 and 3 in the 
first activation cycle. From the second cycle onwards, the firing pattern of each node developed a regular oscilla-
tion pattern, with a certain firing delay time between each node (Fig. 2d). We hereafter describe the continuous 
activity of individual nodes in a given network structure as the ‘network activity’ and describe the dynamic net-
work activity of all nodes through time as the ‘oscillation pattern’ or ‘activation pattern’ (see below).

Figure 2.  Building a regular circular network for simulating LN network. (a) Conceptual illustration of 
the spatial and temporal dynamics of neuronal activity in an ensemble. Neurons are randomly plotted in 
a representation of a three-dimensional space. Left: a closed loop network with solely excitatory neurons 
(black dots). Right: a closed loop network with excitatory (black dots) and inhibitory (blue dots) neurons. The 
activation flow is demonstrated by green (excitation) or magenta (inhibition) arrows. The darker green arrows 
represent later events. Red arrows indicate the initial stimulus. (b) Diagram of a regular circular network. Nodes 
(filled circles) represent individual LNs. Synapses from one neuron to the closest and second closest neurons 
are indicated by black and gray arrows (edges), respectively. The red arrow is a sole stimulus injected to initiate 
firing. Simulated networks included 200 excitatory nodes (Nexc) and varying numbers of regular activation 
edges (kreg). For simplicity, only 10 excitatory nodes (Nexc) and 2 regular activation edges (kreg) of each node are 
shown. (c) kreg was varied in a network with Nexc = 200. The dynamics of network activation are shown as spike 
raster plots, with the vertical axis denoting the identity of each node in the network (the node receiving injected 
stimulus is assigned as node 1) and the horizontal axis denoting simulation time. (d) The activation dynamics 
of individual nodes (node 1, green; node 2, blue; node 3, gray) are shown as simulated action potentials over 
time in a regular network (Nexc = 200, kreg = 6). Only the first three nodes are shown. The black bar indicates 
the period of stimulation. Node 2 and node 3 are simultaneously activated by node 1. Consequently, the action 
potential of node 2 overlaps with node 3 and the two activations are not clearly visible in the figure.
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Randomly switching excitatory nodes to inhibitory nodes to simulate interneuron networks.  
In the Drosophila AL, the relative connection density of excitatory and inhibitory LNs is undescribed, as are the 
connections between LNs15. Therefore, we began with a basic regular network structure and randomly switched 
the excitatory nodes to inhibitory nodes, with a probability of inhibitory transformation pinh ∈ [0, 1] (Fig. 3a), to 
build networks with both excitatory and inhibitory LNs (Supplementary Fig. S1b). When pinh = 0, all nodes are 
excitatory (same as Fig. 2b). If pinh = 1 (Fig. 3a, right), all nodes are inhibitory.

Conceptually, a basic regular network with Nexc = 200 would be suitable for experimentation because it represents 
the number of LNs in the AL. However, we found the basic regulatory networks with Nexc = 100 showed similar 
firing patterns to networks with Nexc = 200 (Supplementary Fig. S2). To make the simulation less computationally 
taxing, we set the basic regular network structure to Nexc = 100 and kreg = 4. When the probability of inhibitory 
transformation pinh was applied to a regular network, any of the original excitatory nodes could be switched to an 
inhibitory node. When excitatory nodes are switched to inhibitory, those nodes inhibited the nodes that are immedi-
ately downstream. Consequently, the chain reaction-like network activation was broken, producing diverse network 
activation patterns (Fig. 3b, middle panel). When pinh was high (~0.5), the network activity was terminated after a 
short activation period (Fig. 3b, bottom panel). When network activity ceased during the simulation period, the 
network structure was considered to have undergone activation restriction (Supplementary Fig. 3a, Supplementary 
note 1). In further simulation work, we used the duration of restricted activation as our main endpoint.

Information theory, such as Shannon entropy, can describe the amount of information in a system. Such the-
ories clearly address the amount of information that may be encoded by the network structures; however, they 
cannot describe the dynamics of information encoding over time. To better examine the structural and temporal 
dynamics of information in the simulated neural networks, we used collective activity oscillation patterns of all 
simulated network structures derived from a given network to describe network information. In the simulated 
network structure, a single stimulation may trigger sequential firing of individual nodes and thus lead to cycling 
signal transmission among nodes. This cycling appeared as oscillating patterns that may continue for a period of 
time, and may differ from trial to trial (Figs 2a and 3b). Therefore, the collective oscillation patterns of all nodes – 
but not individual nodes – represent the global activity dynamics of a given network structure. As such, network 
oscillation patterns describe the structural and temporal features of a neuronal population (Fig. 2a).

We examined the activation durations of networks with restricted activation under different values of pinh 
(Fig. 3c). When pinh was large enough (e.g. pinh = 0.3), the duration of restricted activation for most networks 
was drastically reduced because the networks endured strong inhibition. We envision that longer durations of 
restricted activation allow for greater numbers of distinct temporal activation patterns. In other words, longer 
activation durations allow more information to be encoded. In this way, temporal dynamics would directly reflect 
encoding capacity. However, it is also possible that for any given duration, the network structures will exhibit 
similar activation patterns, reducing the time dependence of encoding capacity.

To test the idea that longer durations of network activation may confer better distinguishability, we analyzed 
our simulation data by two methods, Euclidean distance and dot products. Over the time-course of the simu-
lation, the firing potential of all nodes in a network structure was treated as a vector. Two different stimulating 
currents (Ii,sti = 2.5 and 2.4 in Fig. 3d) were separately applied to the same network structure (Nexc = 100, kreg = 4, 
pinh = 0.15 in Fig. 3d), and the two vectors were compared by calculating Euclidean distance and dot products over 
the simulation time. We found that when activation lasted longer, the normalized Euclidean distance remained 
larger than 0, and the corresponding normalized inner product remained smaller than 1 (Fig. 3d). These results 
indicated longer durations of activation allowed the network structure to distinguish between two similar stim-
uli with increasing clarity. Plotting the cumulation of normalized Euclidean distance and restricted activation 
duration of 500 simulated network structures of the same network (outlined by dashed rectangle, Fig. 3c) further 
supported this idea (Fig. 3e). Therefore, the duration of network activation can be interpreted as the encoding 
capacity of a network. In addition, when a network structure generates a broad distribution of network activation 
durations, the activation duration may be more variable from trial to trial, conferring lower encoding reliability. 
For instance, when comparing network structures with pinh = 0.05 and pinh = 0.5, the structure with pinh = 0.5 has 
less encoding capacity but higher encoding reliability.

Our results suggest that including some inhibitory nodes lengthens the duration of network activation, con-
ferring greater encoding capacity. However, very strong inhibition may diminish encoding capacity. The ratio of 
excitatory to inhibitory LNs is 1:5.4 in the biological olfactory LN network, which would correspond to a simu-
lated network with pinh = 0.84. Under this condition, the duration of restricted network activation was extremely 
short, suggesting that encoding capacity would be suboptimal and additional factors are involved in LN network 
activation. This inspired us to investigate whether morphological variability could be one such factor.

We examined whether irregular connections may influence the global activation of the network. The easiest 
way to introduce irregularity to regular networks is by rearranging directed edges among nodes35. We therefore 
modified a regular network structure with solely excitatory nodes (Nexc = 100, kreg = 4) by randomly rewiring the 
connections between nodes. Rewiring proceeded according to a degree of randomness r ∈ [0, 1], which dictated 
whether a given node is rewired or not. This allowed us to test the effect of random connections between interneu-
rons on network activity (Supplementary Fig. S1c and see below). The four randomly rewired edges from a given 
excitatory node were allowed to connect to any other nodes. As r increases, more directed edges are rewired 
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which all directed edges are rewired, and the network connectivity is completely random (right, Fig. 4a). As 
expected, the oscillation patterns of network activity were more irregular when random wiring was introduced to 
the network (Fig. 4b). As the degree of introduced randomness increased, the network activity exhibited restric-
tion (Fig. 4b, bottom, Supplementary Fig. S3b).
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To better understand how the degree of randomness may influence network oscillation patterns, we analyzed 
the duration of restricted activation according to randomness (Fig. 4c). When a low degree of randomness (e.g. 
r = 0.05–0.3) was introduced to the network structure, the distribution of restricted activation durations was 
multimodal. Interestingly, when r reached a large enough value (e.g. r > 0.4), the distribution of activation dura-
tions was characterized by shorter durations and a clear bimodal distribution. We envision that highly similar 
activation durations represents better encoding reliability than a broad distribution. This effect of randomness on 

Figure 3.  Random assignment of inhibitory nodes to construct an excitatory-inhibitory network. (a) Diagram 
depicting random assignment of excitatory and inhibitory nodes in the regular network. Ten nodes and 
2 directed edges are shown. Left: pinh = 0. Middle: inhibitory nodes and edges are colored magenta. As the 
probability of inhibitory transformation (pinh) increases, more nodes become inhibitory. Right: pinh = 1. (b) 
The dynamics of network (Nexc = 100, kreg = 4) activation are shown as spike raster plots. Inhibitory nodes are 
colored magenta. Top: At pinh = 0, ceaseless activation is observed. Middle: When pinh = 0.1, some network 
structures show restricted activation with slightly irregular activation patterns. Bottom: When pinh = 0.5, most 
networks exhibit restricted activation (example trace, 17.97 ms). (c) Five thousand networks (Nexc = 100, 
kreg = 4) were simulated by randomly switching nodes from an excitatory to inhibitory at a given pinh. The 
durations of restricted activation (magenta, ∈ [15,1000]) are shown as violin plots. When pinh = 0, activation was 
not restricted (data not shown). A statistically significant difference was found among groups by Kruskal-Wallis 
H-test (p < 0.0001) (Table S2). (d,e) Longer network activation durations may reflect greater distinguishability. 
(d) The membrane potentials of all nodes in a given simulated network structure (Nexc = 100, kreg = 4, 
pinh = 0.15) were compiled as a vector. Two stimulating currents were separately applied to the same network 
structure. Normalized Euclidean distance (black) and normalized dot product (orange) for the resulting vectors 
were used to quantify distinguishability. Only the first 100 ms are shown. Top panel: A single network structure 
with activation durations of 66.83 and 68.58 ms from Ii,sti = 2.5 and 2.4, respectively. The gray zone indicates 
time during which both network structures were activated. Bottom panel: Another network structure for which 
activation durations of 79.18 ms and 81.05 ms were observed from Ii,sti = 2.5 and 2.4, respectively. (e) Cumulative 
Euclidean distance was derived from 500 simulated network structures in (c) (outlined by orange dashed line). 
The two network structures shown in (d) are plotted in red. The cumulative normalized Euclidean distance 
is proportional to the duration of restricted activation, suggesting the later reflects the distinguishability of 
networks. R, slop of linear fitting.
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activation duration demonstrates that introducing a low degree of randomness enhances the encoding capacity, 
while a high degree of randomness decreases encoding capacity and increases reliability.

Randomly rewiring the connections of existing excitatory and inhibitory nodes enhances the 
encoding capacity of a network.  We next asked whether randomness could rescue the low encoding 
capacity caused by strong inhibition (Supplementary Fig. 1d). Introducing randomness to a network with a cer-
tain ratio of inhibitory nodes will increase the number of irregular network structures (Fig. 5a). Yet we found that 
in a network with high inhibition, introducing randomness had very little effect on the probability of activation 
restriction (e.g. pinh = 0.3 to 1) (Supplementary Fig. S3c) or the duration of activation restriction (Fig. 5b). We 

Figure 4.  Random rewiring of node connections in a regular network to simulate LN variability. (a) Diagram 
depicting random rewiring of the connections between nodes in the basic regular network. Left: the basic 
regular network structure, in which the degree of randomness (r) is 0. Middle: network structure after one of 
the two directed edges from two individual nodes was rewired. The larger the degree of randomness, the more 
frequently directed edges are rewired. Right: when the degree of randomness of the network structure is 1, 
both directed edges from all individual nodes are rewired. (b) The dynamics of network (Nexc = 100, kreg = 4) 
activation are shown as spike raster plots. Top: When r = 0, the networks show ceaseless and regular activation 
patterns. Middle: When r = 0.2, some simulated networks showed irregular restricted activation patterns 
(example trace, 458.85 ms). Bottom: With a higher degree of randomness, r = 0.5, some simulated networks 
showed irregular and restricted activation patterns, with short duration of activation (example trace, 58.8 ms). 
(c) Five thousand network structures were simulated by randomly rewiring the directed edges from nodes in the 
basic regular network (Nexc = 100, kreg = 4) at a given r. When r = 0, none of the simulated network structures 
exhibited restricted activation, and therefore, these data are not shown on the plot. The duration of restricted 
activation (orange, ∈ [15,1000]) is shown as violin plots. A statistically significant difference among groups was 
found by the Kruskal-Wallis H-test (p < 0.0001) (Table S2).
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therefore turned our attention to the effects of randomness on network activation durations under conditions of 
low inhibition.

We found that for simulated networks with different ratios of inhibitory nodes (e.g. pinh = 0.05 to 0.15), both 
low degree and high degree of randomness (r = 0.1 and 0.5, respectively) effectively redistribute the activation 
durations into a multimodal distribution, suggesting that encoding reliability is enhanced without greatly sacri-
ficing encoding capacity (Fig. 5c). However, such an effect of randomness is abolished when the inhibition is high 
(e.g. pinh = 0.5 to 1, Fig. 5c).

Figure 5.  Random assignment of excitatory and inhibitory nodes combined with random rewiring of 
connections between nodes enhances the encoding capacity of a network. (a) Diagram depicting random 
assignment of excitatory and inhibitory nodes in the basic regular network with different degrees of randomness 
in network rewiring. Left: basic regular network structure, in which pinh = 0 and r = 0. Middle: one edge of an 
excitatory node and an inhibitory node were rewired, respectively. As pinh increases, increasing numbers of 
nodes are assigned as inhibitory. Right: when pinh = 1 and r = 1, all nodes are inhibitory and all edges are rewired 
randomly. (b) The dynamics of network activation are shown as spike raster plots. When a node is transformed 
from excitatory to inhibitory, its color code is switched from black to magenta. Note that when pinh = 0.5, r = 0.1, 
some simulated networks show ceased activation shortly after stimulation (top). Similar results were also 
observed in a network structure with pinh = 0.5, r = 0.5 (bottom). (c) Excitatory nodes were randomly assigned 
to be transformed to inhibitory nodes in the basic regular network (Nexc = 100, kreg = 4) at different degrees 
of randomness (r = 0 (black), 0.1 (orange) and 0.5 (light orange)). The distribution of restricted activation 
duration at a given pinh is shown as a violin plot. Significance was assessed with Mann–Whitney U-test. 
Statistically significant differences are indicated; *p < 0.05, **p < 0.01, ***p < 0.001 (see Table S3). (d) Three 
distinct networks with pinh = 0 (black), 0.1 (magenta), or 0.2 (light magenta) were examined. The distribution of 
restricted activation duration is shown as a violin plot. Significance was assessed with Mann–Whitney U-test. 
Statistically significant differences are shown; *p < 0.05, **p < 0.01, ***p < 0.001 (Table S3).
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To better understand how randomness enhances the encoding reliability of networks with low inhibition, we 
further examined the distribution of activation durations for networks with low inhibition and variable degrees 
of randomness. We found that under low inhibition, only a certain range of randomness (e.g. r = 0.2 to 0.5, 
pinh = 0.1) caused the simulated network structures to exhibit a multimodal distribution of oscillation duration 
(Fig. 5d).

These results demonstrated that a certain degree of randomness effectively enhanced the encoding reliabil-
ity of network structures. However, this only occurs in networks with low inhibition and not those with strong 
inhibition. While these results were informative, in that they demonstrated both randomness and inhibition can 
influence encoding capacity and reliability in regular circuits, the simulated networks did not explain why the fly 
olfactory LN network has such a high ratio of inhibitory LNs.

Constructing an excitatory-inhibitory network by adding inhibitory nodes to a regular excita-
tory network.  Fly olfactory LNs are highly diverse in their morphologies15. According to the innervation pat-
terns and AL coverage, these LNs can be categorized as pan-glomerular LNs (innervating whole AL), all-but-few 
glomerular LNs (innervating almost all glomeruli), regional LNs (innervating ~20 out of 54 continuous glo-
meruli), patchy LNs (innervating discontinuous glomeruli with patch-like neurite clusters), oligo-glomerular 
LNs (only innervating 3–5 glomeruli) and bilateral LNs (innervating both ALs)15. To simulate networks with 
distinct types of inhibitory LNs (Supplementary Fig. S1e), we first established a basic regular network (having 20 
excitatory nodes, kreg = 2) and added inhibitory nodes (Ninh) that received input from one and relayed output to 
one excitatory node (kinh = 1), simulating oligo-glomerular LNs (Fig. 6a, middle; mimicking the circuit shown in 
Supplementary Fig. S1e, middle). A key difference between this and the preceding strategy (Figs 3–5) is the num-
ber of excitatory edges to each inhibitory node and the number of inhibitory edges from the node differ, meaning 
that the strength of inhibition for a single node also differs. As the number of newly recruited inhibitory nodes 
reached 100, the simulated network (20 excitatory nodes and 100 inhibitory nodes) would have a similar ratio to 
the biological LN network.

Because many inhibitory LNs are pan-glomerular, all-but-few glomerular or regional LNs15, we also tested an 
excitatory-inhibitory network design wherein the network had only one recruited inhibitory node (Ninh = 1), but 
the number of inhibitory edges (kinh) from this node to other excitatory nodes was variable (Fig. 6a, right; mim-
icking the circuit shown in Supplementary Fig. S1e, bottom).

Conceptually, the number of total inhibitory edges equals Ninh × kinh so both types of network should have 
the same number of total inhibitory edges when Ninh = kinh. Therefore, it was surprising that the networks did 
not exhibit similar efficiencies at restricting network activity oscillation (Fig. 6b,c, Supplementary Fig. S4a). The 
probable explanation for the different outcomes is that the timing of inhibitory inputs is quite different for the 
two networks. When Ninh is fixed at 1 (Fig. 6a, right), all inhibitory signals (through edges derived from kinh) are 
released simultaneously. In contrast, when kinh is fixed at 1 (Fig. 6a, middle), the inhibitory nodes (based on Ninh) 
release inhibitory signals individually, creating a unique temporal profile for each network structure. Therefore, 
when the inhibition properties of the simulated network approach experimentally determined values from bio-
logical LN networks, both networks in Figs 3a and 6a/right exhibit strong inhibition, while networks from Fig. 6a/
middle exhibit weaker but prolonged inhibition over time.

We therefore asked if the different types of LNs have distinct effects on restricted activation durations. We 
found that in a network with solely oligo-glomerular LNs (kinh = 1, Ninh varied; blue violin plots, Fig. 6d), add-
ing more nodes to the network slightly prolonged the activation duration but broadened the distribution of 
activation durations. In networks simulating other types of oligo-glomerular LNs that innervate few glomeruli 
(Ninh = 1, kinh = 1–10; magenta violin plots, Fig. 6d), the distribution of activation duration became bimodal with 
an increasing number of edges, suggesting that the encoding reliability was enhanced at the expense of encoding 
capacity. In networks simulating regional LNs (Ninh = 1, kinh = 20–60; magenta violin plots, Fig. 6d), the distribu-
tion of activation duration changed from bimodal to unimodal with a relatively dense distribution of activation 
durations, suggesting the encoding reliability was enhanced with partial recovery of encoding capacity. When 
the network is composed of all-but-few glomerular LNs or pan-glomerular LNs (Ninh = 1, kinh = 80–100; magenta 
violin plots in Fig. 6d), the encoding reliability is further enhanced. Therefore, the data suggest that distinct types 
of inhibitory LNs may have very different effects on network encoding capacity and encoding reliability.

Attaching additional excitatory edges to the excitatory-inhibitory network to mimic circuit 
variability in interneuron network.  Circuit variability may originate from increased connections among 
existing LNs (Supplementary Fig. S1f). To simulate how additional excitatory connections contribute to the 
global activation of the network, we irregularly attached additional edges (kirr) to a basic regular network. Each 
additional excitatory directed edge bridged two randomly chosen excitatory nodes (Fig. 7a). The number of pos-

sible network structures can be as many as 



−

N
N

k2 !
2 ! ( 2) !

exc

exc

irr
. Accordingly, Nexc(Nexc − 1) and [Nexc(Nexc − 1)]100 

possible network structures may be generated when kirr = 1 and 100, respectively.
We first set Nexc = 20 and kreg = 2 in the basic regular network, and then attached irregular edges. As expected, 

the oscillation patterns of network activity were more irregular when irregular edges were introduced to the net-
work (Fig. 7b, middle). As the number of introduced irregular edges increased, some of the network structures 
exhibited activity restriction during the simulation period (Fig. 7b, bottom, Supplementary Fig. S4b). Notably, 
adding a sufficient number of irregular edges effectively prolonged the oscillation duration of network activation 
(increased encoding capacity) but this effect was at the expense of encoding reliability (2 ≥ kirr ≥ 30, Fig. 7c). 
The network with kirr = 10 seemed to represent the best condition in terms of showing balanced duration of 
restricted activation and probability of activation restriction. Therefore, this network was used for the subsequent 
experiments.
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Attaching additional excitatory edges expands the enhanced encoding capacity of a network 
with additional recruited inhibitory nodes.  In a complicated network system, such as the olfactory LN 
network, many sources of diversity and variation may simultaneously or sequentially influence a single stimula-
tion event (Supplementary Fig. S1g). Therefore, we examined how multiple factors coordinately affect network 
activation oscillation. We randomly added excitatory edges (kirr) to a regular network with a gradual increase of 
either inhibitory nodes (Ninh) (Fig. 8a, middle; mimicking Supplementary Fig. S1g, middle) or inhibitory edges 
(kinh) (Fig. 8a, right; mimicking Supplementary Fig. S1g, bottom). Not surprisingly, this cooperative effect dramat-
ically concentrated the distribution of activation durations (enhanced the encoding reliability) at the expense of 
encoding capacity (Fig. 8c, Ninh = 1–10 and 8d, kinh = 1–10). However, recruiting irregular edges mildly enhanced 

Figure 6.  Building excitatory-inhibitory networks by adding inhibitory nodes and edges to simulate LN diversity. 
(a) Left: the basic regular network structure, in which the number of attached inhibitory nodes (Ninh) and the 
number of attached inhibitory edges (kinh) are 0. Here, the number of irregular edges (kirr) of all simulated network 
structures is 0. Middle: three inhibitory nodes (blue, Ninh = 3) are added to the basic network structure, with each 
receiving a single excitatory supply edge (green) and extending a single inhibitory edge (magenta, kinh = 1). Right: 
an additional inhibitory node (blue, Ninh = 1) is added to the basic network structure, along with three excitatory 
supply edges (green) and three inhibitory edges (magenta) at kinh = 3. The number of additional excitatory 
supply edges and the number of inhibitory edges for each node was matched in all simulated networks. (b,c) The 
dynamics of network activation are shown as spike raster plots, when inhibition occurred at lower levels over time 
(b) or when strong inhibition was applied to the system at a single time (c). The three plots in each panel show 
representative data from samples with activation durations in the 75, 50 and 25-percentiles, as shown in the dark 
blue (b) and magenta (c) violin plots of (d). (d) The duration of restricted activation (∈ [15,1000]) from 5000 
simulated network structures with different Ninh at a set value of kinh = 1, or 5000 simulated network structures 
with different kinh in a network with a set value of Ninh = 1 are shown as blue or magenta violin plots, respectively. 
Statistically significant differences were identified among groups of kinh = 1 and among groups of Ninh = 1 by the 
Kruskal-Wallis H-test (p < 0.0001, Table S2). In addition, statistically significant differences between the two 
groups (e.g. kinh = 1 and Ninh = 1) were found with the Mann–Whitney U-test. Only those comparisons with 
significant differences are indicated. *p < 0.05, **p < 0.01, ***p < 0.001 (Table S3).
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the activation duration of networks with regional LNs, all-but-few LNs and pan-glomerular LNs, with less effect 
on the distribution of activation duration (Fig. 8d, kinh = 20–100). These results suggested that inhibitory LNs 
dominantly enhance the encoding capacity by expanding the network activation durations when the network 
wiring complexity is extremely high. In addition, circuit variability mildly enhances the encoding reliability of 
oligo-glomerular LNs or encoding capacity of regional LNs, all-but-few glomerular LNs and pan-glomerular LNs.

Discussion
Neuronal diversity and variability are two fundamental features of neural circuits. Variations in network con-
nections potentially confer greater complexity on a neural circuit and thus enhance the encoding capacity of 
the circuit. Such circuit variations, however, may also compromise the reliability of coding. Limited by current 
knowledge of neuronal types, numbers, and details of connections among neurons in a given circuit, it is far from 
clear how neuronal variability works with inhibition to influence encoding capacity and reliability of the circuit.

Simulating LN network through ring model-like irregular structures.  The diversity and variability 
of a biological neural network may result from morphological or biophysiological diversity. Although we have 
acquired substantial knowledge of the electrophysiological and morphological/anatomical characteristics of LNs 
at single cell resolution, we still do not fully understand the spatiotemporal firing dynamics of the LN ensemble 
upon odor stimulation. The goal of current work was to construct a model for studying the effects of diversity 
and inhibition on these dynamics. In order to do so, we simplified the model by excluding ORNs and PNs as a 
requisite precursor to future complex LN network simulations that will include ORNs and PNs. In fact, our model 
allows us to test both the diversity of connections and firing pattern diversity of individual neurons, because a 
given node will receive varying excitation and inhibition inputs along time.

We introduced different degrees of complexity to the simulated networks. One method we used was based 
on a small world model that allows edges in a ring structure to randomly connect to other nodes (Fig. 4). Under 
certain parameters of this model, one input stimulus may trigger ceaseless network activation. When the rewir-
ing probability is progressively increased, the regularity of the ring structure decreases due to shortcuts in the 
network, resulting in a raised probability of ceased network activation36,37. Our results support such findings 
(Supplementary Figs S3, S4). Moreover, the delay time of the synaptic input also affects network activation 
and failure fractions36,37. It is not only structural changes that affect duration of network activation, as random 
networks with modifiable synapse strength also lead to membrane potential changes and irregular population 
spiking38.

Figure 7.  Attaching additional edges to the excitatory LN network to simulate LN variability. (a) Diagram 
depicting the random addition of edges to the basic regular network. Left: basic regular network, in which 
the number of irregular edges (kirr) is 0. Right: a network structure with two additional irregular edges (green, 
kirr = 2). Two additional directed edges are randomly attached to two excitatory nodes, and randomly connected 
to two other nodes. (b) The dynamics of network activation are shown as spike raster plots. Top: When kirr = 0, 
the network showed ceaseless and regular activation patterns. Middle: when kirr = 10, some simulated networks 
show irregular and restricted activation patterns over time (example trace, 106.03 ms). Bottom: when kirr = 100, 
the simulated networks showed irregular and restricted activation patterns with very short duration of 
activation (example trace, 20.96 ms). (c) The durations of restricted activation (green, ∈ [15,1000]) are shown as 
violin plots. When kirr = 0, none of the simulated network structures exhibited restricted activation, and these 
data are not shown on the plot. A statistically significant difference was identified among groups by the Kruskal-
Wallis H-test (p < 0.0001) (Table S2).
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In our simulated networks, we reason that as more distinct populations of nodes become involved in oscilla-
tion patterns, larger numbers of information objects can be encoded. In this way, the dynamics of oscillation pat-
terns (activation duration) can be interpreted as reflecting the encoding capacity of a network. On the other hand, 
when simulated network structures, derived from a given network, exhibit highly similar durations of restricted 
activation, those network structures may have similar encoding capacity (Fig. 3d,e). Therefore, the distribution of 
restricted activation durations (irregularity of a network) may reflect encoding reliability.

The diversity of inhibitory LNs likely contributes to optimized network encoding capacity, reli-
ability and distinguishability.  We employed two strategies to construct a diverse excitatory-inhibitory 
LN network. We found that a network constructed by adding 100 inhibitory nodes to a regular network of 20 
excitatory nodes fits with the excitatory-inhibitory LN ratio of the Drosophila AL (Fig. 6). In such simulated net-
works, inhibition increased the activation duration (encoding capacity), in some cases at the expense of encoding 
reliability. However, in other instances, the encoding reliability was maintained or promoted, without sacrificing 
encoding capacity. This may explain why the biological LN network contains such a high ratio of inhibitory LNs.

We also simulated distinct types of inhibitory LNs and found they may differentially contribute to the encod-
ing capacity and reliability of the network (Fig. 6). According to our results, regional inhibitory LNs function 
to enhance encoding capacity of networks, while slightly compromising encoding reliability (e.g. Ninh = 1, 
kinh = 20–40, Fig. 6d) compared to oligo-glomerular LNs (e.g. Ninh = 1, kinh = 5, Fig. 6d). However, all-but-few 
glomerular or pan-glomerular inhibitory LNs enhance the encoding reliability while compromising the encod-
ing capacity (e.g. Ninh = 1, kinh = 80–100, Fig. 6d). In a network containing oligo-glomerular LNs, the inhibitory 
LNs effectively enhanced the encoding capacity without greatly affecting encoding reliability (e.g. Ninh = 2 to 10, 
kinh = 1, Fig. 6d). In the case that all inhibitory LNs are this type of neuron, the trade-off between encoding capac-
ity and reliability becomes obvious (e.g. Ninh = 100, kinh = 1, Fig. 6d).

Upon odor stimulation, distinct subsets of inhibitory and excitatory LNs are likely to be activated sequentially 
over a certain period of time. Thus the inhibition of biological LN networks may be dynamic, sometimes with low 
and other times with high inhibition. According to our simulations, if all inhibitory LNs were pan-glomerular, 
the LN network would usually exhibit very short network activation oscillation. On the other hand, if all inhib-
itory LNs were oligo-glomerular, the LN network would have a long but variable network activation duration, 
representing an extremely large encoding capacity but low encoding reliability. We propose that the high diversity 

Figure 8.  Attaching additional excitatory edges in combination with addition of inhibitory nodes expands the 
encoding capacity of a network. (a) Diagram depicting the random addition of excitatory edges and inhibitory 
nodes to the basic regular network. Left: the basic regular network structure, in which kirr = 0. Middle: a network 
structure with two irregular edges (green, kirr = 2), and three additional inhibitory nodes (blue, Ninh = 3). The 
irregular edges originated from existing excitatory nodes in the network and randomly extended to other 
excitatory nodes. Each added inhibitory node possesses one excitatory supply edge (green) and one inhibitory 
projection edge (magenta) at kinh = 1. Right: a network structure with two irregular edges (green, kirr = 2) and 
an additional inhibitory node (blue, Ninh = 1) with three excitatory supply edges (green) and three inhibitory 
projection edges (magenta, kinh = 3). (b) The dynamics of network activation are shown as spike raster plots. 
(c) 5000 network structures were constructed by adding irregular edges (kirr = 0, 1 or 10) to the basic regular 
network (Nexc = 20 and kreg = 2) with a gradual increase in the number of inhibitory nodes (Ninh various, 
kinh = 1). The distributions of restricted activation duration at a given number of inhibitory nodes are shown 
as violin plots. The violin plots are shown such that at a given Ninh, the plot of kirr = 0 is aligned over that Ninh. 
(d) 5000 network structures were constructed by adding irregular edge (kirr) to the basic regular network with 
one additional inhibitory node that was associated with an increasing number of inhibitory edges (Nexc = 20, 
Ninh = 1, kreg = 2, kinh various). The violin plots at a given kinh are shown such that the plot of kirr = 0 is aligned 
over that kinh. Statistical significance was assessed with the Mann–Whitney U-test. *p < 0.05, **p < 0.01, 
***p < 0.001 (Table S3).
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of inhibitory LNs confers optimal encoding capacity, reliability and distinguishability through the interplay of 
temporal and spatial coding.

LN variability may coordinate with inhibitory effects to enhance the encoding capacity and 
distinguishability of LN networks.  We introduced circuit variability through different strategies (see 
Supplementary note). In our simulated networks, introducing variability to oligo-glomerular LNs compromised 
encoding reliability when the variability was low but enhanced encoding reliability when variability was moder-
ate (Fig. 8c and kinh = 1–10, Fig. 8d). On the other hand, introducing variability to networks with regional LNs, 
all-but-few glomerular LNs and pan-glomerular LNs mildly enhanced the encoding capacity without sacrificing 
encoding reliability (kinh = 20–100, Fig. 8d). These results lead us to conclude that distinct types of inhibitory LNs 
mostly regulate encoding capacity, while circuit variability may enhance encoding reliability.

Our work helps to explain why the olfactory circuit contains distinct types of inhibitory LNs and provides 
insight into how LN variability may coordinate with inhibition to enhance the encoding reliability of a LN net-
work. While we only simulated single types of inhibitory LNs, in future work, it will be interesting to introduce 
multiple types of LNs and/or simultaneously inject multiple stimuli into the same network to test how the combi-
nations regulate encoding capacity and reliability of networks.

Methods
Neuron model.  The original Hodgkin-Huxley model was used to describe a nerve cell as a resistor-capacitor 
circuit composed of resistors and a capacitor which reflect biophysical characteristics of ion channels and the 
cell membrane, respectively34. Considering that the cell membrane is a lipid bilayer structure, a capacitor Cm was 
introduced to describe the involvement of excitability. For the passage of ions through the cell membrane, volt-
age-dependent ion channels were considered as resistors. Accordingly, the membrane potential V of an excitatory 
neuron was defined as:

= − − − − − − .C V
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I g V E g V E g V Ed
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I is an applied current. Terms on the right side of the equation represent potassium current (gK(V − EK)), sodium 
current (gNa(V − ENa)), and potential leak of channels (gL(V − EL)). EK, ENa, and EL are reversal potentials of the 
corresponding channels. gK, gNa, and gL are the conductance of corresponding channels, which were characterized 
as:
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gK, gNa, and gL are the maximum conductance of corresponding channels. n, m, and h were introduced as poten-
tial gates within [0, 1] that control the performance of gK, gNa, and gL adapting to potential V, respectively. The 
factor n4 in gK and the factor m3h in gNa are related to the transport of ions through potassium and sodium chan-
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To extend the Hodgkin-Huxley model for individual neurons (nodes) to a modeled neuron that presumably 
receives multiple inputs in simulated neural circuits, we introduced a coupling term to each node to allow the 
integration of multiple inputs in this node. Consequently, the applied current in the ith neuron Ii was divided into 
two terms, one term Ii,sti being the stimulating current and the other term Ii,syn being the synaptic current. Ii,sti rep-
resents the current acquired from external stimuli. Ii,syn represents the current acquired from a set of pre-synapses 
Qi, which was defined as:
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Φ(Vj − Vth) is a step function that equals 1 when Vj ≥ Vth; otherwise Φ(Vj − Vth) is 0. This allows Ii,syn to be set to 
follow the all-or-none phenomenon of action potentials that is observed in all characterized neurons39. Only 
when a physical quantity, such as the membrane potential or the current of a given neuron, is above the firing 
threshold (e.g. a constant potential threshold), the neuron fires and elicits an action potential. Here, gj,syn and Vth 
are the conductance of inward currents from pre-synapses and the constant threshold potential of pre-synapses, 
respectively. The constant parameters were set as listed in Table S1. The parameters relating to biophysical char-
acteristics, such as gK, gNa, gL, EK, ENa and EL, were adopted from the original Hodgkin–Huxley model34. As Ii,sti 
holds within a short period as a pulse and varies in different trials, the threshold potential Vth can be roughly 
observed by the function of potential Vi versus time. The value of gi,syn, which acts as coupling strength, is judged 
by two critria. First, each Hodgkin-Huxley type neuron should be able to be activated, which means that gi,syn 
must be sufficiently large or the post-synaptic neuron needs to connect with multiple pre-synaptic neurons. 
Second, the Hodgkin-Huxley type model should avoid simulated crush, which means that gi,syn cannot be set too 
large. If the value of gi,syn falls into a range fitting within both criteria, our qualitative result would remain 
consistent.

Input and network activation.  All simulation work were performed with Cm = 1 μF/cm2, using CVODES 
with BDF and Newton iteration40. A sole 10 ms stimulus was injected to the simulated network structure 5 ms 
after the initiation of simulation. Because we anticipated that the stimulus would evoke an action potential for 
transmitting signals, the amplitude and duration of the stimulating current Ii,sti (and τi,sti) were coordinately mod-
ulated. When Ii,sti and τi,sti were assigned as 2.5 μA/cm2 and 10 ms, respectively, and applied to a given node, the 
excited node would be depolarized following the integration of a series of inputs. The simulation time through 
this study was fixed at 1100 ms (constant sampling time ∆ = .t 0 01 for Fig. 3d,e). When the global activation of a 
simulated network structure ceased during the simulation period, the network structure was considered to have 
undergone activation restriction. When an endless global activation happened to leave firing at the end of the 
simulation time (1100 ms), the program identifies it as a restricted activation. To avoid such a misidentification, 
we set a criterion (1000 ms) which was shorter than the simulation time to remove cases in which endless global 
activation ceased at time points at around 1100 ms. Accordingly, the duration of restricted activation was shorter 
than 1000 ms, but longer than the end time point of the stimulus (15 ms) used in this study.

Euclidean distance and dot product analysis.  We treated the collective state of nodes in a given net-
work structure at each time step as a vector. Each vector had n-orthogonal coordinates in which the ith compo-
nent indicated the state of the ith node. The distinguishability between two vectors a  and 



b  were partially 
quantified by either the Euclidean distance −



a b  or the inner product ⋅


a b . One limitation of Euclidean dis-
tance is that the value of Euclidean distance does not identify distinguishability if a  and 


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other hand, the inner product is limited if =
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a cb , in which c is a constant. The normalized Euclidean distance 
was calculated as − +
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a b a b/( ). When the angle between two vectors is 180°, the corresponding normalized 
Euclidean distance equals the sum of the length of two vectors. The results of inner product analysis were normal-
ized as ⋅
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Script used in this study.  The script used in this study will be available from the open database generated 
by the corresponding author laboratory.

Immunostaining of local interneurons.  The four GAL4 insertions, GH298, H24, NP3056, and OK107, 
collectively labeled almost all local interneurons in the AL15. Adult brains of flies carrying these four GAL4 lines 
were dissected and immunostained with antibodies as previously described15. The primary antibodies used 
were: rat anti-mCD8 Ab (1:100, Invitrogen MCD0800), rabbit anti-GABA Abs (1:200, Sigma A2052) and rabbit 
anti-VGlut Abs (1:1000, a gift from Dr. Aaron DiAntonio). Secondary antibodies were goat anti-rat IgG-Alexa 
Flour® 488 (Invitrogen, A11006), goat anti-rabbit IgG-CyTM3 (Jackson ImmunoResearch Laboratory; 111-165-
144), and ZenonTM Alexa FluorTM 647 Rabbit IgG Labeling Kit (Invitrogen, Z25308). Since both anti-GABA and 
anti-VGlut antibodies were raised from rabbits, ZenonTM Alexa FluorTM 647 Rabbit IgG Labeling Kit was used to 
label rabbit anti-GABA antibodies and goat anti-rabbit IgG-CyTM3 was used to label rabbit anti-VGlut antibodies, 
respectively. Images were collected using a LSM510 confocal microscope (Carl Zeiss). The number of glutamater-
gic LNs (but not that of GABAergic nor of both) from this experiment was previously published15.

Data availability.  The parameters used in this study can be found in Table S1 of the Supplementary 
Information. The scripts and instructions used to run the simulations in this paper will be available from an open 
database generated by the corresponding author laboratory or upon request.
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