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Abstract: Klebsiella pneumoniae is an opportunistic gram-negative bacterium that causes nosocomial
infection in healthcare settings. Despite the high morbidity and mortality rate associated with these
bacterial infections, no effective vaccine is available to counter the pathogen. In this study, the
pangenome of a total of 222 available complete genomes of K. pneumoniae was explored to obtain
the core proteome. A reverse vaccinology strategy was applied to the core proteins to identify four
antigenic proteins. These proteins were then subjected to epitope mapping and prioritization steps to
shortlist nine B-cell derived T-cell epitopes which were linked together using GPGPG linkers. An
adjuvant (Cholera Toxin B) was also added at the N-terminal of the vaccine construct to improve
its immunogenicity and a stabilized multi-epitope protein structure was obtained using molecular
dynamics simulation. The designed vaccine exhibited sustainable and strong bonding interactions
with Toll-like receptor 2 and Toll-like receptor 4. In silico reverse translation and codon optimization
also confirmed its high expression in E. coli K12 strain. The computer-aided analyses performed in
this study imply that the designed multi-epitope vaccine can elicit specific immune responses against
K. pneumoniae. However, wet lab validation is necessary to further verify the effectiveness of this
proposed vaccine candidate.

Keywords: Klebsiella pneumoniae; pangenome; reverse vaccinology; potential vaccine candidate;
immunoinformatics; multi-epitope vaccine

1. Introduction

Klebsiella pneumoniae (K. pneumoniae) causes nosocomial infections, majorly infecting
immunocompromised patients. A number of pathological conditions are associated with this bacterial
infection such as pneumonia, bacteremia, septicemia, endocarditis, meningitis, and cellulitis [1].
Especially, carbapenemase-producing K. pneumoniae strains present a major problem from a clinical and
epidemiological perspective. Mortality rates associated with carbapenemase-producing K. pneumoniae
infections reportedly vary from 22% to 72%, thus underlying the significant threat to human health
posed by this opportunistic microorganism [2–4].

Lipopolysaccharide (LPS) of K. pneumoniae has been used previously to develop vaccine but
severe side effects associated with LPS-containing vaccines present a major problem [5]. Capsular
polysaccharides (CPS) have also been explored for vaccine preparation but CPS-based vaccines,
although nontoxic and immunogenic, contain many K-types (77 different antigens), which proves a

Vaccines 2019, 7, 88; doi:10.3390/vaccines7030088 www.mdpi.com/journal/vaccines

http://www.mdpi.com/journal/vaccines
http://www.mdpi.com
https://orcid.org/0000-0001-5647-6014
http://dx.doi.org/10.3390/vaccines7030088
http://www.mdpi.com/journal/vaccines
https://www.mdpi.com/2076-393X/7/3/88?type=check_update&version=2


Vaccines 2019, 7, 88 2 of 17

daunting challenge [6]. Thus, a broad-spectrum vaccine needs to be urgently designed and developed
against K. pneumoniae.

Immunization studies mostly involve the culturing of microorganisms, isolation of
pathogen-specific antigen, and inactivation and reinjection into subjects to confirm immune response [7].
The procedure is cost ineffective and requires a lot of time. Moreover, these traditional methods are
not appropriate to work against K. pneumoniae, which includes a variety of strains. Undoubtedly, the
associated protocol would require the exhaustive search of finding a conserved antigen, processing it,
and assessing it for vaccine efficacy. Advancements in the field of DNA sequencing, systems biology,
genomics, and proteomics have enabled a greater understanding of pathogenesis and vaccine design [8].
All antigens of a pathogen can be tested easily to evaluate their immunogenicity. Reverse vaccinology
is a method that performs genome mining using computer-aided analyses for the identification of
potential vaccine candidates (PVCs) [9]. In this study, we have integrated pangenomics, reverse
vaccinology, and immunoinformatics approaches for the design and evaluation of a multi-epitope
vaccine against K. pneumoniae. A pangenome approach has been applied for the identification of core
proteins that can be used for developing broad spectrum therapeutics against bacterial infections [10].
It is important that the prioritized therapeutic targets are vital for the survival of pathogen and they are
not human-homologs [11]. Furthermore, extracellular and secretory proteins are likely to be vaccine
candidates [12].

Ideally, a vaccine should contain conserved epitopes that in turn can generate specific B-cell
and T-cell (CD4 and CD8) responses [13–15]. This will enable the induction of pathogen-specific
immune responses with minimal side effects by incorporating highly conserved epitopes in a vaccine
formulation [16]. Using immunoinformatics approaches, the structure of the multi-epitope vaccine
was modeled, and molecular refinements were applied. Finally, the vaccine was docked with TLR2
and TLR4 to decipher various interactions between the designed vaccine and immune receptors.

2. Materials and Methods

2.1. Genome and Proteome Retrieval and Pangenome Analysis

A total of 222 complete genome and proteome sequences of K. pneumoniae present in the NCBI
(National Center for Biotechnology Information) genome list were acquired on 4th September 2018.
Pangenome analysis on all the strains was conducted using the BPGA (Bacterial Pan Genome Analysis)
tool using USEARCH clustering algorithm [17,18]. For clustering orthologous proteins, a 90% sequence
identity threshold was selected due to the focus on highly conserved proteins present in the 222 strains
of K. pneumoniae.

2.2. Reverse Vaccinology for Protein Prioritization

Protein prioritization was conducted using a reverse vaccinology strategy on the core proteins. For
this purpose, VacSol in-house pipeline was used [19]. Firstly, non-human homologs were selected to
minimize the chances of autoimmunity or low immune response/tolerance [20]. The exclusion criteria
chosen was a percentage identity greater than 35%, Bit Score > 100 and E-Value < 1.0 E−5. Next, the
non-human homologs were subjected to subcellular localization using Psortb version 2.0 to positively
select extracellular and outer membrane proteins as they are accessible to the host immune system [21,22].
Selected proteins were subjected to BLASTp against the DEG (Database of Essential Genes) for the
identification of essential proteins as they perform major cellular functions of bacteria [23,24]. Next,
virulence factors involved in pathogenesis and disease development were retained using BLASTp
against the Virulence Factor Database (VFDB) and Microbial virulence Database (MvirDB) [25,26]. In
addition, proteins were checked for the number of transmembrane helices using HMMTOP version
2.0, and those containing <2 helices were selected to ensure proper purification of putative proteins in
wet lab studies [27,28]. Finally, low molecular weight proteins were shortlisted using the ProtParam
tool in the ExPASy portal to ensure easy protein purification in vaccine development [29–31].
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2.3. Prediction of B-Cell Epitopes

ABCPred was used to identify potential B-cell epitopes in prioritized proteins [32]. The server uses
an artificial neural network to provide information about putative B-cell epitopes. Default parameters
were applied and B-cell epitopes above 0.51 threshold were subjected to T-cell epitope prediction.

2.4. Prioritization of B-Cell Derived MHC II Epitopes

ProPred was used to search CD4+ T-cell epitopes within selected B-cell epitopes using default
settings [33]. The server allows the evaluation of T-cell epitope binding to 51 different MHC II
alleles. MHC II epitopes projected to associate with at least ten different MHC II alleles were retained.
Antigenicity potential of the selected MHC II epitopes was determined using VaxiJen v2.0, which
uses an alignment-free approach to determine probable protective antigens [34]. MHC II epitopes
possessing scores more than 0.5 were retained as antigenic epitopes. Further, the epitopes were
evaluated for their binding affinity with predominant HLA II allele DRB1*0101 using MHCPred server
version 2.0 [35]. For this, epitopes with IC50 value < 500 nM were shortlisted as this is an established
threshold associated with immunogenicity [36]. MHC II epitopes were scrutinized based on their
virulence potential using VirulentPred [37]. Finally, MHC II epitopes were evaluated for their ability to
induce IFN-γ using an IFNepitope server [38]. Only those epitopes predicted to induce IFN-gamma
were prioritized accordingly.

2.5. Prioritization of B-Cell Derived MHC I Epitopes

ProPred I was used to search for potential MHC I epitopes within B-cell epitopes [39]. The option
of immunoproteasome and proteasome filters was selected to maximize the chances of finding CD8
epitopes. ProPred I allows the prediction of epitope binding to 47 different MHC I alleles. Only
epitopes found to associate with at least five different MHC I alleles were considered for further
analysis. Predicted MHC I epitopes were assessed for their immunogenic ability using the MHC I
immunogenicity score provided by the IEDB (Immune Epitope Database) web resource [40]. The MHC
I immunogenicity tool in the IEDB exploited the properties and positions of amino acids within the
epitopes to predict MHC I immunogenicity. The tool has been validated for 9-mer peptides. Further,
the epitopes were evaluated for their binding affinity with predominant HLA I allele HLA A*0201
using MHCPred server version 2.0 [35]. For this, epitopes with IC50 value < 500 nM were shortlisted
as this is an established threshold associated with immunogenicity [36]. Finally, MHC I epitopes were
prioritized based on their virulence potential using VirulentPred [37].

2.6. Multi-Epitope Vaccine Design

The prioritized epitopes were linked together and with an immunological adjuvant to construct
a multi-epitope vaccine. To enhance the immunogenicity of the vaccine, the amino acid sequence
of cholera toxin subunit B (CTB) was attached to the N-terminal end of the vaccine construct using
an EAAAK linker. CTB is the nontoxic portion of cholera toxin and shows specific affinity to the
monosialotetrahexosylganglioside (GM1) on gut epithelial cells and various other cell types such as
antigen presenting cells, i.e., dendritic cells, macrophages, and B cells, which allows its maximum
exposure and accessibility to the immune system [41]. A flexible glycine-proline linker GPGPG
was used to join adjacent epitopes for efficient separation and to avoid the possibility of junctional
epitope formation.

2.7. Antigenicity, Allergenicity, Solubility, and Physicochemical Features

The finalized sequence of the poly-epitope vaccine candidate was checked for antigenicity,
allergenicity, solubility, stability, molecular weight etc. Antigenicity of the vaccine was calculated using
ANTIGENpro and VaxiJen 2.0 [34,42]. The accuracy of ANTIGENpro on the combined dataset was
found to be 76% using cross-validation experiments; meanwhile, the VaxiJen server’s performance
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accuracy varied from 70% to 89%, depending on the target organism selected. AllergenFP version 1.0
and AllerTOP version 2.0 were used to determine vaccine as allergen or non-allergen [43,44]. SOLpro
calculated the propensity of protein to be soluble in E.coli on overexpression [45]. Additionally, PROSO
II was also used to cross-check SOLpro results [46]. A FASTA sequence of vaccine candidate was then
used to calculate isoelectric point, molecular weight, and other parameters like half-life, instability
index, aliphatic index, GRAVY, and so on from the ExPASy server [29]. TMHMM version 2.0 was used
to search potential transmembrane helices in the final vaccine construct [47]. Additionally, SignalP 4.1
was used to find any potential signal peptides in the vaccine [48].

2.8. Multi-Epitope Structural Modeling, Refinement, and Validation

The putative 3D structure of vaccine protein was generated using 3Dpro [45]. Molecular
refinements were applied to the modeled structure using the GalaxyRefine server [49]. The server
subjected the modeled vaccine to structural perturbations followed by structural relaxations. For model
1, structure perturbation is applied exclusively to side-chain clusters, and for model 2-5, more aggressive
perturbations are applied. Each of the five models were checked for GDT-HA, RMSD, MolProbity
score, etc, and the best model was selected to proceed. The shortlisted model was evaluated using
Ramachandran plot analyses, ERRAT score, and Prosa-generated Z-scores for confirmation [50–52].

2.9. Energy Minimization of Multi-Epitope Vaccine

A molecular dynamics simulation technique was applied on the vaccine for energy minimization.
For this, a command line Linux-based program, GROMACS (GROningen MAchine for Chemical
Simulations), was used [53]. The vaccine structure was subjected to molecular simulations to imitate
the biological environment faced by protein structure inside the biological system.

Using pdb2gmx, a gro file was generated from the structure of the vaccine to obtain the topology
compatible with the OPLS-AA (Optimized Potential for Liquid Simulation-All Atom) force field [54].
The structure was confined in a rhombic cube to fill water molecules. Then, it was positioned in the
box’s center at 1 nm from the edge of the cube to generate its periodic image 2 nm apart. Water was
used to simulate the vaccine, which was spatially placed with a force constant of 1000 kJ mol−1nm−2.
The total charge on the vaccine was calculated. The system was neutralized by adding charge and an
ions.mdp file was generated. The Verlet scheme was selected and electrostatic forces were enabled.
The process of energy minimization was conducted, and the energy minimized structure was obtained.
To stabilize the temperature, NVT equilibration was performed for 100 ps. Several simulations were
conducted at different initial speeds, V-rescale was used, and the temperature fluctuations were
observed from the temperature graph. NPT ensemble enabled the calculation of pressure and density;
the process comprised 50000 steps. The resulting structure was subjected to molecular dynamics (MD)
simulation for 10 ns. The RMSD of backbone of energy minimized structure was predicted and results
were graphed. The radius of gyration (Rg) was calculated to get an insight into the compactness of
structure. Simulation graphs were analyzed using the Xmgrace tool [55].

2.10. Binding Affinity of Poly-Epitope Structure with Toll-Like Receptors

The poly-epitope vaccine candidate was checked for binding affinity with TLR2 and TLR4
separately to validate its ability to be an agonist to both TLR2 and TLR4. In humans, K. pneumoniae
infection leads to over-expression of TLR2 and TLR4 in airway epithelial cells [56]. TLR2 structure was
obtained from PDB ID 2Z7X while that of TLR4 was extracted from PDB ID 3FXI.

The structures of the vaccine and TLRs were submitted to HADDOCK server guru level interface
using preselected parameters [57]. Guru level is an upgraded HADDOCK interface that permits the
identification of flexible regions that are important for molecular docking. Docked clusters were formed
and based on the lowest HADDOCK score, and one cluster was identified. A representative structure
from this cluster was subjected to molecular refinements for better positioning. CPORT (consensus
prediction of interface residues in transient complexes) predicted active and passive residues that are
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involved in interaction [58]. Chimera was used to visualize the refined TLR-vaccine structures [59]. To
map the interacting residues between the vaccine and TLRs, PDBsum was used [60].

2.11. Reverse Translation and Codon Optimization

Reverse translation of the multi-epitope vaccine sequence was performed using online server JCat
to obtain a cDNA sequence of the gene which was then subjected to codon optimization [61]. Codon
optimization assessed the cDNA as per the GC content of the sequence and Codon Adaptation Index
(CAI). GC content of the sequence should lie within the range of 30–70%; in contrast, CAI values vary
from 0 to 1, with a greater CAI value indicating higher level of gene expression [62]. A CAI score of 1
is considered ideal, nevertheless, a score of more than 0.8 is still acceptable.

3. Results

3.1. Pangenome Analysis of Klebsiella Pneumoniae

A total of 222 complete genomes and associated proteomes of K. pneumoniae were downloaded
from the NCBI. Their information such as accession number, strain name, and genome statistics are
provided in Table S1. The metadata associated with these bacterial strains such as isolation source and
the country of isolation is provided in Table S2. Pangenome analysis revealed that the core genome of
K. pneumoniae consists of 2212 proteins, which were extracted for further processing.

3.2. Prioritization of Global Core Antigenic Proteins

A total of 1940 proteins from the core proteome were found to be non-human homologous proteins
using BLASTp against human genome (Table S3). Next, the non-human homologs were subjected
to subcellular localization. As a result, 35 proteins were found to lie in the outer membrane and
extracellular location (Table S4). Proteins residing in these locations tend to participate in pathogenesis,
thus they represent good targets for vaccine development [63]. The DEG predicted essential proteins
after subcellular localization [23]. Results revealed that a total of 12 proteins were essential (Table S5).
Identification of virulence factors in bacteria is a key step in vaccine candidate identification [64].
Essential proteins were evaluated based on virulence properties and a total of four proteins were found
to be associated with virulence (Table S6). Next, a transmembrane topology filter was applied. VacSol
detected all four proteins with less than 2 transmembrane helices. Presence of multiple transmembrane
helices in a protein makes expression difficult and hinders purification of recombinant proteins for
vaccine production [22].

Thus, VacSol prioritized a total of four proteins based on the non-homology to human,
<2 transmembrane helices, essentiality, virulence, and subcellular localization predictions (Table S7).
According to UniProt annotation, the four putative targets are: outer membrane protein A, copper/silver
efflux RND transporter outer membrane protein, phosphoporin PhoE, and peptidoglycan-associated
lipoprotein (Pal). All the prioritized proteins were projected to lie in the outer membrane region and
predicted to be antigenic by both AntigenPro and Vaxijen, thus strongly indicating their antigenic
potential and their utility in future vaccine development against K. pneumoniae. The putative antigens
are part of the core proteome and as such are highly conserved proteins that could be exploited
for the development of broad-spectrum therapeutics, i.e., vaccines and/or drugs. Furthermore, they
are virulent and essential for the survival of the bacteria. All the prioritized proteins have <110 kD
molecular weight and thus ensure easy purification for vaccine development.

3.3. Selection of Epitopes from Global Core Antigenic Proteins

A total of 135 linear B-cell epitopes were predicted by using ABCPred server default parameters
(Table S8 sheet 1). T-cell epitopes were searched within B-cell epitopes to define B-cell derived T-cell
epitopes. A total of 40 B-cell derived MHC II epitopes were identified to associate with ≥10 MHC
II alleles (Table S8 sheet 2). Out of these, 20 antigenic epitopes were identified using VaxiJen (Table
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S8 sheet 3). Scrutinization based on an IC50 value <500 nM, i.e., good binding affinity with HLA II
allele DRB1*0101, using MHCPred server version 2.0 removed one epitope from further consideration
(Table S8 sheet 4). Finally, a total of five IFN-γ inducing MHC II epitopes were shortlisted (Table S8
sheet 5). In contrast, a total of 15 B-cell derived MHC I epitopes were identified that associated with ≥5
different MHC I alleles (Table S8 sheet 6). Out of these, a total of seven epitopes were found to have a
positive MHC I immunogenicity score using the IEDB (Table S8 sheet 7). Finally, four MHC I epitopes
were finalized based on an IC50 value <500 nM, i.e., good binding affinity with HLA A*0201, using
MHCPred server version 2.0 (Table S8 sheet 8). All the prioritized B-cell derived T-cell epitopes were
found to be virulent using VirulentPred.

3.4. Multi-Epitope Vaccine Design

The prioritized B-cell derived T-cell epitopes were joined together using GPGPG flexible
linkers. The amino acid sequence of CTB adjuvant was added at the N-terminal of the vaccine
construct by EAAAK linker. After adding adjuvant and linkers, the multi-epitope vaccine
was found to be 230 amino acids in length. The sequence of the multi-epitope vaccine is
provided: MTPQNITDLCAEYHNTQIHTLNDKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDS
QKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMANEAAAKLEYQWVNNIGPGPGL
GVSYRFGQGPGPGYVRFGIKGEGPGPGGSFDYGRNLGPGPGNEITLFTALGPGPGDILEAEHSLG
PGPGLQYQGKNEGGPGPGLVTATAGYQGPGPGGLMIALPVM.

3.5. Physicochemical and Other Evaluations of the Multi-Epitope Vaccine

A physicochemical feature check revealed that the designed vaccine has a molecular weight of
24.221 kD. Proteins having <110 kD molecular weight are believed to be good vaccine candidates [22].
Estimated half-life was found to be greater than 7.2 hours (mammalian reticulocytes, in vitro), greater
than 20 hours (yeast, in vivo), and greater than 10 hours (Escherichia coli, in vivo). The instability index
was calculated to be 27.69 (<40), hence the vaccine is considered stable. The aliphatic index was found to
be high, i.e., 73.87, hence the vaccine is projected to be thermostable at various temperatures. The grand
average of hydropathicity (GRAVY) value was computed and found to be -0.318, hence the vaccine is
hydrophilic and thus likely to interact with water molecules. Therefore, this analysis indicates that the
designed multi-epitope vaccine is physiochemically appropriate for vaccine production. Both VaxiJen
and AntigenPro predicted the antigenic nature of the vaccine construct. Computational analysis
projected non-allergenicity, thus the vaccine is not expected to trigger harmful allergic responses in
humans. According to the SOLpro and PROSO II results, the vaccine is soluble. No signal peptide
was detected in the designed construct and no transmembrane helix was projected so no expression
difficulties are anticipated in the development of the vaccine.

3.6. Modeling and Refinements of the 3D Structure of the Vaccine

The three-dimensional structure of the vaccine was constructed using a 3Dpro ab initio
predictor [45]. 3Dpro was suitable to model the vaccine structure due to the lack of good structural
templates for homology modeling [45]. The predicted model was then subjected to structure
perturbations and relaxations to attain a refined structure using GalaxyRefine (Figure 1A) [49].
RAMPAGE server was used to determine the quality of the refined tertiary structure [51]. Ramachandran
plot analysis by this server showed that 94.7% of the residues of the vaccine are present in the favored
region while 2.6% of the residues are present within the allowed and outlier regions; further, the ProSA
Z-score was calculated to be -1.86, which is in the vicinity of experimental structures (Figure 1B,C) [52].
ERRAT projected an overall quality score of 78.2609, which further supported the high-quality structure
of the refined model [50].
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MAchine for Chemical Simulations). The total charge on protein was calculated to be ‒2. To neutralize 
the system, two positive sodium ions were added that replaced two existing water molecules at atoms 
13165 and 30499. After this addition of positive ions, a total of 32471 water molecules remained. 

Energy minimization was performed for 50000 steps; upon reaching 1657 steps, the steepest 
descents converged, and the force reached <1000 KJ/mol. The potential energy was found to be 
−1.7771606e+06 kJ/mol, while the average potential energy of the system during energy minimization 
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Figure 1. Structural analysis of designed vaccine. (A) The three-dimensional structure of vaccine
obtained after molecular refinements; (B) Ramachandran plot analysis of the protein structure after
molecular refinements. Analysis of the Ramachandran plot revealed that 94.7% of the residues of the
vaccine are present in the favored region while 2.6% of the residues are present within the allowed and
outlier regions, respectively; (C) ProSA-web evaluation of the vaccine structure. ProSA-web results
indicated a Z-score of -1.86. The structure lies close to native X-ray resolved structures in the PDB
(Protein Data Bank), which shows high-quality.

3.7. Molecular Dynamics Simulation of the Multi-Epitope Vaccine

The molecular dynamics (MD) simulation technique was applied to the three-dimensional
structure obtained in the previous step. An OPLS-AA force field was applied and the mass of the
vaccine construct after applying the force field was found to be 24219.539 amu. A total of 32473 water
molecules were added into the system using the built-in spectro tool of GROMACS (GROningen
MAchine for Chemical Simulations). The total charge on protein was calculated to be -2. To neutralize
the system, two positive sodium ions were added that replaced two existing water molecules at atoms
13165 and 30499. After this addition of positive ions, a total of 32471 water molecules remained.

Energy minimization was performed for 50000 steps; upon reaching 1657 steps, the steepest
descents converged, and the force reached <1000 KJ/mol. The potential energy was found to be
−1.7771606e+06 kJ/mol, while the average potential energy of the system during energy minimization
was found to be −1.72744e+06 kJ/mol with a total drift of −173183 kJ/mol. The average temperature
after 50000 steps was 299.77 K (Figure 2A); the average pressure after 50000 steps of NPT was −2.44361
bar with the total drift of −12.0214 bar (Figure 2B), while the average density was found to be 1008.82
kg/m3 with a total drift of 0.788372 kg/m3.

Trajectory analysis was conducted after 10 ns simulation time. The radius of gyration reached
about 2 nm, signifying that the three-dimensional protein structure remained stable during MD
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simulation (Figure 2C). A plot of RMSD backbone revealed that RMSD levels go up to ~0.6 nm and are
maintained during most of the simulation time, signifying that the vaccine remains stable over time
(Figure 2D). RMSF, on the other hand, explains regions with high flexibility (Figure 2E).
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Figure 2. Graphs generated during different stages of MD simulations. (A) Temperature variations
during simulation. System temperature reached 300 K and showed minimum fluctuations afterward
during 100 ps; (B) pressure variations during simulation. Pressure plot shows that the average pressure
is−2.44361 bar during 100 ps; (C) radius of gyration plot. Analysis of radius of gyration vaccine construct
is stable in its compact form during the simulation time; (D) RMSD plot of backbone. RMSD graph
shows that RMSD of protein backbone reaches ~0.6 nm and is maintained mostly, which represents
minimum structural deviations of vaccine construct; (E) RMSF (Root Mean Square Fluctuation) plot.
RMSF plot of side chains shows the regions with high flexibility present in peaks.

3.8. Molecular Docking of Vaccine with Toll-Like Receptors

The HADDOCK (High Ambiguity Driven protein-protein DOCKing) server performed docking
of the vaccine construct with TLR2 and TLR4. In the case of TLR2 docking, HADDOCK grouped 99
structures into 13 clusters, which represents 49.5% of the water-refined models HADDOCK generated.
The top cluster having the lowest HADDOCK score, i.e., −23.6 +/− 21.5, is the most reliable amongst
all clusters. A representative model from this top cluster was subjected to refinement accordingly.
The HADDOCK refinement server clustered the resulting 20 structures into a single cluster, which
represents 100% of the water-refined models HADDOCK generated. The statistics from this refined
cluster are shown in Table 1, and details of individual parameters are provided in Figure S1.
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Table 1. Table showing statistics of top vaccine-TLR2 docked cluster. Statistics of top ranked
vaccine-TLR2 cluster are shown. Lower HADDOCK score signifies strong interaction between proteins.

Parameters Value

HADDOCK score −237.1 +/−3.3
Cluster size 20

RMSD from the overall lowest-energy structure 0.3 +/−0.2
Van der Waals energy −156.8 +/−1.9
Electrostatic energy −435.7 +/−19.0
Desolvation energy 6.8 +/−6.1

Restraints violation energy 0.0 +/−0.00
Buried Surface Area 4411.6 +/−24.1

Z-Score 0

In the case of TLR4 docking, HADDOCK grouped 102 structures into 14 clusters, which represented
49.5% of the water-refined models HADDOCK generated. The top cluster having the lowest HADDOCK
score, i.e., −4.8 +/− 48.2, is the most reliable amongst all clusters. A representative model from this
top cluster was subjected to refinement accordingly. The HADDOCK refinement server grouped
the resulting 20 structures into a single cluster, which represents 100% of the water-refined models
HADDOCK generated. The statistics from this refined cluster are shown in Table 2 and details of
individual parameters are provided in Figure S2.

Table 2. Table showing statistics of top vaccine-TLR4 docked cluster. Statistics of top ranked
vaccine-TLR4 cluster are shown. Lower HADDOCK score signifies strong interaction between proteins.

Parameters Value

HADDOCK score −235.6 +/−3.7
Cluster size 20

RMSD from the overall lowest-energy structure 0.3 +/−0.2
Van der Waals energy −121.2 +/−3.5
Electrostatic energy −517.3 +/−6.3
Desolvation energy −11.0 +/−4.1

Restraints violation energy 0.0 +/−0.00
Buried Surface Area 4009.3 +/−30.5

Z-Score 0

The analysis of docking results revealed good interaction between the vaccine construct and
TLR2/TLR4 (Figures 3A and 4A). To get detailed insights into interface residues and intermolecular
binding forces between the docked complex, the PDBsum online server was used. A total of 45 interface
residues of the multi-epitope vaccine associated with a total of 37 residues of TLR2 (Figure 3B). The
interface area (Å2) of the vaccine was found to be 2109, while that of TLR2 was found to be 2176.
Likewise, collectively 36 interface residues of the multi-epitope vaccine associated with a total of 38
residues of TLR4 (Figure 4B). The interface area (Å2) of the vaccine was found to be 1983, while that of
TLR4 was found to be 1950.
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Figure 3. (A) Figure obtained after molecular docking showing vaccine construct-TLR2 docked complex.
Vaccine construct is shown in red color while TLR2 is shown in green color; (B) interacting residues
between docked vaccine (chain A) and TLR2 (chain B); (C) few prominent hydrogen bonds within
vaccine-TLR2 complex are focused.

Our vaccine formed a total of 17 hydrogen bonds [Chain A(Vaccine)-B(TLR2); 9-109, 10-85, 31-32,
35-31, 35-37, 37-38, 44-29, 44-39, 64-30, 64-31, 71-39, 90-111, 182-396, 183-422, 184-422, 185-445, and
186-424] with TLR2. Structural analysis showed that Leu9 and Tyr109 formed a hydrogen bond at a
distance of 2.78 Å; similarly, Cys10-Ser85 developed a hydrogen bond at 2.73 Å. Ser31-Arg32 forms a
hydrogen bond at the distance of 2.75 Å. Likewise, Lys35-Asp31 forms a bond at 3.07 Å, Lys35-Lys37
at 2.69 Å, Glu37-Gly38 at 3.26 Å, Lys44-Ser29 at 2.88 Å, Lys44-Ser39 at 2.66 Å, Lys64-Cys30 at 2.93
Å, Lys64-Asp31 at 2.73 Å, Asp71-Ser39 at 2.67 Å, Asn90-Tyr111 at 3.13 Å, Leu182-Gln396 at 3.01 Å,
Glu183-Lys422 at 2.95 Å, Ala184-Lys422 at 3.12 Å, Glu185-Ser445 at 3.07 Å, and His186-Ser424 at 2.82 Å.
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Figure 4. (A) Figure obtained after molecular docking showing vaccine construct-TLR4 docked complex.
Vaccine construct is shown in red color while TLR4 is shown in green color; (B) interacting residues
between docked vaccine (chain A) and TLR4 (chain B); (C) few prominent hydrogen bonds within
vaccine-TLR4 complex are focused.

The vaccine formed a total of 13 hydrogen bonds [Chain A(Vaccine)-B(TLR4); 7-547, 12-477,
32-606, 35-550, 44-601, 44-602, 63-608, 64-603, 64-605, 85-596, 89-569, 92-569 and 185-153]. Structural
analysis showed that Thr7 develops a hydrogen bond with Gln547 at a distance of 2.9 Å, whereas
Glu12 forms a hydrogen bond with Lys477 at 2.6 Å. Similarly, Leu32-Arg606 forms a hydrogen bond at
a distance of 2.9 Å, Lys35-Asp550 at 2.6 Å, Lys44-Leu601 at 3.1 Å, Lys44-Val602 at 2.8 Å, Lys63-Glu608
at 2.8 Å, Lys64-Glu603 at 2.6 Å, Lys64-Glu605 at 2.6 Å, Lys85-Asp596 at 2.7 Å, Trp89-Ser569 at 3.2 Å,
Lys92-Ser569 at 2.7 Å, and Glu185-Lys153 at 2.7 Å.

Upon close observation, it was revealed that most of the distances of the hydrogen bonds between
the vaccine and TLR2 and TLR4 lie within the range of 2-3 Å, thus indicating strong interactions [65].
Therefore, it is expected that our designed vaccine construct will associate with both TLR2 and TLR4,
leading to the induction of associated immune pathways.

3.9. Reverse Translation and Codon Optimization of Vaccine

Reverse translation and codon optimization were performed on the sequence of the multi-epitope
vaccine using the JCat server [61]. In this way, the CAI and GC content were determined. The GC
content was found to be 54.49%, which is appropriate as it lies within the range 30-70%. The CAI value
was calculated to be 1, which projects high level expression of our designed vaccine construct in E. coli
K12 strain.
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4. Discussion

A large-scale comparative genome analysis of K. pneumoniae is required to understand its
global epidemiology, antimicrobial resistance, virulence, and phylogeny. The reverse vaccinology
strategy adopted in this study will be helpful in the development of specific therapies against various
K. pneumoniae strains. Despite some progress in the development of therapies to counter K. pneumoniae
infections until now, a safe and effective vaccine is highly desirable to prevent the spread of this
opportunistic pathogen. Two bacterial surface antigens, LPS and CPS, have been mainly exploited
for this purpose [5,66]. However, severe side effects associated with LPS-based vaccines render
them unfavorable for vaccine development. In contrast, CPS-based vaccines are both nontoxic and
immunogenic; nonetheless, the increased number of different capsular K-type antigens (at least 77)
makes it difficult to cover maximum bacterial strains [6,67]. A 24-valent CPS vaccine was developed
and later shown to be safe and immunogenic [6]. However, the maximum protection coverage provided
by this vaccine was not achieved in more than 70% of the bacterial strains despite many efforts [68].

The reverse vaccinology strategy adopted in this study can provide an effective therapeutic
solution to the problem of genetic diversity both within K. pneumoniae and human species. This was
done by considering only conserved bacterial proteins for target prioritization and by focusing on
T-cell epitopes that can interact with a maximum number of HLA alleles.

A total of four outer membrane proteins were shortlisted for vaccine designing. Outer membrane
proteins (OMPs) are crucial for the transport of molecules, maintenance of membrane integrity, and
pathogenesis [69]. Furthermore, outer membrane or secreted proteins are more likely to be good
vaccine candidates as they are readily accessible to the host immune system [22].

Two of the prioritized antigens in this study, peptidoglycan-associated lipoprotein (Pal) and outer
membrane protein A (OmpA), are recognized as dominant OMPs released by gram-negative bacteria
during sepsis [70]. Kurupati et al. identified OmpA and other proteins using immunoproteome
analysis to identify potential antigens of K. pneumoniae [71]. In another study, Kurupati et al. vaccinated
mice using plasmid DNA containing ompA or ompK36 of K. pneumoniae, which generated humoral as
well as Th1 cell-mediated immune responses [72]. Similarly, Pal protein of K. pneumoniae is involved in
protection against serum killing and neutrophil-mediated phagocytosis and plays an important role in
preserving the integrity of cell envelope and imperative for K. pneumoniae virulence in vivo [73]. This
study suggests that K. pneumoniae Pal can be used as an attenuated vaccine in the future.

The outer membrane porin-encoding gene, PhoE, is known as a housekeeping gene used for the
molecular typing of K. pneumoniae [74]. According to information in the UniProt, PhoE expression is
induced by phosphate starvation and is involved in the uptake of inorganic phosphate, phosphorylated
compounds, and other negatively charged solutes. Considering these crucial functions, PhoE protein
also represents a good therapeutic target to tackle K. pneumoniae infection. The fourth proposed
candidate, CusC, is a part of the cation efflux system that exports silver or copper ions from the
periplasm via an antiport mechanism [75]. This overcomes the challenge posed by therapeutic usage
of silver and copper and may help K. pneumoniae survive under these stress conditions.

In this study, we used an in-house pipeline “VacSol” to identify potential antigens in K. pneumoniae,
and the candidates were verified through existing experimental data where applicable. Based on
our experience and existing knowledge, we believe that these predicted proteins are good vaccine
candidates. They are highly conserved proteins present in the majority of, if not all, K. pneumoniae
strains. Furthermore, they are localized in the outer membrane and thus accessible to the host immune
system, are known to be associated with virulence, and are crucial for the survival of bacteria. A similar
approach based on reverse vaccinology has also been applied for the identification of vaccine targets in
K. oxytoca, another closely related species to K. pneumoniae [76]. Furthermore, this approach has been
adopted to target other gram-negative pathogens such as Acinetobacter baumannii [28,77], Pseudomonas
aeruginosa [78], Neisseria gonorrhoeae [79], etc.

Selected T-cell epitopes were found to be conserved among bacterial strains and predicted to be
immunogenic in nature, thus they are perfect candidates for developing a broad-spectrum vaccine.
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IFN-γ inducing MHC II epitopes were also predicted in this study. The production of IFN-γ contributes
to the clearance of K. pneumoniae infections, especially for hypervirulent strains [80,81]. IFN-γ is
essential for the innate response against pulmonary K. pneumoniae infection [82]. Thus, the prioritized
epitopes have the potential to generate more specific, effective, safe, and durable immune responses as
well as avoid all the undesired effects.

Multi-epitope vaccines can activate both humoral and cellular immune responses and thus
are considered a better alternative to monovalent vaccines [83]. In this study, only the pathogenic
bacterial strains having complete genome sequences available were subjected to target prioritization
and epitope-mapping to ultimately construct a multi-epitope vaccine comprising prioritized epitopes.
Adjuvant was also added in the multi-epitope vaccine construct to enhance its immunogenicity. The
physiochemical analyses of the vaccine projected it to be stable, hydrophilic, and acidic in nature.
Structural evaluations using a Ramachandran plot and ProSA indicated that a high-quality model was
obtained with near-native structure.

Molecular docking was carried out to analyze the interaction of designed vaccine construct with
immune receptors TLR2 and TLR4. K. pneumoniae infection leads to the overexpression of TLRs in
human airway epithelial cells [56]. Further, the level of TLR activation determined the extent of TLR2
and TLR4 upregulation. Thus, TLR2 and TLR4 in humans mediate innate immune responses against
invading K. pneumoniae pathogen. Hence, the designed vaccine was assessed for association with
TLR2 and TLR4. The docking score revealed significantly high interaction between vaccine and innate
immune receptors thus suggesting that the vaccine can trigger TLR activation and consequently lead
to enhanced immune responses against K. pneumoniae.

5. Conclusions

In this study, a reverse vaccinology approach was followed on 222 complete K. pneumoniae
genomes to identify a total of four conserved antigenic proteins. Furthermore, a novel multi-epitope
vaccine candidate containing high-ranked epitopes from all four antigens was constructed using
immunoinformatics approaches and evaluated using MD simulations and protein-protein docking. The
application of computational tools in vaccine design can significantly enhance the process of vaccine
discovery and accomplish this goal in less time and with fewer costs. The designed vaccine has suitable
physiochemical, structural, and immunological properties that can successfully trigger humoral and
cellular immune responses against K. pneumoniae. Moreover, this vaccine can easily be over-expressed
in E. coli strain K12. The promising computational results obtained notwithstanding, experimental
validation of the designed multi-epitope vaccine is required to further verify the effectiveness of this
potential vaccine candidate.
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