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Abstract Many animals use visual signals to estimate motion. Canonical models suppose that

animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but

recent experiments indicate that humans and flies perceive motion from higher-order correlations

that signify motion in natural environments. Here we show how biologically plausible processing

motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects

of Drosophila’s visual circuitry could embody this tuning and predict fly behavior. We find that

segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting

for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons

can provide access to more complex higher-order correlations. Collectively, these results illustrate

how non-canonical computations improve motion estimation with naturalistic inputs. This argues that

the complexity of the fly’s motion computations, implemented in its elaborate circuits, represents a

valuable feature of its visual motion estimator.

DOI: 10.7554/eLife.09123.001

Introduction
A major goal in neuroscience is to understand how the brain computes behaviorally relevant stimulus

properties from streams of incoming sensory data (Sejnowski et al., 1988). Visual motion guides

behaviors across the animal kingdom. To navigate, many vertebrates and invertebrates use visual data

to estimate the velocity of full field motion, and they use that estimate to judge their motion with

respect to their environment (Sperry, 1950; Kalmus, 1964; Reichardt and Poggio, 1976; Orger

et al., 2000). Spatially localized motion perception (Hubel and Wiesel, 1962; Barlow and Hill, 1963;

Buchner, 1976) is also important, as it can indicate the presence of predators or prey in the

environment (Reichardt et al., 1983; Gabbiani et al., 1999; Nordström et al., 2006; Zhang et al.,

2012), and spatial velocity gradients allow animals to judge relative distances (Rogers and Graham,

1979; Srinivasan et al., 1991; Kral, 2003; Pick and Strauss, 2005). In principle, different algorithms

could be used to estimate different types of motion. However, data suggest that many animals

compute local motion over an array of spatially localized elementary motion detectors, or EMDs, and

then differentially pool those signals for use in different behaviors and neural operations (Hubel and

Wiesel, 1962; Barlow and Hill, 1963; Buchner, 1976; Britten et al., 1992; Gabbiani et al., 1999;

Franz and Krapp, 2000; Rust et al., 2006).

The Hassenstein-Reichardt correlator (HRC) was introduced nearly sixty years ago to model the

EMD underlying the beetle’s optomotor response (Hassenstein and Reichardt, 1956). It has since

provided numerous insights into motion-guided behaviors across a variety of insect species. The

HRC’s successes are most striking in flies, where the HRC accurately predicts a wide variety of

behavioral and neural responses (Götz, 1968; Buchner, 1976; Egelhaaf and Borst, 1989; Haag

et al., 2004), and even adaptation to stimulus statistics (Borst et al., 2005). The HRC’s importance

also extends to primates and vertebrates, where the EMDs are often described in terms of the motion
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energy model (Adelson and Bergen, 1985). In particular, although the HRC and motion energy

models differ in terms of their intuition and neuronal bases, both models rely on the same

mathematical fact about moving visual stimuli—motion causes pairs of spatially separated points to

become correlated when a stimulus moves from one location towards the other (Adelson and

Bergen, 1985; van Santen and Sperling, 1985). A simple algebraic identity shows that the HRC and

motion energy models are computationally equivalent.

Research on Drosophila’s motion detection system has progressed quickly in recent years. With an

influx of novel genetic, anatomical, and physiological tools, Drosophila researchers are able to

perform experiments that have revealed an intricate neural circuit whose details were not anticipated.

For example, separate pathways process the motion of light and dark moving edges (Joesch et al.,

2010; Clark et al., 2011; Maisak et al., 2013), and different neurons within these pathways

coordinate the motion response depending on the velocity of motion (Ammer et al., 2015).

Furthermore, connectomic analysis has revealed that more spatial and temporal channels converge

onto the fly’s motion computing neurons than had been predicted by the HRC’s two-input

architecture (Takemura et al., 2013). Going forward, it is critical that the field discovers which of these

circuit details are computationally relevant and which are not. Since many of these details go beyond

the HRC’s premise, we must consider alternate theories if we hope to understand how circuit details

contribute to motion estimation.

A large body of theoretical and experimental work supports the hypothesis that visual systems are

tailored for functionality in the animal’s natural behavioral context (Simoncelli and Olshausen, 2001).

For example, photoreceptors adapt effectively across the ecological range of light levels (Juusola and

Hardie, 2001), the excess number of OFF vs ON retinal ganglion cells matches the excess information

of dark vs light contrasts in natural images (Ratliff et al., 2010), and several learning algorithms

predict receptive fields similar to early cortical neurons when applied to natural images

eLife digest Many animals have evolved the ability to estimate the speed and direction of visual

motion. They use these estimates to judge their own motion, so that they can navigate through an

environment, and to judge how other animals are moving, which allows them to avoid predators or

detect prey.

In the 1950s, a physicist and a biologist used measurements of beetle behavior in response to

visual stimuli to develop a model for how the brain estimates motion. The model became known as

the Hassenstein-Reichardt correlator (HRC). The HRC and related models accurately predict the

behavioral and neural responses of insects and mammals to many types of motion stimuli.

However, there are visual stimuli that generate motion percepts in fruit flies (and humans) that

cannot be accounted for by the HRC. Are these differences between real brains and the HRC simply

imperfections in visual circuits, whose neurons cannot perform idealized mathematical operations, or

are these deviations intentional, somehow improving motion estimates? In other words: are the

observed deviations a bug or a feature of visual circuits?

To address this question, Fitzgerald and Clark evaluated how different models of motion

detection performed when presented with natural scenes. Natural scenes are fundamentally

different from most stimuli used in lab, since they contain a rich set of regularities that are not

present in simple stimuli. Fitzgerald and Clark compared the ability of the HRC, along with new, more

general models, to estimate the speed and direction at which images moved across a screen. This

revealed that many models could out-perform the HRC by taking advantage of regularities in natural

scenes. Those models that were tuned to perform well with natural scenes could also predict the

paradoxical motion percepts that were not predicted by the HRC. This suggests that visual circuits

may have evolved to perform well with natural inputs, and the paradoxical motion percepts

represent a feature of the real circuit, rather than a bug.

Models that performed well with natural inputs treated light and dark visual information

differently. This different treatment of light and dark is a property of most visual systems, but not of

the HRC or related models. In the future, these models of motion processing may help us understand

how biological details of the fruit fly’s visual circuits help it to estimate motion.

DOI: 10.7554/eLife.09123.002
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(Olshausen and Field, 1996; Bell and Sejnowski, 1997). These examples are special cases of the

general hypothesis that the early visual system provides an efficient code for the natural visual

environment, and recent research suggests that efficient coding accounts for certain aspects of

higher-level coding and perception as well (Tkačik et al., 2010; Hermundstad et al., 2014; Yu et al.,

2015).

Several recent studies have established connections between the biological algorithms used for

visual motion estimation and the statistical demands of naturalistic motion estimation. Natural stimuli are

intricately structured and light–dark asymmetric (Geisler, 2008), and a variety of low and high order

correlations characterize motion in such an environment. Although the HRC and motion energy models

only respond to pairwise correlations in their inputs (Adelson and Bergen, 1985; van Santen and

Sperling, 1985), the Bayes optimal visual motion estimator also incorporates a variety of higher-order

correlations of both even and odd order (Potters and Bialek, 1994; Fitzgerald et al., 2011).

Accordingly, certain visual stimuli that contain only higher-order correlations induce motion percepts in

both vertebrates and insects (Chubb and Sperling, 1988; Quenzer and Zanker, 1991; Zanker, 1993;

Orger et al., 2000; Hu and Victor, 2010; Clark et al., 2014), and theoretical work shows that the

correlations that characterize these stimuli can also improve motion estimation in natural environments

(Clark et al., 2014). This demonstrates that neither the HRC nor the motion energy model can account

for the totality of experimentally observed motion percepts and suggests that departures from these

canonical models might improve motion estimation accuracy. Relatively little is known about the neural

basis of these higher-order motion percepts, although several studies have suggested intriguing

commonalities across insect and primate species (Clark et al., 2014; Nitzany et al., 2014).

Here we investigate whether the computational demands imposed by accurate motion estimation

in natural environments can illuminate the unexpected details of Drosophila’s motion estimation

circuit or account for non-Reichardtian motion perception in flies. We study a sequence of five

computational models, each of which considers a conceptually new aspect of the motion estimation

problem. Since each model succeeds in improving estimation accuracy, these results provide a range

of nonlinear circuit mechanisms that flies and other animals might incorporate into their motion

estimators. We describe how observed elements of Drosophila’s motion estimation circuitry could

support such computations (Table 1). Importantly, four of the five models also predict the signs and

approximate magnitudes of known non-Reichardtian motion percepts in flies. Since the models were

tuned exclusively for estimation accuracy, these results support the view that non-Reichardtian motion

percepts probe ethologically relevant aspects of biological motion estimators. More generally, our

results posit normative interpretations for some unexpected aspects of the fly’s motion estimation

circuit and behavior and suggest that non-Reichardtian aspects of fly circuitry and behavior might be

closely linked through the statistics of natural scenes.

Results

Flies incorporate motion signals that the HRC neglects
The HRC is the dominant model of motion computation in flies and other insects. In this paper we

describe several generalizations of the HRC, but it is helpful to first review this canonical model. The

HRC comprises three stages of processing. First, two different temporal filters (here, a low-pass filter

ð f ðtÞÞ and a high-pass filter ðgðtÞÞ) are applied to each of two spatially filtered visual input streams

(Figure 1A, ‘Materials and methods’). These four filtered signals are then paired and multiplied

(Figure 1A). Finally, the HRC takes the difference between the two multiplied signals to obtain a

mirror anti-symmetric motion estimator (Figure 1A). Because the HRC combines its two input

channels via a multiplication operation, the average output of the HRC depends only on 2-point

correlations in the visual stimulus. We thus refer to the HRC as a 2-point correlator, and we will return

to this mathematical characterization of the HRC repeatedly throughout this work.

No motion estimator is perfect for every stimulus, and this paper explores the hypothesis that

evolution has tuned Drosophila’s motion estimator for visual experiences that are likely to result from

ordinary behavior in natural environments (Appendix 1). We assessed the accuracy of the HRC and

other motion estimators by approximating naturalistic motion as the rigid translation of natural

images (Clark et al., 2014), with a velocity distribution that mimicked Drosophila’s natural behavior

(Figure 1B, ‘Materials and methods’) (Katsov and Clandinin, 2008). We spatiotemporally filtered the

input signals to simulate the responses of two neighboring photoreceptors (‘Materials and methods’).

Fitzgerald and Clark. eLife 2015;4:e09123. DOI: 10.7554/eLife.09123 3 of 49

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.09123


We quantified the performance of each model as the mean squared error between the input velocity

and model output. However, we report each model’s accuracy as the correlation coefficient between

its output and the true velocity (Figure 1C), an intuitive metric that is equivalent to the mean squared

error for correctly scaled model outputs (‘Materials and methods’). In isolation, the local HRC was

weakly correlated with the velocity of motion (Figure 1D). Although the HRC’s performance can be

improved by averaging over space and time (Dror et al., 2001; Clark et al., 2014), this study explores

how alternate nonlinear processing can improve motion estimation accuracy without sacrificing spatial

or temporal resolution (Clark et al., 2014).

Researchers can probe a fly’s motion estimate by measuring its behavioral optomotor turning

response (Hassenstein and Reichardt, 1956; Götz and Wenking, 1973; Buchner, 1976; Reichardt

and Poggio, 1976). We previously measured optomotor responses from flies walking on a spherical

treadmill by recording their turning responses to various visual stimuli (Figure 1E) (Clark et al., 2014).

We emphasized binary stimuli called gliders (Hu and Victor, 2010) (Figure 1F), which enforce

spatiotemporal correlations to interrogate the fly’s motion estimation algorithm. For example, 2-point

gliders contain only 2-point correlations (first two stimuli, Figure 1F). Drosophila turned in response to

these stimuli (Clark et al., 2014) (black bars, left, Figure 1G), and the HRC correctly predicted that

flies would respond to both positive and negative 2-point correlations (gray bars, left, Figure 1G). On

the other hand, 3-point gliders contain 3-point correlations without 2-point correlations (last four

stimuli, Figure 1F). These stimuli generated motion responses in flies (black bars, right, Figure 1G)

that the HRC could not explain (gray bars, right, Figure 1G). Thus, behavioral responses to glider

stimuli show that the HRC is an incomplete description of fly motion estimation and provide a useful

benchmark for evaluating alternate models.

In this study, we tune our models to optimize motion estimation accuracy, rather than to fit the

behavioral data, for two main reasons. First, we want to explore the hypothesis that Drosophila’s

glider responses follow from performance optimization within biologically plausible circuit

architectures. Second, we seek models that will generalize well across visual stimuli, and the

measured glider responses under-constrain possible motion estimation models. It’s useful to illustrate

Table 1. The different models used in this paper, experimental results that support each model, and

references for those results

Model Supporting evidence

Front-end nonlinearity • Photoreceptors show nonlinear responses to contrast changes (Laughlin,
1989; Juusola and Hardie, 2001; Juusola and Hardie, 2001; van
Hateren and Snippe, 2006)

• Some neurons in the early visual system have nonlinear responses that
make their output signals nearly uniform (Laughlin, 1981)

Weighted 4-quadrant model • Visual processing is divided early into ON and OFF channels (Joesch
et al., 2010; Clark et al., 2011; Behnia et al., 2014; Meier et al., 2014;
Strother et al., 2014)

• The two output channels (T4/T5) are sensitive to light and dark edges
(Maisak et al., 2013), but their inputs are incompletely rectified (Behnia
et al., 2014)

• Stimuli targeting the four quadrants are differentially represented in
neural substrates (Clark et al., 2011; Joesch et al., 2013)

Non-multiplicative nonlinearity • Pure multiplication is not a trivial neural operation (Koch, 2004)

• Inputs to T4/T5 are nonlinearly transformed (Behnia et al., 2014), which
also contributes to the biologically implemented non-multiplicative
nonlinearity

Unrestricted nonlinearity • The direction-selective neurons T4 receive inputs from more than two
types of neurons (Takemura et al., 2013; Ammer et al., 2015)

• T4 receives inputs from both its major input channels at overlapping
points in space (Takemura et al., 2013)

Extra input nonlinearity • The direction-selective neuron T4 receives inputs from more than two
discrete retinotopic locations (Takemura et al., 2013)

DOI: 10.7554/eLife.09123.003
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Figure 1. The Hassenstein-Reichardt correlator (HRC) model is an incomplete description of Drosophila’s motion

estimator. (A) Diagram of the HRC model. (B) We assessed motion estimation performance across an ensemble of

naturalistic motions, each of which consisted of a natural image (van Hateren and van der Schaaf, 1998) and a

velocity chosen from a normal distribution. (C) We quantified model accuracy by comparing the model response to

the true velocity using the mean squared error. (D) We summarized the error with the correlation coefficient between

the model output and the true velocity. (E) In previous work (Clark et al., 2014), we used a panoramic display and

spherical treadmill to measure the rotational responses of Drosophila to visual stimuli. (F) We presented flies with

binary stimuli called gliders (Hu and Victor, 2010), which imposed specific 2-point and 3-point correlations (Clark

et al., 2014). (G) Flies turned in response to 3-point glider stimuli, but these responses cannot be predicted by the

standard HRC. (H) Diagram of the converging 3-point correlator, which is designed to detect higher-order motion

signals like those found in 3-point glider stimuli. (I) Adding the converging 3-point correlator to the HRC improved

Figure 1. continued on next page
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our procedure with a simple example. The HRC does not account for 3-point glider responses

because it is insensitive to 3-point correlations. Nevertheless, 3-point correlations are present in

natural stimuli (Clark et al., 2014; Nitzany and Victor, 2014), and their use might facilitate accurate

motion estimation. We can explore this hypothesis by summing the HRC with a motion estimator

designed to respond specifically to 3-point correlations. For instance, the mirror anti-symmetric

‘converging’ 3-point correlator multiplies one high-pass filtered signal with two low-pass filtered

signals (Figure 1H) and mimics the converging structure present in certain glider stimuli (last two

stimuli, Figure 1F). We tune the model for motion estimation accuracy by choosing the weights of the

HRC and the converging 3-point correlator to minimize the mean squared error (‘Materials and

methods’). The resulting model is more accurate than the HRC (Figure 1I) and it predicts that flies

should respond to glider stimuli in the observed directions (Figure 1J, ‘Materials and methods’).

Nevertheless, this simple model underestimates 3-point turning magnitudes (Figure 1J), indicating a

discrepancy between the fly’s motion estimator and this performance-optimized model.

In this study, we apply this same basic model building procedure to a series of increasingly general

model architectures. There are four benefits to this approach. First, each model incorporates a type of

computation that was neglected by earlier models. Thus, we can compare model accuracies to

quantify how important various computations are for naturalistic motion estimation. Second, each

model has a distinct biological interpretation in terms of Drosophila’s motion estimation circuit

(Table 1). This allows us to enumerate many directions for future experimental and computational

research. Third, this set of models reveals several distinct principles of accurate naturalistic motion

estimators, yet no single model illustrates every principle. Finally, by comparing the glider predictions

of each model to behavioral data, we can gain insight into which principles underlie Drosophila’s

known glider responses.

Nonlinear preprocessing of HRC inputs improves estimation but poorly
predicts responses to gliders
The HRC correlates pairs of photoreceptor signals (Figure 1A). We previously assumed that each

photoreceptor’s response was generated from incoming contrast signals through linear spatiotem-

poral filtering. However, real photoreceptors are linear only over a limited range of inputs (Laughlin,

1981; Juusola and Hardie, 2001) (Table 1). Our first model thus modifies the HRC by allowing the

photoreceptor responses to become nonlinear (Figure 2A). More specifically, we consider models in

which a static nonlinearity transforms the filtered contrast signals before a standard HRC is applied to

the two input streams (Figure 2A, ‘Materials and methods’). Since the nonlinearity occurs before the

HRC, we refer to this model as the front-end nonlinearity model. By nonlinearly transforming the

contrast signals, the front-end nonlinearity model is able to reshape natural sensory statistics. In

particular, linear photoreceptor signals inherit complex non-Gaussian statistics from their natural

inputs (Figure 2B), but front-end nonlinearities (Figure 2C) can produce transformed signals with

alternate statistics (Figure 2D, ‘Materials and methods’). Thus, optimal front-end nonlinearity models

should reshape natural statistics into those that best suit the HRC. Previous studies have already

demonstrated example front-end nonlinearity models that improve naturalistic motion processing by

the HRC (Dror et al., 2001; Brinkworth and O’Carroll, 2009). Here we provide new theoretical

insight into these improvements and their consequences for glider responses.

Although the statistics of natural images are complicated, the mean squared error between the HRC’s

output and the velocity of motion depends only on a few statistical quantities. Since the HRC is a 2-point

correlator, the mean velocity signal decoded by an HRC is determined by the second-order statistics of the

image ensemble (Dror et al., 2001). The variance of the motion signal comes from the square of a

quadratic signal, and thus the noise statistics of the HRC depend on the fourth-order statistics of the image

ensemble (Appendix 2). If the image ensemble is spatially uncorrelated, the situation simplifies further and

Figure 1. Continued

motion estimation performance with naturalistic inputs. We optimized weighting coefficients to minimize the mean

squared error over the ensemble of naturalistic motions and used cross-validation to protect against over-fitting.

(J) This model predicted that Drosophila would weakly turn in response to 3-point glider stimuli.

DOI: 10.7554/eLife.09123.004
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Figure 2. Front-end nonlinearities improved naturalistic motion estimation but did not reproduce the

psychophysical results. (A) Diagram of the front-end nonlinearity model. The nonlinearity occurs after the

spatiotemporal filtering of photoreceptors but before the temporal filtering of the HRC. (B) The distribution of

contrast signals after photoreceptor filtering had a kurtosis of 9.6. The kurtosis of unfiltered pixels in the image

database was 7.8. (C) Three different nonlinearities that transformed this input distribution into a Gaussian

distribution, a uniform distribution, and a binary distribution. (D) After these transformations, the kurtosis of the

contrast signal was reduced to 3, 1.8, and 1, respectively. (E) Each front-end nonlinearity model improved the HRC’s

estimation accuracy, and uniform output signals worked best. (F, G) The front-end nonlinearity models reproduced

the sign of the negative 2-point glider psychophysical responses but did not reproduce the pattern of

psychophysical responses to 3-point gliders.

DOI: 10.7554/eLife.09123.005

Figure 2. continued on next page
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the correlation between the estimated and true image velocity is determined entirely by the standardized

fourth central moment of the input streams, a quantity known as kurtosis (Appendix 3). A larger kurtosis

results in a larger error in the motion estimate. Note that some authors use ‘kurtosis’ to refer to the ‘excess

kurtosis’, which shifts kurtosis values such that the Gaussian distribution has zero excess kurtosis. This shift

is not relevant for our purposes. Because large positive contrasts are relatively probable, naturalistic inputs

are highly kurtotic (kurtosis = 9.6 for the spatiotemporal filtering in our simulations) and are thus expected

to hinder HRC performance (Figure 2B).

The Gaussian, uniform, and symmetric Bernoulli distributions have much lower kurtosis values

(kurtosis = 3.0, 1.8, 1.0, respectively, Figure 2D). In fact, the symmetric Bernoulli distribution has the

lowest kurtosis of any probability distribution (DeCarlo, 1997). When we transformed the HRC’s

inputs to have these statistics (‘Materials and methods’), we found that each nonlinearity substantially

improved the accuracy of the HRC (Figure 2E). The contrast equalizing nonlinearity, which produces

uniform outputs, performed best and also plays a prominent role in efficient coding theory (Laughlin,

1981). It is interesting that contrast equalization improved the accuracy of the HRC more than

binarization (Figure 2E), even though it produced outputs with greater kurtosis. The reason for this is

that natural images are spatially correlated, and the accuracy of the HRC over a general image

ensemble depends on the ensemble’s spatial correlation structure (Appendix 2). Binarization

attenuated spatial correlations more strongly than contrast equalization over the natural image

ensemble (Figure 2—figure supplement 1), and spatial correlations can enhance the performance of

the HRC (Appendices 4, 5). Designing a nonlinearity that optimally sculpts the correlation structure of

natural images is not simple and goes beyond the scope of this study.

Each front-end nonlinearity model is sensitive to a variety of higher-order correlations

(Appendix 6). We thus tested whether accurate front-end nonlinearity models would predict

Drosophila’s glider response pattern. However, each front-end nonlinearity model performed

poorly at this task (Figure 2F,G). None of the three models predicted that Drosophila would invert

its response to positive and negative 3-point gliders (Figure 2G), even though they predicted that

the 3-point glider responses would be nonzero. The simplest explanation for this observation is

that the front-end nonlinearity models responded to fourth-order correlations that are common to

the stimuli, rather than the third-order correlations that defined the glider stimuli and primarily

drove the experimental response (Clark et al., 2014). Mechanistically, this result follows from the

fact that the nonlinearities that reduced kurtosis (Figure 2C) were not strongly asymmetric around

zero contrast (Appendix 6). The binarizing front-end nonlinearity model also failed to predict that

Drosophila would respond less to negative 2-point glider stimuli than positive 2-point glider stimuli

(Figure 2F). Since this effect was correctly predicted by the standard HRC (Figure 1G), this

observation shows that accurate front-end nonlinearity models can distort the processing of

2-point correlations. Although the front-end nonlinearity model did not explain the phenomenon of

fly glider perception, future work should investigate whether its merits make it functionally relevant

for motion processing in other contexts or species.

Separating ON and OFF signals improves motion estimation and
predicts responses to gliders
Instead of a front-end nonlinearity, Drosophila could use an alternative non-Reichardtian motion

estimation strategy that reflects natural sensory statistics, without necessarily requiring nonlinear

preprocessing. Previous computational analyses show that motion estimation strategies that

distinguish light and dark information can enhance motion processing with natural inputs (Fitzgerald

et al., 2011; Clark et al., 2014; Nitzany and Victor, 2014), and recent experiments indicate that flies

use separate channels to process the motion of light and dark edges (Joesch et al., 2010; Clark et al.,

2011; Behnia et al., 2014; Clark et al., 2014;Meier et al., 2014; Strother et al., 2014) (Table 1). Our

next model explores the hypothesis that Drosophila segregates ON and OFF signals in order to

Figure 2. Continued

The following figure supplement is available for figure 2:

Figure supplement 1. Front-end nonlinearities modify the correlations present in natural scenes.

DOI: 10.7554/eLife.09123.006
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facilitate naturalistic motion estimation (Clark et al., 2014) (Figure 3A, ‘Materials and methods’).

There are four ways to pair the ON and OFF components of the two filtered signals that enter the

HRC’s multiplier. For example, one possibility is to pair the ON component of the low-pass filtered

signals with the OFF component of the high-pass filtered signal. Since each pairing restricts the HRC’s

multiplier to a single quadrant of the Cartesian plane, we refer to these four signals as HRC-quadrants.

If the quadrants are summed with equal weights, then this model is mathematically identical to the

HRC (Hassenstein and Reichardt, 1956; Clark et al., 2011). Unequal weighting coefficients enable

the motion estimator to prioritize some quadrants over others, and here we select quadrant

weightings that minimize the mean squared error between the model output and velocity (Figure 3B,

‘Materials and methods’). More generally, we refer to any model that linearly combines the four HRC-

quadrants as a weighted 4-quadrant model. The precise manner in which the four HRC-quadrants

might map onto circuitry remains unclear; we do not suggest there exists separate circuitry for each

quadrant. For instance, studies have identified only two motion-processing channels in the Drosophila

brain, which might suggest that the fly only uses a subset of the quadrants (Eichner et al., 2011;

Joesch et al., 2013; Maisak et al., 2013). On the other hand, each channel appears imperfectly

selective for light vs dark signals (Behnia et al., 2014), which in principle enables these two channels

to access all four quadrants (Table 1).

We began by examining how well individual quadrants predicted the velocity of motion. The four

quadrants provided motion signals of strikingly different quality (first four red bars, Figure 3C). The

most accurate quadrant correlated negative low-pass filtered signals with negative high-pass filtered

signals ((− −) bar, Figure 3C). This isolated quadrant already outperformed the full HRC. The quadrant

that correlated negative low-pass filtered signals with positive high-pass filtered signals also

performed relatively well ((− +) bar, Figure 3C), whereas the quadrants that involved positive low-pass

filtered signals performed poorly ((+ +) and (+ −) bars, Figure 3C). This shows that negative signals

emanating from the low-pass filter better facilitate motion estimation, and the HRC’s uniform

weighting of all four quadrants is computationally detrimental.

We next considered all subsets of two, three, or four quadrants. The best subsets for each number

of predictors were nested, and the quadrants were incorporated in the order (i) (− −); (ii) (− +); (iii) (+ +);
(iv) (+ −). Although all four quadrants enhanced the accuracy of the weighted 4-quadrant model, the

benefit of each added quadrant decreased with the number of quadrants (Figure 3C). It is possible to

reparameterize the weighted 4-quadrant model in a form that isolates the contributions of various

higher-order correlations to the model’s accuracy (Appendix 7). Interestingly, this parameterization

showed that nearly all the accuracy of the weighted 4-quadrant model can be obtained by

supplementing the HRC with a set of odd-ordered correlations that account for the asymmetry

between positive and negative low-pass filtered signals (Figure 3—figure supplement 1, Appendix

8). Principal component analysis (PCA) did not reveal this simple interpretation of the model’s

computation (Appendix 9).

The performance-optimized weighted 4-quadrant model also offered an interesting interpretation

of Drosophila’s glider response pattern. First note that the model preserved the HRC’s response

pattern to 2-point glider stimuli (compare left subpanels of Figure 3D and Figure 1G). More

interestingly, the model predicted behavioral responses to 3-point glider stimuli that matched the

experimentally observed turning directions, and even the response magnitudes were similar between

the model and the data (right, Figure 3D). Nevertheless, the model’s predictions were imperfect. The

primary qualitative discrepancy was that the model failed to predict that positive 3-point glider stimuli

would generate smaller turning responses than negative 3-point glider stimuli. The simplest

interpretation for this experimental result is that flies might incorporate both 3-point correlations

and 4-point correlations into their motion estimation strategy. In particular, since the positive and

negative 3-point glider stimuli have inverted 3-point correlations and matched 4-point correlations,

third-order and fourth-order correlations would have the same sign for one parity and opposite signs

for the other parity. This observation makes it easier to understand the glider predictions of the

weighted 4-quadrant model. The optimized model does a good job accounting for the direction and

approximate magnitude of the glider responses because it draws heavily on second-order and odd-

order correlations, but it fails to predict the 3-point glider magnitude asymmetry because it finds little

added utility in higher-order even correlations (Figure 3—figure supplement 1, Appendix 8). This failure

stems from architectural limitations in the weighted 4-quadrant model (Figure 3—figure supplement 2),

so it is important to consider alternate model classes.
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Drosophila circuitry contains
additional elements that might
facilitate motion estimation
The previous section suggested that the segre-

gation of light and dark signals by Drosophila’s

motion estimation circuitry might enhance natu-

ralistic motion estimation in a manner that also

generates the observed glider responses. In this

section, we introduce three hierarchical models

to investigate other features of Drosophila’s

circuit that might have functional consequences

for the processing of natural stimuli and gliders

(Table 1). We refrain from modifying the tempo-

ral filtering of the motion estimator, and we focus

on its nonlinear architecture.

The first of these models recasts the HRC and

the weighted 4-quadrant model in a more

general architecture. This model is the class

of mirror anti-symmetric models that apply a

2-dimensional nonlinearity to the low-pass filtered

signal from one point in space and the high-pass

filtered signal from a neighboring point in space

(Figure 4A). Since the observed glider responses

indicate that flies use higher-order correlations

of both even and odd order, we model this

2-dimensional nonlinearity as a fourth-order

polynomial (‘Materials and methods’). The HRC

corresponds to the special case of this non-

linearity that multiplies the two inputs (left,

Figure 4B). To emphasize how the model class

in Figure 4A generalizes the HRC, we refer to it

as the non-multiplicative nonlinearity model. In

comparison, the weighted 4-quadrant model

corresponds to a different nonlinearity that

separately scales a pure multiplication in each

quadrant of the Cartesian plane. Compared to

the HRC, the optimized forms of both the

weighted 4-quadrant model and the non-

multiplicative nonlinearity model substantially

attenuated positive low-pass filtered signals

(middle and right, Figure 4B), though the non-

multiplicative nonlinearity shows less attenuation.

This model architecture provides enough flexibil-

ity to generate the glider response pattern

(Figure 4—figure supplement 1).

The non-multiplicative nonlinearity model re-

laxes some restrictions of the 4-quadrant model.

This is prudent because the exact nonlinear

transformations implemented by neural circuits

in the Drosophila brain remain poorly under-

stood. For example, T4 and T5 are the first

direction-selective neurons in the fly brain

(Maisak et al., 2013), but the mechanism by

which they become direction-selective is not yet

known. Furthermore, neurons upstream of T4 and

Figure 3. The weighted 4-quadrant model improved

estimation performance and reproduced the

directionality of psychophysical results. (A) Diagram of

the weighted 4-quadrant model. Similar to ON/OFF

processing in the visual system, the weighted

4-quadrant model splits the four differentially filtered

signals into positive and negative components. As in

the HRC, these component signals are paired,

multiplied, and subtracted to produce four mirror

anti-symmetric signals. We refer to these signals as

HRC-quadrants. The model output is a weighted sum

of the quadrant signals. We identify quadrants by

whether they respond to the positive or negative

components of each filtered signal and denote the

four quadrants as (+ +), (+ −), (− +), and (− −). In this

notation, the first index refers to the sign of the

low-pass filtered signal (emanating from f ðtÞ), and
the second refers to the high-pass filtered signal

(emanating from gðtÞ). (B) We measured the response

of each quadrant to naturalistic motions and chose

the quadrant weightings to minimize the mean

squared error between the model output and the true

velocity. (C) Comparison of the estimation perfor-

mance of individual quadrants, multiple quadrants,

and the HRC. The best two quadrants were (− −) and
(− +); the best three also included (+ −). (D) The

performance-optimized weighted 4-quadrant model

reproduced the signs and approximate magnitudes

of the psychophysical results.

DOI: 10.7554/eLife.09123.007

Figure 3. continued on next page
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T5 imperfectly segregate light and dark informa-

tion (Behnia et al., 2014) and show overlap

between the two motion pathways (Silies et al.,

2013), suggesting that ON/OFF segregation may

not be crisply realized. We will discuss this

model’s estimation accuracy and glider perfor-

mance in the next section.

Drosophila’s motion processing circuitry sug-

gests two more generalizations of the non-

multiplicative nonlinearity model. First, note that

the non-multiplicative nonlinearity model inherits

the HRC’s assumption that each nonlinear unit

only acts upon the low-pass filtered signal from

one point in space and the high-pass filtered signal from the neighboring point (Figure 4A). In

contrast, the converging 3-point correlator (Figure 1H) shows that the accuracy of motion estimation

can sometimes be enhanced by nonlinearly combining both low-pass filtered signals (Figure 1I).

Moreover, connectomic evidence conflicts with the non-multiplicative nonlinearity model’s con-

straints, because each T4 cell receives synaptic connections from both the Mi1 cell and the Tm3 cells

(T4’s two major input channels) at overlapping points in space (Takemura et al., 2013). The

unrestricted nonlinearity model removes this restriction of the non-multiplicative nonlinearity model

by allowing a 4-dimensional nonlinearity to act on all four filtered signals (Figure 4C). Here, we again

model this nonlinearity as a fourth-order polynomial (‘Materials and methods’). The unrestricted

nonlinearity allows the motion estimator to nonlinearly combine multiple temporal channels from the

same point in space. Recent experiments indicate that the Mi1 and Tm3 cells alone are insufficient to

account for the motion processing of the T4 channel (Ammer et al., 2015). Future work might

generalize the unrestricted nonlinearity model to include three or more temporal channels at each

point in space.

The models presented so far operate only on a pair of neighboring photoreceptors, and the final

generalization incorporates a third point in space. Averaging EMDs over space improves the accuracy

of whole-field motion estimation (Dror et al., 2001), but Drosophila’s neural circuitry suggests that it

might adopt a more sophisticated strategy to combine signals across space. In particular, single T4

cells receive synaptic inputs from Mi1 cells and Tm3 cells from more than two retinotopic columns

(Takemura et al., 2013). This arrangement could allow the circuit to incorporate higher-order

correlations that are distributed across three or more spatial input channels. To explore whether this

possibility has computational significance, we generalized the unrestricted nonlinearity model to

provide unrestricted access to six temporal channels distributed across three points in space

(Figure 4D). We refer to this model as the extra input nonlinearity model. We approximate its

6-dimensional nonlinearity as a fourth-order polynomial (‘Materials and methods’).

Elaborated circuit architectures improve motion estimation without
sacrificing glider responses
Having introduced the rationale behind the non-multiplicative, unrestricted, and extra input

nonlinearity models, it is straightforward to examine their performance as motion estimators. First

note that the polynomial non-multiplicative nonlinearity model was a better motion estimator

(Figure 4E) than the weighted 4-quadrant model (Figure 3C). This implies that some useful signatures

of naturalistic motion are not made accessible by simply segregating ON and OFF motion signals.

Interestingly, this performance improvement is largely due to 3-point correlations, and models that

exclude fourth-order polynomial terms still outperform the weighted 4-quadrant model

(Figure 4—figure supplement 2). Third-order correlations are only useful for motion estimation

because of light–dark asymmetries in natural stimulus statistics (Fitzgerald et al., 2011; Clark et al.,

2014), so this result implies that ON/OFF segregation provides an imperfect way to account for the

complexity of light–dark asymmetries found in the natural world. The non-multiplicative nonlinearity

model also made novel use of low-order correlations to improve its motion estimate (Appendix 10).

The three models are hierarchical because the non-multiplicative nonlinearity model is a special

case of the unrestricted nonlinearity model, which is itself a special case of the extra input

Figure 3. Continued

The following figure supplements are available for

figure 3:

Figure supplement 1. Separate ON and OFF

processing improved motion estimation by

supplementing the HRC with odd-ordered correlations.

DOI: 10.7554/eLife.09123.008

Figure supplement 2. The weighted 4-quadrant model

cannot reproduce the positive-negative parity

asymmetry in the psychophysical data.

DOI: 10.7554/eLife.09123.009
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Figure 4. Several biologically motivated generalizations of the motion estimator further improved estimation

performance without sacrificing glider responses. See Table 1 for a description of the biological rationales behind

these models. (A) The ‘non-multiplicative nonlinearity’ model substitutes a 2-dimensional nonlinearity for the pure

multiplication of the HRC. Here, we approximated the nonlinearity with a fourth order polynomial. (B) Two-

dimensional nonlinearities underlying the HRC, the weighted 4-quadrant model, and the non-multiplicative

nonlinearity model. The latter models reflect optimized cases, in which the weighting coefficients maximized

Figure 4. continued on next page
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nonlinearity model. Thus, we expect each model to perform at least as well as its predecessor, but it

is possible that some circuit elaborations will not introduce useful computational cues. Neverthe-

less, we found that that the unrestricted nonlinearity model performed better than the non-

multiplicative nonlinearity model, and the extra input model performed better than the average of

two neighboring unrestricted nonlinearity models (Figure 4E). Therefore, both models incorporated

novel computational signatures with relevance for visual motion estimation. Although the relative

improvements were fairly small, it’s worth noting that the improvement from spatial averaging is

also small, and it is possible that the fly brain builds an accurate motion estimator by combining a

large number of weak predictors of motion.

Each of these three generalized models predicted 2-point glider responses (Figure 4F) that closely

resembled the standard HRC (left, Figure 1G). Each model also correctly predicted the experimental

turning directions to each of the 3-point glider stimuli (Figure 4G). The magnitudes of the 3-point

glider turning responses did not unambiguously favor any of the three hierarchical models (Figure 4G)

or the weighted 4-quadrant model (right, Figure 3D). Each model did better on some stimuli and

worse on others. Nevertheless, the predicted glider responses did make several interesting points.

First, the extra input nonlinearity model predicted a clear asymmetry between positive and negative

3-point gliders (Figure 4G). This shows that some of the even-ordered correlations found in 3-point

glider stimuli have relevance for naturalistic motion estimation. Second, the observation that each

model provides qualitatively similar glider response patterns illustrates that animals could use multiple

nonlinear mechanisms to access ethologically relevant higher-order correlations. Future experiments

should directly assess the functional relevance of the different models in the hierarchy. Finally, the

qualitative agreement between all of these predictions and the experimental data supports

the general hypothesis that glider responses could reflect underlying nonlinear mechanisms that

facilitate motion estimation in natural environments.

The extra input nonlinearity model contains the conceptual content of
the other considered models
In this paper, we sequentially introduced several models in order to isolate specific ideas about the

relationships between Drosophila’s behavior, its motion estimation circuit, and the statistical demands

of accurate motion estimation in natural environments. The front-end nonlinearity model explored an

interesting candidate principle for visual motion estimation, but it conflicted sharply with fly behavior

(Figure 2G) and excluded the conceptual insights offered by other models. For example, the front-

end nonlinearities we considered eliminated the asymmetry between light and dark contrasts

(Figure 2D), removing the need for separate ON and OFF processing. However, the remaining

models embodied ideas that are complementary rather than exclusive, and these models should not

Figure 4. Continued

estimation performance with natural inputs. Iso-output lines are shown in each plot, and the horizontal and vertical

limits are chosen to include 95% of the naturalistic input signals. (C) Another generalization, the ‘unrestricted

nonlinearity’ model allows all 4 input signals to be combined nonlinearly. We approximate this 4-dimensional

nonlinearity with a fourth-order polynomial. (D) A final generalization, the ‘extra input nonlinearity’ model, relaxes

the restriction that the motion estimator only uses 2 spatial inputs. We approximate this 6-dimensional nonlinearity

with a fourth-order polynomial. (E) Comparison of the estimation performance of these models to the HRC. We

compare the extra input nonlinearity model to the average of two neighboring motion estimators. (F, G) The three

models correctly predicted the directions of psychophysical responses. The pattern of 3-point responses differed

somewhat across the models, and the extra input nonlinearity model was the first to predict a large asymmetry

between positive and negative 3-point glider responses.

DOI: 10.7554/eLife.09123.010

The following figure supplements are available for figure 4:

Figure supplement 1. The non-multiplicative nonlinearity model can be tuned to account for the positive-negative

parity asymmetry in the psychophysical data.

DOI: 10.7554/eLife.09123.011

Figure supplement 2. The performance of the non-multiplicative nonlinearity model is plotted against the order of

the fitted polynomial.

DOI: 10.7554/eLife.09123.012
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be thought of as competitors. Instead, we will show here that the final, most general model

incorporates the variety of conceptual points that were initially illustrated by specific models.

The structure of the non-multiplicative nonlinearity models can be directly plotted (Figure 4B), but

is not easy to visualize the 6-dimensional nonlinearity that defines the extra input nonlinearity model.

We therefore need an alternate technique to illustrate its computations. We proceed by leveraging

three ideas. First, a wide variety of visual motion estimators can be expanded as an abstract series of

multipoint correlators (e.g., see Poggio and Reichardt, 1980, Fitzgerald et al., 2011, and

Appendices 6, 7, 11), and it is straightforward to pictorially represent a multipoint correlator (e.g.,

see Figure 1A,H, and more to come). In the extra input nonlinearity model, this expansion is

immediate because we have already parameterized its 6-dimensional nonlinearity as a polynomial.

Importantly, this expansion should be considered at the algorithmic level (Marr and Poggio, 1976),

and we do not suggest that the wiring of brain circuits will reflect a large number of higher-order

correlators. To the contrary, a large number of higher-order multipoint correlators may be

implemented implicitly by high-dimensional nonlinearities suggested by Drosophila’s visual circuitry.

Second, we note that certain multipoint correlators can be recombined into a 2-dimensional non-

multiplicative nonlinearity that facilitates easy comparisons with the HRC and weighted 4-quadrant

models (e.g., see Figure 4B). Taken together, these two points mean that we can represent the

performance-optimized extra input nonlinearity model in terms of non-multiplicative nonlinearity

models and multipoint correlators, each of which are easy to represent graphically.

This graphical representation could be unwieldy because of the shear number of higher-order

correlators in the model. Thus the third and final point is that we need a way to identify a relatively

small number of terms that substantially improve the accuracy of motion estimation and illustrate the

conceptual content of the model. To achieve this, we used lasso regression (Tibshirani, 1996) to

identify models with fewer multipoint correlators that still enabled accurate motion estimation

(‘Materials and methods’). This analysis revealed that fewer than half of all multipoint correlators were

needed to account for the full accuracy of the extra input nonlinearity model (rightmost bars,

Figure 5A). In fact, the accuracy of naturalistic motion estimation increased rapidly as the few

correlators were sequentially added (left bars, Figure 5A), and a model that used 16 out of the 209

possible predictors was already able to produce 74% of the gain offered by the full extra input

nonlinearity model (red bar, Figure 5A).

The leading 16 predictors compactly illustrated how the extra input nonlinearity model

recapitulates the conceptual advances offered by the other models (Figure 5B). Four of the

predictors combine to implement a mirror-symmetric non-multiplicative nonlinearity model that acts

on the first and second points in space (first term, Figure 5B). The dominant contribution to the

nonlinearity is the HRC’s multiplier, but an additional third-order term breaks the symmetry between

positive and negative low-pass filtered signals (Figure 5—figure supplement 1). Thus, the extra input

nonlinearity model approximately correlates neighboring points in space, as the HRC would suggest,

but it differentially weights positive and negative low-pass filtered signals, like the weighted 4-

quadrant model. It also replicates the main insight from the non-multiplicative nonlinearity model: the

best treatment of asymmetric light and dark information need not be as simple as pure ON/OFF

segregation. The model used another eight predictors to construct two more non-multiplicative

nonlinearity models, one that surveyed the second and third points in space and another that

surveyed the first and third points (first and second terms, Figure 5B, Figure 5—figure supplement 1).

These components make the previously highlighted conceptual points and add the observation that

spatial averaging improves estimates.

The final four predictors implemented two mirror anti-symmetric multipoint correlators (third and

fourth terms, Figure 5B). In particular, two predictors went towards implementing a converging

3-point correlator that spanned the first and third spatial points (third term, Figure 5B). This estimator

made the model’s asymmetric treatment of light and dark signals more nuanced than permitted by

the non-multiplicative nonlinearity model, and it also incorporated motion signals that combine

multiple temporal signals from the same point in space. This latter point was the main conceptual

motivation for the unrestricted nonlinearity model. Finally, the last two predictors implemented a

4-point correlator that combined temporal signals from three distinct points in space (fourth term,

Figure 5B). This component reinforces the conceptual motivation for the extra input nonlinearity

model and gives a concrete example of a computationally relevant higher-order correlator that is

distributed across three points in space. It’s interesting that the leading fourth-order correlator

Fitzgerald and Clark. eLife 2015;4:e09123. DOI: 10.7554/eLife.09123 14 of 49

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.09123


Figure 5. Computational interpretation of the extra input nonlinearity model. (A) We used lasso regression to

select subsets of predictors that might enable accurate estimation (see ‘Materials and methods’). With only 16

predictors, the model improved naturalistic performance over the HRC by 68%, and including fewer than half of

the predictors improved it by the full 92%. The maximum number of predictors corresponds to the number of

polynomial coefficients that were fit in the full model. (B) We visualized the 6-dimensional nonlinearity as the

sum of several simpler computational modules. When only 16 predictors were used (red bar in (A)), the model

used four distinct types of computations. In particular, the model included nearest-neighbor and next-nearest-

neighbor non-multiplicative nonlinearities (top row). It also included a converging 3-point correlator from the

two furthest photoreceptors and a 4-point correlator that combined three spatial inputs (bottom row). (C) Venn

diagram illustrating the hierarchical nesting of models used in this paper. All models in this paper contain sets

of parameters that reproduce the HRC (gray dot). The weighted 4-quadrant model is a subset of non-

multiplicative nonlinearity models, which are themselves a subset of unrestricted nonlinearity models. The

extra input nonlinearity encompasses all the models. When we approximated the nonlinearites with fourth

order polynomials, we restricted them to a smaller portion of the model space. The 4-quadrant nonlinearities

Figure 5. continued on next page
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spanned three spatial points, because the extra input nonlinearity model was the first performance-

optimized model that generated a substantially asymmetric response to positive and negative 3-point

gliders (Figure 4G).

This paper set out with the goal of exploring whether the statistical demands of naturalistic motion

estimation could provide a useful lens for interpreting features of Drosophila’s behavior and neural

circuitry that push beyond the canonical HRC. Although we have considered several interesting

classes of visual motion estimators, the space of possible motion estimators is much larger

(Figure 5C). For instance, these models have not explored the impact of temporal filter choice on

naturalistic motion estimation. Nor have they assessed the possibility of more than two temporal

filters, which is be suggested by anatomical (Takemura et al., 2013) and physiological (Ammer et al.,

2015) experiments. More generally, the neural circuits contributing to Drosophila’s motion estimator

are still incompletely known, and the extent to which the fly brain’s biological complexity reflects

computational sophistication remains an open question. Theoretical considerations will be critical for

resolving that question and pinpointing the most relevant principles underlying visual motion

estimation.

Discussion
Ongoing research is providing an increasingly detailed picture of the anatomy and physiology of the

visual circuitry that implements motion processing in Drosophila. Through the combination of genetic

silencing experiments, connectomic analysis, and functional recordings, researchers have identified

many individual neurons in the fly brain that contribute to visual motion processing (Silies et al.,

2014). Although the HRC provided the initial theoretical impetus for these experiments, specific

experimental outcomes have often been unanticipated. For instance, the fly brain contains multiple

pathways that segregate different types of motion information (Joesch et al., 2010; Clark et al.,

2011; Silies et al., 2013); its direction-selective neurons receive inputs from more than two

neighboring points in visual space (Takemura et al., 2013); and the biological substrates for reverse-

phi signals, which were fundamental to the formulation of the HRC, remain poorly understood (Clark

et al., 2011; Tuthill et al., 2011; Joesch et al., 2013). Theoretical work to illuminate the

computational significance of these various discrepancies is critical for understanding Drosophila’s

motion estimator.

The results presented in this paper provide a new theoretical perspective on these experimental

results. While previous research has addressed how neural circuits could use four quadrants to carry

out algebraic multiplication, here, the recurring theme of our models was that motion-processing

circuits should treat light and dark signals differently for functional reasons. We first showed that visual

systems could use ON and OFF processing channels that separately correlate light and dark signals to

improve the accuracy of motion estimation (Figure 3). This model was inspired by the experimental

observation that Drosophila’s motion processing channels distinguish between light increments and

decrements (Joesch et al., 2010; Clark et al., 2011), but this study is the first to explicitly

demonstrate how such processing channels can improve the accuracy of motion estimation.

Furthermore, our model shows that both the phi channels (i.e., the (+ +) and (− −) and quadrants)

and the reverse-phi channels (i.e., the (+ −) and (− +) quadrants) can contribute productively to motion

estimation in natural environments. Since many animals experience similar sensory statistics and ON

and OFF visual processing channels are pervasive across visual systems (Schiller, 1992; Westheimer,

2007), these mechanisms might be very general. Ultimately, the performance gains from weighted

quadrants were a consequence of statistical asymmetries between light and dark contrasts in natural

images, and our models showed that neural circuits could perform even better if they made

distinctions between light and dark signals that were subtler than simple ON/OFF segregation

Figure 5. Continued

only overlapped with the fourth-order polynomial approximation at the HRC, because the weighted 4-quadrant

model is infinite order when expanded as a polynomial (see Appendix 7).

DOI: 10.7554/eLife.09123.013

The following figure supplement is available for figure 5:

Figure supplement 1. Structure of non-multiplicative nonlinearities in the extra input model of Figure 5B.

DOI: 10.7554/eLife.09123.014
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(Figure 4). Recent experimental evidence indicates that the fly’s motion processing channels are

imperfectly selective for ON vs OFF information (Silies et al., 2013; Behnia et al., 2014; Strother

et al., 2014), and it is important that future experiments characterize such subtleties in the

computations performed by these circuits.

Our most general model contained three spatial inputs and showed that spatial averaging of local

motion detectors was suboptimal (Figure 4E). Anatomy suggests that single T4 cells receive inputs

from several different retinotopic columns, and also from multiple neuron types in a single retinotopic

column (Takemura et al., 2013). Our modeling suggests that these two forms of circuit heterogeneity

could enhance motion estimation by facilitating computations that go beyond averaging to compute

higher-order correlations that are distributed across multiple points in space (Figure 5B). Overall, our

results demonstrate how the subtleties of neural circuit nonlinearities can improve motion detection

with naturalistic inputs. It therefore seems likely that some of the complexities of Drosophila’s circuitry

are critical to its performance under natural conditions.

It is remarkable that our approximation of natural motion by the rigid translation of natural images

revealed substantial utility for higher-order correlations in motion processing. Truly naturalistic motion

would include spatial velocity gradients, occlusion, expansion, and contraction, yet the simplified

naturalism we used to optimize our models already sufficed to account for many aspects of the fly’s

glider responses. This may be because the rotational optomotor response measured in the fly

experiments is thought to be sensitive primarily to full-field rotations, which our naturalism emulates

well. However, since other higher-order correlations may be associated with non-rigid translation

(Nitzany and Victor, 2014), one might expect a different set of glider sensitivities to be optimal in the

context of other motion-guided behaviors, such as looming responses (Gabbiani et al., 1999;

Tammero and Dickinson, 2002; Card and Dickinson, 2008). Since a common elementary motion

detector might underlie many or all motion-guided behaviors, incorporating more complex optic flow

patterns may even diminish discrepancies between our models and Drosophila’s behavior.

The approach of this study is also relevant to vertebrate vision, where researchers typically model

motion estimation using the motion energy model (Adelson and Bergen, 1985). Like the HRC, the

motion energy model only responds to 2-point correlations in the visual stimulus. Consequently, many

of the theoretical considerations in this paper apply directly to the motion energy model.

Furthermore, each of our computational models can be straightforwardly generalized to the

architecture of the motion energy model. For example, one could incorporate non-multiplicative

nonlinearities by replacing the squaring operation of the motion energy model with a more flexible

nonlinearity. Nevertheless, the numerical benefits offered by each modification to the motion energy

model might differ from those found for the HRC because the motion energy model and HRC use

distinct spatial and temporal filtering. Such differences could in principle manifest themselves as a

different pattern of predicted glider responses (Hu and Victor, 2010; Clark et al., 2014), but

comparative electrophysiology experiments in macaques and dragonflies currently suggest that

similarities between primate and insect motion processing are abundant (Nitzany et al., 2014).

Our models make predictions that are testable with new experiments. Researchers hypothesize

that the T4 and T5 neurons in the fly lobula nonlinearly combine visual inputs across space and time to

become the first direction-selective neurons in Drosophila’s visual system (Maisak et al., 2013). In

accordance with the HRC model, conventional wisdom says that these neurons will multiply their input

channels. In contrast, we predict that T4 and T5 will combine their visual input streams with non-

multiplicative nonlinearities that facilitate accurate motion estimation in natural sensory environments.

It’s crucial to note that subtle differences between biology’s nonlinearity and a pure multiplication can

correspond to substantial functional effects. In particular, the optimized nonlinearity that we found

here (Figure 4B) is superficially similar a simple multiplication, yet its subtle distinctions manifest

themselves by improving the local estimation accuracy of the HRC by an impressive margin

(Figure 2D).

In this paper, we studied several simple models to most clearly illustrate the computational

consequences of fundamental nonlinear circuit operations. Each of these operations individually

provided a way for Drosophila to improve their motion estimation accuracy in natural environments,

but they are not necessarily exclusive. For example, if a front-end nonlinearity does not fully remove

the asymmetry between light and dark contrasts, then subsequent ON and OFF processing might

further improve estimation accuracy. Similarly, non-multiplicative nonlinearities might enable an even

better combination of ON and OFF signals for motion estimation. The general approach that we
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adopted here is to restrict the space of candidate models to those that have immediate biological

relevance and to identify interesting models by optimizing the model’s estimation accuracy over

naturalistic stimuli. Future models should incorporate more biological details to better emulate the

specifics of Drosophila’s visual circuitry, which is rapidly being dissected through unprecedented

anatomical, functional, and behavioral experiments (Silies et al., 2014).

Materials and methods

Simulated ensemble of naturalistic motions
We simulated the linear responses of neighboring photoreceptors to naturalistic motion using

methods similar to previous work (Clark et al., 2014). We began with a database of natural images

(van Hateren and van der Schaaf, 1998). We converted each natural image to a contrast scale,

Cð x→ Þ= ðIð x→ Þ− I0Þ=I0, where Cð x→ Þ is the contrast at the spatial point x
→
, Ið x→ Þ is its intensity, and I0 is

the average intensity across the image. Since we only consider horizontal motion, we emulated the

spatial blurring of Drosophila’s photoreceptors in the vertical dimension by filtering across rows with a

Gaussian kernel (FWHM = 5.7˚). We then took the central row of each filtered image to represent a

one-dimension variant of the natural image, denoted cðxÞ. We applied reflective boundary conditions

to generate images that covered 360˚ and down-sampled each resulting image to 1˚ pixels by

averaging. Photoreceptor blurring from signals in the horizontal dimension depends on the velocity of

motion. In particular, we model the response of the ith photoreceptor as

ViðtÞ=
Z

dt′Tðt′Þ
Z

dxMðx− xiÞcðx− vðt− t′ÞÞ;

where T is a causal exponential kernel (timescale = 10 ms), M is a Gaussian kernel (FWHM = 5.7˚), xi is
the location of the ith photoreceptor, and ν is the velocity of motion.

Each naturalistic motion comprised a randomly selected one-dimensional natural image, an offset

to set the initial location of the photoreceptors, and a velocity drawn from a zero-mean normal

distribution with a standard deviation of 90˚/s. In this manner, we simulated the responses of

three horizontally adjacent photoreceptors (spaced by 5.1˚) to 5 × 105 naturalistic motions (each

with duration = 800 ms, time step = 5 ms). We then explicitly enforced left-right symmetry in

the naturalistic ensemble by pairing each naturalistic motion with a new simulated motion, in which

the natural image is reflected, the velocity is inverted, and the offset is chosen such that

fV1ðtÞ;   V2ðtÞ;   V3ðtÞg in the new naturalistic motion is exactly fV3ðtÞ;   V2ðtÞ;   V1ðtÞg from its partner.

The final symmetric ensemble thus consists of 106 naturalistic motions.

The HRC
The HRC applies two temporal filters to its photoreceptor inputs. We denote the kernels of the low-

pass and high-pass filters as f and g, respectively, such that the output of a local HRC is

RðtÞ= ðf *V1ÞðtÞðg*V2ÞðtÞ− ðg*V1ÞðtÞðf *V2ÞðtÞ;
where * denotes convolution (Figure 1A). We consider the HRC’s velocity estimate for a given

naturalistic motion as its value at the final time point of the simulation. We model the filter kernels as

f ðtÞ= te−t=τ; t≥ 0

and

gðtÞ= df ðtÞ
dt

;

where τ = 20 ms and gðtÞ is comparable to lamina monopolar cell responses (Clark et al., 2011;

Behnia et al., 2014). We built the alternate motion estimators considered in this work from the same

four filtered signals, fðf pV1Þ;   ðgpV1Þ;   ðf pV2Þ;   ðgpV2Þg, always considering the estimator’s output at the

final time point as its velocity estimate. Thus, none of our models modified the spatial or temporal

processing of the HRC, reflecting our emphasis on how nonlinear processing might be tuned for

naturalistic motion estimation. The global output of an array of HRCs would be obtained by pooling
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signals across space. Here we focus on spatiotemporally local strategies for motion estimation and at

most pool motion signals across two neighboring motion detectors.

Relationship between the mean squared error and the correlation
coefficient
We evaluate motion estimators by the mean squared error between their output and the true velocity.

To minimize the mean squared error of the HRC, we scale its output by rðRÞσν=σR, where rðRÞ is the

correlation coefficient between the HRC’s output and the velocity of motion, σν is the standard

deviation of the velocity distribution, and σR is the standard deviation of the HRC’s output. Once the

HRC is scaled in this manner, its mean squared error is

ϵ= σ2v

�
1−
�
rðRÞ
�2�

:

More generally, this equation rewrites the mean squared error of any optimally scaled motion

estimator in terms of its correlation coefficient with the velocity. All motion estimators considered in

this paper are optimally scaled, and we find the correlation coefficient to be more intuitive than the

mean squared error. We thus always report the performance of each motion estimator in terms of the

correlation coefficient between the true and estimated velocity.

Model fitting procedure
We fit the linear weighting parameters in the models of Figures 1I, 3A, 4A,C,D to maximize the

estimation accuracy over a simulated ensemble of naturalistic motions. The formulas provided in

subsequent sections of the ‘Materials and methods’ will cast each motion estimation scheme as a

linear combination of a variety of motion predictors,

ve = ∑
i
wixi;

where the xi are nonlinear combinations of fðf pV1Þ;   ðgpV1Þ;   ðf pV2Þ;   ðgpV2Þ;   ðf pV3Þ;   ðgpV3Þg that

depend on the model architecture, and the wi are associated weighting coefficients. We chose the

weights to minimize the mean squared error between the true and predicted velocity, which is the

standard scenario considered by ordinary least-squares regression. The same weights maximize

the correlation coefficient between the true and predicted velocity, and we typically present model

accuracies as correlation coefficients.

We used twofold cross-validation to protect against over-fitting. In particular, we randomly divided

the ensemble of naturalistic motions into a training set of 500,000 symmetrically paired examples and

a testing set of the remaining 500,000 examples. We determined the weighting coefficients by

minimizing the empirical error over the training set, and we reported accuracies over the test set. To

estimate error bars for each model’s accuracy, we computed twenty random divisions of the

naturalistic motion ensemble and calculated the standard deviation of the estimation accuracy.

Model responses to glider stimuli
We generated 25 random instantiations of each glider stimulus considered by our previous

experimental work (Figure 1F, duration = 3 s, update rate = 40 Hz, pixel size = 5˚) (Hu and Victor,

2010; Clark et al., 2014). We evaluated the response of each model to these stimuli by averaging the

outputs of 60 identical local motion estimators (each separated by 5.1˚) over the last two seconds of

visual stimulation. Glider predictions were equal and opposite for the left and right variants of the

stimuli, so we pooled leftward and rightward stimuli in all figures (Figure 1F shows the rightward

variants). We scaled each model’s output such that the average response to the positive 2-point glider

was 1. All figures associated with glider responses show the mean and standard error of each model’s

response across the 25 glider instantiations.

Front-end nonlinearity model
The model in Figure 2A replaces the linear photoreceptor signals, V1 and V2, with nonlinear

photoreceptor signals
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yi = hðViÞ;
where h is some nonlinear function. Thus, the motion estimate from the front-end nonlinearity

model is

F = ðf *y1Þðg*y2Þ− ðg*y1Þðf *y2Þ:
To implement the contrast equalizing nonlinearity, we replaced values of ViðtÞ by their rank-order

(scaled and shifted to range between −1 and +1). Note that all ViðtÞ were sorted together (i.e.,

including all spatial points, temporal points, and simulated naturalistic motions). When multiple ViðtÞ
had the same value, they were given the same rank. To implement binarizing nonlinearities, we again

sorted the ViðtÞ and found the values corresponding to the threshold locations. For example, to

calculate the binarizing nonlinearity with two steps (Appendix 4): (i) we found the ViðtÞ values

corresponding to the 25th and 75th percentiles; (ii) signals below the 25th percentile or above the 75th

percentiles were assigned the value of −1; and (iii) signals between 25th and 75th percentiles were

assigned the value of +1. To implement the Gaussianizing nonlinearity, we again rank-ordered the ViðtÞ
(scaled to range between 0 and 1) and applied the inverse Gaussian cumulative distribution function to

these ranks. The HRC is the special case of this model where the front-end nonlinearity is linear.

Weighted 4-quadrant model
The weighted 4-quadrant model in Figure 3A separately correlates bright and dark signals.

Mathematically, it is

Q= ∑a∈f+;−g∑b∈f+;−g w
ðQÞ
ab Qab;

where wðQÞ
ab are adjustable weights that parameterize the model,

Qab = ½ðf *V1Þ�a½ðg*V2Þ�b − ½ðg*V1Þ�b½ðf *V2Þ�a;
½x�+ is equal to x when x is positive and zero otherwise, and ½x�− is equal to x when x is negative and

zero otherwise. The HRC is the special case of this model where wðQÞ
++ =wðQÞ

+− =wðQÞ
−+ =wðQÞ

−− .

Non-multiplicative nonlinearity model
The non-multiplicative nonlinearity model in Figure 4A replaces the HRC’s multiplication step with a

more flexible two-dimension nonlinearity. In particular, it is

N = ηððf *V1Þ; ðg*V2ÞÞ− ηððf *V2Þ; ðg*V1ÞÞ;
where we approximate the nonlinearity, η, as a fourth-order polynomial

ηðx; yÞ= ∑4
i=0∑

4−i
j=0 w

ðNÞ
ij xiyj;

and wðNÞ
ij are adjustable weights that parameterize the model. We include terms up to fourth order

in this model to ensure that it is flexible enough to describe the published glider response data.

In particular: (i) the second-order terms accommodate responses to 2-point glider stimuli; (ii) the third-

order terms accommodate parity-inverting responses to 3-point glider stimuli; and (iii) the fourth-

order terms enable the model to respond with unequal magnitude to positive and negative parity

3-point glider stimuli (Figure 4—figure supplement 1). Thus, this model has 14 parameters. The HRC

is the special case of this model where only wðNÞ
11 is nonzero.

Unrestricted nonlinearity model
Here we model the 4-dimensional nonlinearity in Figure 4C as a fourth-order polynomial of the four

filtered signals in the HRC. In general, this motion estimator is

S= ∑4
i=0 ∑

4−i
j=0∑

4−i−j
k=0 ∑4−i−j−k

l=0 wðSÞ
ijklðf *V1Þiðg*V1Þjðf *V2Þkðg*V2Þl;
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where wðSÞ
ijkl are adjustable weights that parameterize the model, and we set wðSÞ

0000 = 0 because this term

has no utility for naturalistic motion estimation. Thus, this model has 69 parameters. The HRC is the

special case of this model where wðSÞ
1001 = −wðSÞ

0110 ≠ 0, and all other parameters are zero.

Extra input nonlinearity model
Here we model the 6-dimensional nonlinearity in Figure 4D as a fourth-order polynomial of the six

filtered signals in two neighboring HRCs. In general, this motion estimator is

E= ∑4
i=0 ∑

4−i
j=0∑

4−i−j
k=0 ∑4−i−j−k

l=0 ∑4−i−j−k−l
m=0 ∑4−i−j−k−l−m

n=0 wðEÞ
ijklmnðf *V1Þiðg*V1Þj

× ðf *V2Þkðg*V2Þlðf *V3Þmðg*V3Þn;
where wðEÞ

ijklmn are adjustable weights that parameterize the model, and we set wðEÞ
000000 = 0 because this

term has no utility for naturalistic motion estimation. Thus, this model has 209 parameters. The

average of two neighboring HRCs is the special case of this model where

wðEÞ
100100 = −wðEÞ

011000 =wðEÞ
001001 =−wðEÞ

000110 ≠ 0, and all other parameters are zero.

Lasso regression for predictor selection
Lasso regression augments the squared error with an L1 penalty on nonzero weighting coefficients

that favors sparse solutions (Tibshirani, 1996). We used lasso regression to identify subsets of

predictors that might enable accurate motion estimation (Figure 5A). Once we identified a predictor

subset using lasso regression, we refit the nonzero model weights using ordinary least squares

regression (i.e., without the weight penalty).
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Appendix 1

Visual signatures of motion.

The pattern of light that stimulates the retina encodes information about the relative motion

between the retina and its visual environment. The manner in which this information is encoded

depends on the geometry of the photoreceptor array, the statistics of self-motion, and the

statistics of the visual environment. The principal goal of this paper is to illustrate several ways

that the brain’s nonlinear processing of visual motion signals might be tuned to reflect specific

features of the natural visual environment. We thus begin by enumerating some computational

signatures of visual motion in natural environments, thereby exposing a diversity of stimulus

features that visual system nonlinearities might aim to extract.

In the real world, animals encounter visual environments that are intricately structured and far

from random (Appendix figure 1A) (Ruderman and Bialek, 1994; van Hateren and van der

Schaaf, 1998; Geisler, 2008). When an animal rotates with constant angular velocity through

the environment, the spatiotemporal response profile of the photoreceptor array encodes the

velocity of self-motion through the slope of oriented streaks in space-time (front face,

Appendix figure 1B) (Adelson and Bergen, 1985). Thus, a visual system with a dense array of

noiseless photoreceptors could extract the angular velocity of an arbitrary image by computing

the ratio of temporal and spatial derivatives (Potters and Bialek, 1994). The statistics of the

image ensemble become relevant once multiple interpretations of the sensory world become

logically consistent with the photoreceptor data. In particular, the optimal motion estimator

depends on the statistics of the image ensemble when photoreceptors have noise (Potters and

Bialek, 1994; Fitzgerald et al., 2011), and a nonzero spacing between photoreceptors

introduces ambiguity via aliasing (Potters and Bialek, 1994). In these cases, the animal can use

prior information regarding the sensory environment and its motion in order to weigh the

plausibility of each sensory interpretation.
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Appendix figure 1. Motion transforms spatial correlations into temporal correlations. (A) An example

natural image (van Hateren and van der Schaaf, 1998). (B) When a natural image (top face) moves to the

right, streaks in space-time (front face) indicate the direction and speed of the motion. Alternatively, motion

influences the temporal correlation structure of visual signals (side face). (C) Second-order correlation

function between pairs of spatially separated contrast signals (across the natural image ensemble [van

Hateren and van der Schaaf, 1998]). (D) For constant velocity motion, the temporal correlation function

between a pair of spatially separated points is shifted and stretched relative to the spatial correlation

function. We separated the two points by Drosophila’s photoreceptor spacing (5.1˚). (E) Example third-order

spatial correlation function involving two points in space. (F) As with pairwise correlations, higher-order

temporal correlations between spatially separated visual signals are shifted and stretched (relative to

higher-order spatial correlation functions) in a manner that indicates the speed and direction of motion.

DOI: 10.7554/eLife.09123.015

Full field motion transforms spatial features (top face, Appendix figure 1B) into temporal

features (side face, Appendix figure 1B) in a manner that depends upon the velocity of motion.

Consequently, one can also think about the visual signatures of motion in terms of

spatiotemporal correlations between photoreceptors. The luminance contrast encoded by the

ith photoreceptor is CiðtÞ= ðIiðtÞ− I0Þ=I0, where IiðtÞ is the luminance intensity seen by the ith
photoreceptor at time t and I0 is the average luminance intensity over the visual field. Thus, the
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average contrast is zero, and the simplest correlation function corresponds to the product of

two spatially separated contrast signals. Measured over an ensemble of natural images, this 2-

point correlation function had a global maximum at zero spatial offset (Appendix figure 1C).

Consequently, the velocity of motion is encoded by the peak of the temporal cross-correlation

function between two neighboring photoreceptors, which occurs at the temporal offset that

equals the photoreceptor spacing (5.1˚ for Drosophila) divided by the velocity of motion

(Appendix figure 1D). Natural images also contain many higher-order correlations (Ruderman

and Bialek, 1994; Geisler, 2008). For instance, the nonzero skewness of natural images implies

that the third-order correlation that multiplies the contrast at one point with the squared

contrast at a neighboring point also has a peak at zero spatial offset (Appendix figure 1E).

Correspondingly, the peak of the temporal 3-point correlation function between neighboring

photoreceptors encodes the velocity of motion (Appendix figure 1F). This argument

generalizes to nth-order correlation functions when the ensemble of natural images has a

nonzero nth moment. Note that this argument does not necessarily imply that a motion

estimator would benefit from the incorporation of all nonzero correlation functions, because the

velocity signals provided by one correlation function could be redundant with those provided

by others.

Importantly, photoreceptor correlation functions also encode velocity information away from

their peaks. For example, the velocity of motion influences the widths of the temporal cross-

correlation functions between pairs of photoreceptors (Appendix figure 1D,F). To see this,

note that the values of the temporal correlation functions at zero temporal offsets are velocity

independent, whereas the peak locations are closer to zero for larger speeds (Appendix figure

1D,F). This implies a more rapid falloff for higher speeds. This fundamental effect occurs

because nearby points are more correlated in natural environments and photoreceptors rapidly

survey distant points when the speed of motion is high.

The description above illustrates how visual motion becomes encoded in photoreceptor

correlations. A central goal of research in visual motion estimation is to understand how neural

circuits invert (or decode) that encoding of velocity. Just as a broad class of functions can be

represented as a power series, a broad class of motion estimators can be represented as a

Volterra series (Poggio and Reichardt, 1980; Fitzgerald et al., 2011). Each term in the

Volterra series can be interpreted as a multipoint correlator that decodes velocity information

from a specific correlation function (Fitzgerald et al., 2011). For example, the HRC and the

motion energy model are 2-point correlators that decode velocity from 2-point correlations,

whereas the Bayes optimal motion estimator capitalizes on a wider variety of correlation

functions (Potters and Bialek, 1994; Fitzgerald et al., 2011). Because multipoint correlators

relate intuitively to measurable properties of the image ensemble, we will find that

decomposing a motion estimator in terms of multipoint correlators is often illuminating.

Moreover, we will use multipoint correlators as a common basis to compare the computations

performed by mechanistically distinct models.
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Appendix 2

Accuracy of 2-point correlators.

In this section we derive an expression for the accuracy of a general 2-point correlator in terms

of the statistics of naturalistic motion.

We consider a general 2-point correlator that temporally correlates visual signals from the

spatial points i and j. Mathematically, this estimator has the form

vð2Þe ðtÞ=
Z

dt1

Z
dt2k

ð2Þ
i;j ðt1; t2ÞViðt− t1ÞVjðt− t2Þ; (1)

where the 2-point kernel, kð2Þi;j ðt1; t2Þ, defines the correlator by specifying how each 2-point

correlation contributes to the motion estimate. We model the response of the ith

photoreceptor as

ViðtÞ=
Z

dτTðτÞ
Z

dθMðθ− θiÞc
�
θ−

Z t−τ

0
dt′vðt′Þ

�
; (2)

where T is a temporal integration kernel, M is the photoreceptor’s spatial acceptance profile, θi
is the location of the ith photoreceptor, cðθÞ is the spatial contrast pattern of the visual world,

and νðtÞ is the time-dependent velocity. This formula simplifies to the formula in the ‘Materials

and methods’ when νðtÞ is time-independent. If T is an invertible linear filter, then a more

convenient representation of the photoreceptor signals is

UiðtÞ=C

�
θi −

Z t

0
dt′  vðt′Þ

�
; (3)

where Ui = T−1pVi, C =M*c, and * is the convolution operator (Potters and Bialek, 1994). We

can rewrite the 2-point correlator in this representation as

vð2Þe ðtÞ=
Z

dt1

Z
dt2κ

ð2Þ
i;j ðt1; t2ÞUiðt− t1ÞUjðt− t2Þ; (4)

where

κð2Þi;j ðt1; t2Þ≡
Z

dt3Tðt3Þ
Z

dt4Tðt4Þkð2Þi;j ðt1 − t3; t2 − t4Þ (5)

is the 2-point kernel that converts correlations in the U variables to a velocity estimate.

Recall that we quantify the performance of visual motion estimators based on the mean

squared error between the true and estimated velocities

ϵ≡ Æ
�
vð2Þe ðtÞ− vðtÞ

�2
æ= σ2v − 2ÆvðtÞvð2Þe ðtÞæ+ Æ

�
vð2Þe ðtÞ

�2
æ; (6)

where σν = 90˚/s is the standard deviation of the velocity distribution. For estimators that are

scaled to minimize their mean squared error (‘Materials and methods’), this formula can be

rewritten as

ϵ= σ2v
�
1− r2

�
; (7)

where

r=
ÆvðtÞvð2Þe ðtÞæffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ÆðvðtÞÞ2æÆ
�
vð2Þe ðtÞ

�2
æ

r =
ÆvðtÞvð2Þe ðtÞæ

σv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ
�
vð2Þe ðtÞ

�2
æ

r (8)

is the correlation coefficient between the estimated and true velocities. Thus, minimizing the

mean squared error is mathematically equivalent to maximizing the correlation coefficient if all

motion estimators are correctly scaled. We find the correlation coefficient to be a more intuitive
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error metric than the mean squared error, so many of our results will be presented in terms of

correlation coefficients.

The numerator of the correlation coefficient is determined by the second-order statistics of the

image ensemble,

ÆvðtÞvð2Þe ðtÞæ=
Z

dt1

Z
dt2κ

ð2Þ
i;j ðt1; t2ÞÆvðtÞUiðt− t1ÞUjðt− t2Þæ;

=
Z

dt1

Z
dt2κ

ð2Þ
i;j ðt1; t2ÞÆvðtÞC ð2Þ

�
Δij +

Z t2

t1
dt′  vðt′Þ

�
æv; (9)

where Δij is the angular separation between the ith and jth photoreceptors, and

C ð2ÞðΔÞ≡ ÆC ðxÞC ðx+ΔÞæC (10)

is the 2-point correlation function over the ensemble of spatially filtered natural scenes. Note

that C ð2Þ is independent of x because reasonable image ensembles are translationally invariant.

Also note that the 2-point correlation function of filtered natural images is related to the

correlation function of unfiltered images by

C ð2ÞðΔÞ=
Z

dx′Mðx′Þ
Z

dx′′Mðx′′ÞÆcðx− x′Þcðx+Δ− x′′Þæ=
�
ðM*MÞ*Cð2Þ

�
ðΔÞ; (11)

where Cð2ÞðΔÞ is the correlation function of unfiltered images, and we’ve assumed that M is a

symmetric function. We model M as Gaussian with FWHM of 5.7˚, so M*M is also Gaussian with

FWHM of
ffiffiffi
2

p
×5:7∘ =8:1∘.

On the other hand, the denominator of the correlation coefficient is determined by fourth-order

statistics of the image ensemble,

Æ
�
vð2Þe ðtÞ

�2
æ=
Z

dt1

Z
dt2

Z
dt3

Z
dt4κ

ð2Þ
i;j ðt1; t2Þκð2Þi;j ðt3; t4Þ

× ÆUiðt− t1ÞUjðt− t2ÞUiðt− t3ÞUjðt− t4Þæ
=
Z

dt1

Z
dt2

Z
dt3

Z
dt4κ

ð2Þ
i;j ðt1; t2Þκð2Þi;j ðt3; t4Þ

× ÆC ð4Þ
�
Δij +

Z t2

t1
dt′  vðt′Þ;

Z t3

t1
dt′  vðt′Þ;Δij +

Z t4

t1
dt′  vðt′Þ

�
æv; (12)

where

C ð4ÞðΔ1;Δ2;Δ3Þ= ÆC ðxÞC ðx+Δ1ÞC ðx+Δ2ÞC ðx+Δ3ÞæC (13)

is the 4-point correlation function of the ensemble of filtered natural images. Notice that the

second argument of C ð4Þ in Equation 12 lacks the additive factor of Δij because Uiðt− t1Þ and
Uiðt− t3Þ correspond to the same point in space. As above, C ð4Þ is related to the unfiltered

4-point correlation function through a fourfold application of the photoreceptor spatial

acceptance filter.

The preceding analysis shows that only the second-order and fourth-order statistics of the

natural image ensemble contribute to the correlation coefficient between an arbitrary 2-point

correlator and the true velocity. The same quantities also determine the mean squared error.

Thus, the second-order and fourth-order statistics of the image ensembles are the critical

determinants of a 2-point correlator’s motion estimation accuracy. Note that both the HRC and

the motion energy model fall into this important class of visual motion estimators, so our

analysis is also important for understanding visual motion estimation by vertebrates.
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Appendix 3

Motion estimation without spatial correlations—the role
of kurtosis on the accuracy of 2-point correlators.

In this section, we apply the results of Appendix 2 to the special case of normally distributed

velocities and spatially uncorrelated image ensembles. This calculation reveals an important

role for kurtosis in motion estimation, and we discuss how nonlinearities in the early visual

system could cope with highly kurtotic naturalistic inputs.

In this section, we assume that the velocity is time-independent (i.e., νðtÞ= νÞ and normally

distributed

PvðvÞ= 1ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p e−v
2=ð2σ2vÞ: (14)

We also assume that the image ensemble is spatially uncorrelated. By this, we mean that the

luminance contrast at each point in space is statistically independent of the luminance contrast

at all other points in space. Thus, the second-order correlation function is

C ð2ÞðΔÞ= σ2CδðΔÞ; (15)

where σC is the standard deviation of the luminance contrast, and δðΔÞ is the Dirac delta-

function. The fourth-order correlation function is

C ð4ÞðΔ1;Δ2;Δ3Þ= κ4σ4CδðΔ1ÞδðΔ2ÞδðΔ3Þ
+σ4CðδðΔ1ÞδðΔ2 −Δ3Þ+ δðΔ2ÞδðΔ1 −Δ3Þ+ δðΔ3ÞδðΔ1 −Δ2ÞÞ; (16)

where k4 is the excess kurtosis of the contrast distribution. The excess kurtosis is zero for

normally distributed contrasts. It can either be positive or negative for other contrast

distributions. Note that we define the kurtosis of a probability distribution to be its fourth

central moment normalized by the square of its second central moment. Thus, the kurtosis of a

normal distribution is 3. We caution readers that some other sources use ‘kurtosis’ to refer to

the excess kurtosis.

With these assumptions, the signal term represented by Equation 9 is

ÆvðtÞvð2Þe ðtÞæ= σ2CΔijffiffiffiffiffiffiffiffiffiffi
2πσ2v

p Z
dt1

Z
dt2κ

ð2Þ
i;j ðt1; t2Þ

e−Δ
2
ij=ð2σ2v ðt2 − t1Þ2Þ

ðt2 − t1Þjt2 − t1j ; (17)

and the noise term represented by Equation 12 is

Æ
�
vð2Þe ðtÞ�2æ= σ4C

Δij
ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p Z
dt1

Z
dt2

Z
dt3

Z
dt4κ

ð2Þ
i;j ðt1; t2Þκð2Þi;j ðt3; t4Þ

×
�
e−Δ

2
ij=ð2σ2v ðt1 − t4Þ2Þδððt1 − t4Þ− ðt3 − t2ÞÞ+ e−Δ

2
ij=ð2σ2v ðt1 − t2Þ2Þδððt1 − t2Þ− ðt3 − t4ÞÞ

+ κ4
jt1 − t2j
Δij

e−Δ
2
ij=ð2σ2v ðt1 − t2Þ2Þδðt3 − t1Þδðt4 − t2Þ

�
; (18)

where we’ve assumed that the 2-point correlator is mirror anti-symmetric,

κð2Þi;j ðt1; t2Þ=−κð2Þi;j ðt2; t1Þ; (19)

in order to ignore contributions from static signals. This mirror-symmetry assumption holds for

the HRC and the motion energy model. Since the denominator of the correlation coefficient is

set by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æðvð2Þe ðtÞÞ2æ

q
, both the signal and the noise are proportional to σ2C. Thus, the only

remaining dependence on the image ensemble is through the excess kurtosis. Note that
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dÆ
�
vð2Þe ðtÞ�2æ
dκ4

=
σ4C

Δ2
ij

ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p Z
dt1

Z
dt2
�
κð2Þij ðt1; t2Þ

�2
jt1 − t2je−Δ2

ij=ð2σ2v ðt1 − t2Þ2Þ >0: (20)

Thus, the correlation coefficient is maximized by making k4 as small as possible.

In conclusion, if the image ensemble is spatially uncorrelated (at second and fourth-order), then

the image ensemble only affects the correlation coefficient between the velocity and a 2-point

correlator through its kurtosis. The best accuracy is achieved when the kurtosis is minimized. In

reality, the assumption that the image ensemble is spatially uncorrelated is clearly wrong.

Natural images are strongly correlated, and even if they weren’t, they’d become correlated

once they are filtered by the photoreceptors’ spatial acceptance filter. Nevertheless, Figure 2E

empirically shows that introducing several front-end nonlinearities that decrease the kurtosis

also improve the accuracy of naturalistic motion estimation. Thus, kurtosis provides a useful

guide for the design of neuronal nonlinearities. On the other hand, Figure 2D,E demonstrate

that it’s too simplistic to assume that the kurtosis is the only relevant factor for the accuracy of a

2-point correlator. As we’ll discuss in the next section, spatial correlations in the image

ensemble also affect the accuracy of 2-point correlators.
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Appendix 4

The HRC benefits from spatially correlated input signals.

When we applied a contrast-equalizing or binarizing nonlinearity to naturalistic inputs before

evaluating the HRC, we found that both nonlinearities substantially improved the accuracy of

the HRC (Figure 2E). Interestingly, contrast equalization improved the accuracy of the HRC

more than binarization (Figure 2E), even though it produced outputs with greater kurtosis. The

reason for this is that natural images are correlated (Appendix figure 1), and the accuracy of

the HRC over a general image ensemble depends on the ensemble’s spatial correlation

structure (Appendix 2). Binarization attenuated spatial correlations more strongly than contrast

equalization over the natural image ensemble (Figure 2—figure supplement 1), which leads us

to hypothesize that correlations present in the natural image ensemble might benefit the HRC’s

performance. In Appendix 5 we will provide theoretical support for this idea. Here we begin

with a less mathematical argument that also supports our hypothesis.

A comparison between the estimation performance of binarizing and equalizing front-end

nonlinearities was complicated by the fact that the models produced outputs that differed in

both their point statistics and their correlation structures. To gain more direct insight into how

spatial correlations affect motion estimation performance, it would be helpful to compare front-

end nonlinearity models that differ only through their output correlation structures. We

implemented this comparison using a family of binarizing front-end nonlinearities that undergo

multiple steps between +1 and −1 (Appendix figure 2A). Although these nonlinearities are not

physiologically realistic, they are conceptually useful because they each produced a stimulus

ensemble that minimized the kurtosis yet achieved distinct correlation structures (Appendix

figure 2B). These nonlinearities thus allow us to assess directly whether spatial decorrelation of

inputs degrades the motion estimation performance of the HRC. We found that each binarizing

front-end nonlinearity model outperformed the original HRC (Appendix figure 2C). However,

we found that the magnitude of the improvement decreased with the number of steps

(Appendix figure 2C). Since spatial cross-correlations also decreased as a function of the

number of steps (Appendix figure 2B), these results support our hypothesis that the

correlations present in natural visual inputs aid the functionality of the standard HRC.
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Appendix figure 2. Correlations in binarized natural images. (A) We transformed each image in the van

Hateren natural image database (van Hateren and van der Schaaf, 1998) with several binarizing

nonlinearities. To implement the simplest binarizing nonlinearity, we set all pixels to +1 or −1 depending on

whether that pixel exceeded or fell below the median intensity in the image. For the nonlinearity with two

steps, the thresholds were at the 25th and 75th intensity percentiles. For the nonlinearity with three steps,

the thresholds were at the 25th, 50th, and 75th intensity percentiles. When a pixel intensity exactly equaled

a threshold, we considered its value below threshold. Binary nonlinearities with a larger number of steps

produced grainier images that indicate a spatial decorrelation of the transformed image. (B) We computed

second-order spatial correlation functions across the nonlinearly transformed natural image ensemble. This

confirmed that each step in the binarizing nonlinearity further decorrelated the image ensemble. (C) In

addition to decreasing the spatial extent of correlations, a larger number of transitions also degraded the

performance of the front-end nonlinearity model.

DOI: 10.7554/eLife.09123.016

The HRC correlates two signals that are offset in space and differentially delayed in time. One

intuition that researchers often apply to this computation is that the correlation operation

effectively detects times when two signals that are offset in space and time are equal. However,

a motion estimator that strictly obeyed this intuition would be agnostic to the spatial correlation

structures present in the input signals, and our results show that the HRC is not (see also

Appendix 5). Instead, the HRC also generates motion signals when its two input channels are

imperfectly aligned, and these signals depend strongly on the correlation structure of the

inputs (Appendix figure 1D). Our results thus show that the HRC’s ability to detect imperfect

coincidences contributes significantly to its performance as a motion estimator, as was

suggested intuitively in Appendix 1.
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Appendix 5

Motion estimation with Gaussian image statistics—the
role of spatial correlations on the accuracy of 2-point
correlators.

In this section, we apply the results of Appendix 2 to the special case of normally distributed

velocities and normally distributed image ensembles. This model formalizes how spatial

correlations in the natural world affect the accuracy of motion estimation by 2-point correlators

and shows how spatial decorrelation can adversely affect estimation accuracy. For example,

we’ll show that the simplest HRC is unable to extract motion signals from high frequency

components of the image ensemble, yet those components still lead to variability in the motion

estimator. Thus, this HRC works best when the image ensemble is correlated in a manner that

avoids high-frequency components in the signal, and spatial low-pass filtering at the

photoreceptor level can help to eliminate the high-frequency image components that hurt the

HRC’s accuracy.

Here we use the same velocity distribution that we used in Appendix 3 (i.e., Equation 14).

However, we now allow the two point correlation function to have arbitrary structure

C ð2ÞðΔÞ= ∑
k=0

∞
SkcosðkΔÞ; (21)

where Sk are the Fourier coefficients for C ð2ÞðΔÞ, and we have noted that the image ensemble is

2π-periodic. Note that Sk is called the power spectrum of the image ensemble, and

uncorrelated ensembles correspond to the special case where Sk = constant. With these

assumptions

ÆvðtÞC ð2Þ
�
Δij +

Z t2

t1
dt′  vðt′Þ

�
æv = ∑

k=0

∞
SkÆvcos

�
k
�
Δi;j + vðt2 − t1Þ

��
æv: (22)

By evaluating the integral, we find that this velocity expectation is

Ævcos
�
k
�
Δi;j + vðt2 − t1Þ

��
æv = kðt1 − t2Þσ2vsin

�
kΔij

�
e−

1
2k

2ðt2 − t1Þ2σ2v : (23)

Thus, if we define

γk = kσ2vsin
�
kΔij

� Z
dt1

Z
dt2κ

ð2Þ
ij ðt1; t2Þðt1 − t2Þe−1

2k
2ðt2 − t1Þ2σ2v ; (24)

then

ÆvðtÞvð2Þe ðtÞæ= ∑
k=0

∞
γkSk: (25)

Each frequency component of the image ensemble linearly contributes to the correlation

between the 2-point correlator’s response and the velocity. The weight of each frequency

component is determined by the structure of the 2-point correlator and the width of the velocity

distribution.

We compute the fourth-order moment of the image ensemble using Wick’s theorem for

Gaussian moments, which says

ÆC ðx1ÞC ðx2ÞC ðx3ÞC ðx4Þæ= ÆC ðx1ÞC ðx2ÞæÆC ðx3ÞC ðx4Þæ+ ÆC ðx1ÞC ðx3ÞæÆC ðx2ÞC ðx4Þæ
+ ÆC ðx1ÞC ðx4ÞæÆC ðx2ÞC ðx3Þæ: (26)

This immediately implies that
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C ð4ÞðΔ1;Δ2;Δ3Þ=C ð2ÞðΔ1ÞC ð2ÞðΔ3 −Δ2Þ+C ð2ÞðΔ2ÞC ð2ÞðΔ3 −Δ1Þ
+C ð2ÞðΔ3ÞC ð2ÞðΔ2 −Δ1Þ: (27)

Once again, it’s convenient to rewrite this expression in the Fourier domain

C ð4ÞðΔ1;Δ2;Δ3Þ= ∑
k1 = 0

∞
∑

k2 = 0

∞
Sk1Sk2ðcosðk1Δ1Þcosðk2ðΔ3 −Δ2ÞÞ

+ cosðk1Δ2Þcosðk2ðΔ3 −Δ1ÞÞ+ cosðk1Δ3Þcosðk2ðΔ2 −Δ1ÞÞÞ: (28)

With these assumptions

ÆC ð4Þ
�
Δij +

R t2
t1
dt′  vðt′Þ; R t3t1 dt′  vðt′Þ;Δij +

R t4
t1
dt′  vðt′Þ

�
æv

= ∑
k1= 0

∞
∑
k2= 0

∞
Sk1Sk2 Æcos

�
k1
�
Δij + vðt2 − t1Þ

��
cos
�
k2
�
Δij + vðt4 − t3Þ

��
+cosðk1vðt3 − t1ÞÞcosðk2vðt4 − t2ÞÞ
+cos

�
k1
�
Δij + vðt4 − t1Þ

��
cos
�
k2
�
Δij + vðt2 − t3Þ

��
æv: (29)

We evaluate the expectations over velocity by noting that each has the form

Æcosðk1ðΔ+ vδ1ÞÞ  cosðk2ðΔ+ vδ2ÞÞæv =
1
2
e−

1
2ðk1δ1 + k2δ2Þ2σ2v �cosðΔðk1 + k2ÞÞ

+e2k1k2δ1δ2σ
2
vcosðΔðk1 − k2ÞÞ

�
(30)

for some spatial offset Δ and temporal offsets fδ1;   δ2g. Thus, if we define

Γk1k2 =
Z

dt1

Z
dt2κ

ð2Þ
ij ðt1; t2Þ

Z
dt3

Z
dt4κ

ð2Þ
ij ðt3; t4Þ

0
@1
2
e−

1
2ðk1ðt2 − t1Þ+ k2ðt4 − t3ÞÞ2σ2v

�
cos
�
Δijðk1 + k2Þ

�
+ e2k1k2ðt2−t1Þðt4−t3Þσ

2
vcos

�
Δijðk1 − k2Þ

��

+
1
2
e−

1
2ðk1ðt4 − t1Þ+ k2ðt2 − t3ÞÞ2σ2v

�
cos
�
Δijðk1 + k2Þ

�
+ e2k1k2ðt4−t1Þðt2−t3Þσ

2
vcos

�
Δijðk1 − k2Þ

��

+
1
2
e−

1
2ðk1ðt3 − t1Þ+ k2ðt4 − t2ÞÞ2σ2v

�
1+ e2k1k2ðt3−t1Þðt4−t2Þσ

2
v

�1A;

(31)

then

Æ
�
vð2Þe ðtÞ

�2
æ= ∑

k1= 0

∞
∑
k2= 0

∞
Γk1k2Sk1Sk2 : (32)

Power spectrum components contribute to the 2-point correlator’s variance quadratically.

Putting these pieces together, the expected squared error achieved by a 2-point correlator is a

quadratic function of the power spectrum

ϵ= σ2v − 2∑
k=0

∞
γkSk + ∑

k1 = 0

∞
∑

k2 = 0

∞
Γk1k2Sk1Sk2 : (33)

We’re interested to know whether spatial correlations can enhance the accuracy of the 2-point

correlator. This will be the case unless a uniform power spectrum minimizes ϵ. Note that every

physically meaningful power spectrum is non-negative

Sk ≥ 0: (34)
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Thus, the minimum of ϵ either occurs at an extremum point or on the boundary of admissible

solutions. If the minimum occurs on the boundary, then a subset of the Sk are exactly equal to

zero. In particular, the power spectrum would not be constant, which implies that the image

ensemble would be spatially correlated. At an extremum point, we must find

0=
∂ϵ
∂Sk

=−2γk +2∑
k′=0

∞
Γkk′Sk′ (35)

for every k. A uniform power spectrum can only satisfy this condition if

γk = β∑
k′=0

∞
Γkk′; (36)

where β>0 is the (constant) value of each power spectrum component. This is generally not the

case, so correlations exist that would help typical 2-point correlators.

For example, the simplest HRC, which replaces the low-pass and high-pass filters with pure

time delays, is

R
~
=AðU1ðt− τÞU2ðtÞ−U1ðtÞU2ðt− τÞÞ; (37)

where A is a constant with units of ˚/s. For this model,

κð2Þ1;2ðt1; t2Þ=Aðδðt1 − τÞδðt2Þ− δðt1Þδðt2 − τÞÞ: (38)

Substituting this expression into the above formulas, we find

γk =2Akτσ2vsinðkΔ0Þe−1
2k

2τ2σ2v (39)

and

Γk1k2 =A2

0
@3  sinðk1Δ0Þ  sinðk2Δ0Þ

0
@e−

1
2ðk1 − k2Þ2τ2σ2v − e−

1
2ðk1 + k2Þ2τ2σ2v

1
A

+ð1− cosðk1Δ0Þ  cosðk2Δ0ÞÞ
0
@2− e−

1
2ðk1 − k2Þ2τ2σ2v − e−

1
2ðk1 + k2Þ2τ2σ2v

1
A
1
A; (40)

where Δ0 is the spacing between adjacent photoreceptors. Note that

lim
k→∞

γk =0: (41)

On the other hand,

lim
k2≫k1

Γk1k2 = 2A2ð1− cosðk1Δ0Þcosðk2Δ0ÞÞ: (42)

This does not approach zero, even for large values of k1. Therefore, ∑​ ∞
k′=0Γkk′ diverges and

γk ≠ β∑​ ∞
k′=0Γkk′. In this model, high frequency components lack signal but contribute noise. It’s

helpful if these frequency components are absent from the image ensemble. Future work

should more fully investigate the role of spatial correlations in naturalistic motion estimation.
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Appendix 6

Front-end nonlinearities give the HRC access to higher-
order correlations.

The response of the front-end nonlinearity model to a 3-point glider stimulus is determined by

the higher-order correlations that it detects in the stimulus. Furthermore, we argued in

Appendix 1 and Figure 1I that higher-order correlations can contribute to the accuracy of visual

motion estimators. We now describe how front-end nonlinearities provide pair-correlation

mechanisms with access to certain types of higher-order correlations.

We suppose that the front-end nonlinearity, denoted h, has a power series expansion:

hðxÞ= ∑
n=0

∞
hnxn: (43)

Then the cross-correlation function between two non-linearly transformed input streams,

denoted y1 and y2, is

Æy1ðtÞy2ðt+ τÞæ= ÆhðV1ðtÞÞhðV2ðt+ τÞÞæ= ∑
n;m=0

∞
hnhmÆVn

1 ðtÞVm
2 ðt+ τÞæ; (44)

where V1 and V2 are linear photoreceptor signals. This substitution explicitly demonstrates that

the front-end nonlinear transformation enables pair correlation mechanisms to incorporate

higher-order correlations of the form ÆVn
1 ðtÞVm

2 ðt+ τÞæ. The choice of nonlinearity specifies the

expansion coefficients, hn, which in turn determines the pattern of higher-order correlations that

the pair correlator incorporates into its velocity estimate. For example, sensitivity to odd-

ordered correlations demands that hn be large for some even values of n. These expansion

coefficients would manifest themselves in the structure of the front-end nonlinearity as

asymmetries between positive and negative contrasts, but strong asymmetries were not

needed to eliminate kurtosis in natural image ensembles (Figure 2C). Inversely, one could use

this equation to determine whether a set of expansion coefficients exist that would implement a

desired series of multipoint correlators. The preceding argument implies that strongly

asymmetric front-end nonlinearities would be needed to account for the 3-point glider

responses.
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Appendix 7

Expansion of the weighted 4-quadrant model.

In this Appendix, we rewrite the weighted 4-quadrant model in a basis that isolates its dependence

on 2-point correlations, on higher-even-ordered correlations, and on two types of odd-ordered

correlations. In Appendix 8, we’ll discuss the motion estimation performance of the weighted 4-

quadrant model in this basis in order to gain insight into why performance-optimized weighted 4-

quadrant models also predict 3-point glider responses that resemble Drosophila behavior.

The weighted 4-quadrant model supposes that the input signals are segregated into four

separate streams:

Q++ = ½f *V1�+½g*V2�+ − ½g*V1�+½f *V2�+
Q+− = ½f *V1�+½g*V2�− − ½g*V1�−½f *V2�+
Q−+ = ½f *V1�−½g*V2�+ − ½g*V1�+½f *V2�−
Q−− = ½f *V1�−½g*V2�− − ½g*V1�−½f *V2�−

(45)

where Qab denotes the (ab) quadrant for a; b∈ f+; − g, ½x�+ is x for x>0 and is zero otherwise,

and ½x�− is x for x<0 and is zero otherwise. The HRC is equal to

R=Q++ +Q+− +Q−+ +Q−−: (46)

More generally, we suppose that Drosophila could estimate motion as any linear combination

of these signals, and we define the weighted 4-quadrant model as

Q=wðQÞ
++Q++ +wðQÞ

+−Q+− +wðQÞ
−+Q−+ +wðQÞ

−−Q−−; (47)

where wðQÞ
++ , w

ðQÞ
+− , w

ðQÞ
−+ , and wðQÞ

−− are linear weighting coefficients that specify the computation

performed by the model. Since this section, and the next two, focus entirely on the weighted

4-quadrant model, we simplify notation by dropping the superscript (Q).

The weighted 4-quadrant model can be rewritten in an alternate form that facilitates an

understanding of how various correlation types contribute to its motion estimates. We begin by

noting that

½x�+ =
x
2
ð1+ sgnðxÞÞ; (48)

½x�− =
x
2
ð1− sgnðxÞÞ; (49)

where sgnðxÞ is +1 for positive arguments and −1 for negative arguments. We thus see that

Qab = ½f *V1�a½g*V2�b − ½g*V1�b½f *V2�a
=
ðf *V1Þðg*V2Þ

4
ð1+ a  sgnðf *V1Þ+ b  sgnðg*V2Þ+ ab  sgnðf *V1Þsgnðg*V2ÞÞ

−
ðg*V1Þðf *V2Þ

4
ð1+ b  sgnðg*V1Þ+ a  sgnðf *V2Þ+ ab  sgnðg*V1Þsgnðf *V2ÞÞ:

(50)

Therefore, the complete weighted 4-quadrant model is

Q=
w++ +w+− +w−+ +w−−

4
ððf *V1Þðg*V2Þ− ðg*V1Þðf *V2ÞÞ

+
w++ +w+− −w−+ −w−−

4
ððf *V1Þsgnðf *V1Þðg*V2Þ− ðg*V1Þðf *V2Þsgnðf *V2ÞÞ

+
w++ −w+− +w−+ −w−−

4
ððf *V1Þðg*V2Þsgnðg*V2Þ− ðg*V1Þsgnðg*V1Þðf *V2ÞÞ

+
w++ −w+− −w−+ +w−−

4
ððf *V1Þsgnðf *V1Þðg*V2Þsgnðg*V2Þ

−ðg*V1Þsgnðg*V1Þðf *V2Þsgnðf *V2ÞÞ (51)
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This expression for the weighted 4-quadrant model groups the four weighting coefficients into

four alternate terms. The first term is proportional to a standard HRC, which computes second-

order correlations. We denote its associated coefficient as

weven=2 =
1
4
ðw++ +w+− +w−+ +w−−Þ: (52)

The second and third terms invert sign and retain magnitude under contrast inversion.

Therefore, they only compute odd-ordered correlations:

wodd =
1
4
ðw++ +w+− −w−+ −w−−Þ; (53)

wodd* =
1
4
ðw++ −w+− +w−+ −w−−Þ: (54)

The fourth term is unaffected by contrast inversion. Thus, it only computes even-ordered

correlations. We’ll soon see that the lowest-order contribution from this term is fourth-order, so

we denote its coefficient as

weven>2 =
1
4
ðw++ −w+− −w−+ +w−−Þ: (55)

These four coefficients define the correlational basis considered in Figure 3—figure

supplement 1. For example, note that Figure 3—figure supplement 1A shows the

transformation defined by Equations 52–55.

Because sgnðxÞ is a non-analytic function, it is still somewhat opaque how the weighted

4-quadrant model relates to specific higher-order correlations in the visual stimulus. We thus

rewrite sgnðxÞ as the limit of an analytic function:

sgnðxÞ= lim
β→∞

erfðβxÞ; (56)

where

erfðxÞ= 2ffiffiffi
π

p
Z x

0
dy  e−y

2
(57)

is the Gauss error function. The Gauss error function is entire, which means that it has a power

series expansion for any value x. Also note that since real biological nonlinearities are not

infinitely sharp, a more realistic weighted 4-quadrant model would fix β at a finite value. We

thus consider the follow approximation,

sgnðxÞ≈ 2ffiffiffi
π

p ∑
n=0

∞ ð−1ÞnðβxÞ2n+1
n!ð2n+1Þ =

2ffiffiffi
π

p
 
βx−

ðβxÞ3
3

+O
�
ðβxÞ5

�!
; (58)

where β∈ ð0;∞Þ. Although high-order terms might not be negligible in this expansion, the

contributions of low-order correlations to visual motion estimation are set by low-order terms.

In particular, the contributions of second, third, and fourth-order correlations to the weighted

four quadrant model are determined by the leading terms in the expansion,

F =weven=2ððf *V1Þðg*V2Þ− ðg*V1Þðf *V2ÞÞ
+wodd

2βffiffiffi
π

p
�
ðf *V1Þ2ðg*V2Þ− ðg*V1Þðf *V2Þ2

�
+wodd*

2βffiffiffi
π

p
�
ðf *V1Þðg*V2Þ2 − ðg*V1Þ2ðf *V2Þ

�

+weven>2
4β2

π

�
ðf *V1Þ2ðg*V2Þ2 − ðg*V1Þ2ðf *V2Þ2

�
+O
�
β3V5�: (59)
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Thus, the third-order term associated with wodd squares the low-pass filtered signal and might

help to account for light–dark asymmetries in the low-pass filtered signal. The third-order term

associated with wodd* squares the high-pass filtered signal. Finally, note that this formula

confirms that the lowest-order term associated with weven>2 is fourth-order.
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Appendix 8

The weighted 4-quadrant model improves motion
estimation with odd-ordered correlations.

In the main text we quantitatively characterized the weighted 4-quadrant model by discussing

its accuracy given various subsets of the four quadrants (Figure 3C). Here we consider the

performance of the weighted 4-quadrant model in the correlational basis defined in Appendix

7 and Figure 3—figure supplement 1A. These results lead to a simple interpretation of the

computation performed by performance optimized weighted 4-quadrant models.

Models that oriented all of their weight along the even = 2 axis outperformed models that

focused their weight along any other correlational axis (Figure 3—figure supplement 1B). This

reinforces the foremost importance of second-order correlations for motion estimation. In

isolation, odd-ordered correlations were weaker predictors of motion than second-order

correlations (Figure 3—figure supplement 1B). Nevertheless, the odd class well comple-

mented the HRC, and the full accuracy of the weighted 4-quadrant model was obtained by

linearly combining the even = 2 and odd correlation classes (best 2 bar, Figure 3—figure

supplement 1B). This result suggests that the weighted 4-quadrant model has two relevant

dimensions. In particular, accurate models combine an HRC with odd-ordered correlations that

account for statistical light–dark asymmetries in the HRC’s low-pass filtered branch.

Since the weighted 4-quadrant model only has four parameters, it’s possible to exhaustively

study its parameter dependence. We have in mind models that are correctly scaled, in which

case the mean squared error is determined by the correlation coefficient (Appendix 2). Since

the value of the correlation coefficient is unchanged when all four weighting coefficients are

scaled by the same positive factor, it suffices to consider weighting coefficients drawn from the

3-sphere, such that w2
++ +w2

+− +w2
−+ +w2

−− =1. Because the 3-sphere has a finite volume, we

were able to densely sample the correlation coefficient for all parameter values (Appendix

figure 3). This function has one global maximum, corresponding to the optimal weight vector

discussed in the main text. Its global minimum occurs on the polar opposite side of the

3-sphere, where the weighted 4-quadrant model is most strongly anti-correlated with the

velocity. More generally, correlation coefficients corresponding to model parameters on

opposite poles of the 3-sphere always have the same magnitude and opposite sign. Both

models explain the same amount of variance about the velocity, and they become equivalent

after they’re correctly scaled. Thus, we henceforth focus our discussion on the hemisphere

where the correlation coefficient was positive.
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Appendix figure 3. Accuracy of the weighted 4-quadrant model across model parameters. (A, B) We

computed the correlation coefficient between the velocity and the response of the weighted 4-quadrant

model for all possible sets of model parameters. Since rescaling the weight vector does not affect the

correlation coefficient, we assumed that all model parameters satisfy ∑a;b∈f+;−gðwðQÞ
ab Þ2 = 1. We color-coded

each set of model parameters by its accuracy and projected the parameter space onto various subspaces.

(A) We first examined the quadrant basis by projecting onto the {(− −), (− +)} (left) and {(+ −), (+ +)} (right)
subspaces. (B) We next examined the correlational basis by projecting onto the {even = 2, odd} (left) and

{odd*, even >2} (right) subspaces. These project into different linear combinations of the original quadrant

weightings. One of the projections is the pure HRC (even = 2), while the other projections contain only odd

correlations, of two different types (odd and odd*), or only even correlations of order greater than 2 (even >2).
These projections show that accurate weighted 4-quadrant models always put positive weight into 2-point

correlations and negative weight into odd-ordered correlations. Note that the glider responses predicted

by the weighted 4-quadrant model mirror this pattern (Figure 3D).

DOI: 10.7554/eLife.09123.017

Weighted 4-quadrant models were most accurate when w−+ and w−− were large (Appendix

figure 3A, left) and w++ and w−+ were small (Appendix figure 3A, right). In the correlational

basis, the HRC is the model with maximum weight in weven=2 and with zero weight in wodd, wodd*,

and weven>2. Thus, this basis makes it easy to compare the accuracy of the HRC to other

weighted 4-quadrant models (Appendix figure 3B). Furthermore, this basis clearly sorts the

weighted 4-quadrant models according to their accuracy and confirms that that the accuracy of

a weighted 4-quadrant model is largely determined by weven=2 and wodd (Appendix figure 3B,

left). Higher even-ordered correlations and odd-ordered correlations that account for

light–dark asymmetries in the high-pass filtered visual signals did not contribute prominently to

the accuracy of the weighted 4-quadrant model (Appendix figure 3B, right). Interestingly,

Appendix figure 3A shows that there is a diversity of ways to combine the four quadrants in

order to improve the accuracy of the HRC, which translates into a diversity of correlational

responses (Appendix figure 3B). Similarly, the HRC is only one of many models that achieve a

comparable level of accuracy. Every other motion estimator that achieves the HRC’s

performance level incorporates higher-order correlations into its estimate.
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Appendix 9

The weighted 4-quadrant model in the basis of PCs.

PCA is a popular method to reduce the dimensionality of neural population recordings. In this

section, we conceptualize the four quadrants as a small neural population and study how each

PC accounts for variance in the system and contributes to motion estimation. We show that

most of the weighted 4-quadrant model’s variance is due to two of the four PCs. Interestingly,

most of this variance is not velocity-related, and we show that the two low-variance PCs are the

ones that dominate motion estimation.

We began by directly applying PCA to the weighted 4-quadrant model. We computed the 4 × 4

covariance matrix of the four quadrants over the ensemble of simulated motions (Appendix figure

4A). The eigenvectors of the covariance matrix are called the PCs (Appendix figure 4B), and the

associated eigenvalues specify the amount of variance accounted for by each PC (Appendix figure

4C). We found that the first two PCs accounted for 86.3% of the variance, whereas the third and

fourth PCs each contributed about 7% of the variance (Appendix figure 4C). The high-variance

eigenvectors roughly corresponded to a sum and a difference of the (+ +) and (+ −) quadrants,
whereas the low-variance PCs roughly corresponded to a sum and a difference of the (−+) and (−−)
quadrants (Appendix figure 4B). The (− −) and (− +) quadrants best facilitated motion estimation

(Figure 3C). Thus, the low-variance PCs were most important for motion estimation.

Appendix figure 4. The weighted 4-quadrant model in the basis of principal components (PCs). (A) We

computed the covariance matrix of quadrant responses across the simulated ensemble of naturalistic

motions. (B) The eigenvectors of the covariance matrix are called PCs. Signals from the (+ +) and (+ −)
quadrants primarily comprised the first two PCs, whereas the (− +) and (− −) components comprised the

third and fourth PCs. (C) The first two PCs accounted for the vast majority of the weighted 4-quadrant

model’s response variance. (D) Each member of the ensemble of naturalistic motions comprised a velocity

and a natural image, and both components contributed variance to the model response. Although the first

two PCs accounted for most of the variance, little of that variance was associated with the velocity of

motion. Instead, the third and fourth PCs best aided motion estimation, because they contributed the vast

majority of the velocity-associated variance.

DOI: 10.7554/eLife.09123.018
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This result is counter to one’s usual intuition, but it is a straightforward consequence of the

mathematics of linear regression and PCA. We want to linearly combine the PC signals to best

predict the velocity:

β= argminÆ
�
v− βTx

�2æ; (60)

where β is a four-dimensional column vector of weights, v denotes the velocity, the superscript

T denotes the matrix transpose, and x is the 4-vector of PC signals. The solution to this problem

is well-known from the theory of linear regression:

β=M−1U; (61)

where Mij = Æxixjæ is the covariance matrix of the predictors, and Ui = Ævxiæ is the covariance of

each predictor with the velocity. In practice, we estimate these expectations from the empirical

data, and PCs are uncorrelated over the naturalistic motion ensemble by construction

Mij = λiδij; (62)

where λi is the variance associated with ith PC, and δij is the Kronecker δ-function. Thus,

βi =
Ævxiæ
Æx2i æ

=
σv

ffiffiffiffi
λi

p
ri

λi
=
σvriffiffiffiffi
λi

p ; (63)

where σv is the standard deviation of the velocity signal, and ri is the correlation coefficient

between the velocity and the ith PC.

It is also easy to calculate the correlation coefficient between the true velocity and the

estimated velocity. First note that

ÆvβTxæ= βT Ævxæ= ∑
i

σvriffiffiffi
λ

p
i
σv

ffiffiffiffi
λi

p
ri = σ2v ∑

i
r2i ; (64)

Æ
�
βTx
�2æ= ∑

i;j
  βiβjÆxixjæ= ∑

i

σ2vr
2
i

λi
λi = σ2v ∑

i
r2i : (65)

Thus the square of the correlation coefficient between the true and estimated velocities is

r2 =

�
ÆvβTxæ

�2
Æv2æÆ

�
βTx
�2æ= ∑

i
r2i : (66)

Because the PCs are uncorrelated, each contributes independently to the motion estimator’s

accuracy. The amount that each PC contributes to the estimation accuracy is determined by its

correlation with the velocity, and all dependence on the total amount of variance associated

with the PC has dropped out entirely. These conclusions are also true when we look at the

squared error directly

ϵ= Æ
�
v− βTx

�2æ= σ2v + Æ
�
βTx
�2æ− 2ÆvβTxæ= σ2v

�
1− ∑

i
r2i

�
: (67)

As would be expected from this formula, the third and fourth PCs account for much more of the

velocity-associated variance than the first and second PCs (Appendix figure 4D). Nevertheless,

the first PC does account for a significant portion of the velocity-associated variance (Appendix

figure 4D), so the basis of PCs does not fully reveal the structure that was apparent in the

correlational basis (Appendix 8).
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Appendix 10

Novel use of low-order signatures for motion estimation.

The non-multiplicative nonlinearity model (Figure 4A) relaxed the assumption that Drosophila’s

motion estimator multiplies its inputs and substantially improved the accuracy of visual motion

estimation (Figure 4E). Surprisingly, the non-multiplicative nonlinearity model slightly

outperformed the HRC when we parameterized it as a second-order polynomial

(Figure 4—figure supplement 2). This indicates that there are useful low-order correlations

that the HRC neglects. In this section, we will explain how visual motion estimators can

sometimes productively incorporate computational signatures that do not nonlinearly combine

signals across space.

This section considers computational signatures that clash harshly with our usual intuition for

visual motion estimation, and we need to unpack how the motion estimator in

Figure 4—figure supplement 2 works before we can understand why it works. The observed

improvement results from a linear combination of the HRC

R= ðf *V1Þðg*V2Þ− ðg*V1Þðf *V2Þ (68)

with a linear transformation of the photoreceptor signals

L= g*V1 − g*V2: (69)

We thus must consider the motion estimator

vðlowÞe = βRR+ βLL; (70)

where βR and βL are the weighting coefficients that minimize the mean-squared error. Note that

L linearly combines signals from multiple points in space. Like the HRC, it is mirror anti-

symmetric:

fV1ðtÞ;V2ðtÞg↦ fV2ðtÞ;V1ðtÞg⇒ L↦ −L: (71)

It is useful to take a detour to abstractly consider how motion estimation performance depends

on the joint statistics of R, L, and the velocity of motion, v. All three of these quantities are zero

mean. We denote their variances as

σ2R = ÆR2æ;   σ2L = ÆL2æ;   σ2v = Æv2æ (72)

and their cross-correlation coefficients as

rðRÞ =
ÆvRæ
σvσR

;   rðLÞ =
ÆvLæ
σvσL

;   cðRLÞ =
ÆRLæ
σRσL

: (73)

The optimal weighting coefficients are determined by these quantities (see Equation 61):

βR =
σv
�
rðRÞ − cðRLÞrðLÞ

�
σR
�
1− ðcðRLÞÞ2

� ;   βL =
σv
�
rðLÞ − cðRLÞrðRÞ

�
σL
�
1− ðcðRLÞÞ2

� ; (74)

as is the correlation coefficient between the true velocity and vðautoÞe :

rðlowÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðRÞÞ2 + ðrðLÞÞ2 − 2cðRLÞrðRÞrðLÞ

1− ðcðRLÞÞ2

vuut : (75)
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Across the simulated ensemble of naturalistic motions we empirically found that rðRÞ ≈ 0:24,
rðLÞ ≈−0:0017, and cðRLÞ ≈−0:28. Thus, we note that jrðLÞj≪jrðRÞj and approximate the correlation

coefficient as

rðlowÞ

rðRÞ
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1− ðcðRLÞÞ2
s

: (76)

Thus, we expect the inclusion of the linear term L to improve the accuracy of motion estimation

by about 4.3% (compare to Figure 4—figure supplement 2). Interested readers can find a

complete derivation of these equations in section V of the supplemental materials for (Clark

et al., 2014).

With this machinery in hand, we can start to understand the utility of the linear term. First, note

that this term was only weakly correlated with the velocity across the simulated ensemble of

motions. Furthermore, the correlation would have been exactly zero if Ævðg*V1Þæ had been equal

to Ævðg*V2Þæ, as would have been the case for an ensemble that was perfectly translationally

invariant. So the small correlation we observed between L and v is nothing more than residual

noise resulting from a finitely sized data sample that did not explicitly enforce translation

invariance. Nevertheless, it’s critical to realize that Equation 76 treated rðLÞ as if it were zero, yet

it still managed to account for the results of Figure 4—figure supplement 2. Thus, this residual

sampling noise has nothing to do with the improvements offered by the hybrid estimator. As

intuitively expected, the linear term is completely uncorrelated with the velocity of motion.

Equation 76 suggests that a linear term, which is itself uncorrelated with the velocity of motion,

can nevertheless help velocity estimation. However, this improvement demands that it be

combined with another motion estimator that: (i) is correlated with the velocity (i.e., rðRÞ ≠ 0); and
(ii) is correlated with the linear term (i.e., cðRLÞ ≠ 0). Our numerical results indicate that the HRC is

an example of such a motion estimator. The HRC obviously satisfies the first condition. To

examine the second condition, we note that correlation between the HRC and the linear term is

nonzero if and only if

ÆRLæ= Æðf *V1Þðg*V1Þðg*V2Þæ+ Æðg*V1Þðf *V2Þðg*V2Þæ
−Æðf *V1Þðg*V2Þ2æ− Æðg*V1Þ2ðf *V2Þæ (77)

is nonzero. As long as the image ensemble is light–dark asymmetric, there are no symmetry

principles that force this number to vanish for a general choice of f and g. Our numerical results

show that the associated correlation coefficient is far from zero for natural inputs and our

choices of filters. Fundamentally, this correlation can be nonzero because the HRC’s response

depends on the pattern that is moving, as does the linear response. Because image-induced

variability is partially shared between the HRC and the linear term, the latter can help to

eliminate image-induced noise from the HRC, thereby improving the motion estimate.

Although our results indicate that a linear term can improve local motion estimation, its benefits

do not sum over space. In particular, imagine an ensemble of elementary motion detectors that

combine a local HRC and a local linear estimator:

vðlowÞe;i = βRððf *ViÞðg*Vi+1Þ− ðg*ViÞðf *Vi+1ÞÞ+ βLðg*Vi − g*Vi+1Þ; (78)

where i indexes the first point in space surveyed by the ith local estimator. A whole field motion

percept could be found by averaging these local motion signals over space

vðlowÞe =
1
N
∑
i=1

N
vðlowÞe;i ; (79)

where N denotes the total number of local motion detectors. However, the second term in the

linear estimator at point i cancels the first term in the linear estimator at point i+1. Thus, spatial
averaging eliminates most of the dependence on the linear term
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vðlowÞe =
βR
N

∑
i=1

N
ððf *ViÞðg*Vi+1Þ− ðg*ViÞðf *Vi+1ÞÞ+ βL

N
ðg*V1 − g*VN+1Þ: (80)

All that remains of the linear term is a boundary term that depends on photoreceptor activity at

the edges of the visual field. Furthermore, the magnitude of this contribution decreases with N.
Thus, linear estimators have little utility for full-field motion estimation. Nevertheless, it’s

conceivable that such terms could play a role in Drosophila’s motion estimation circuit, because

the same elementary motion detector is thought to underlie a wide variety of motion-guided

behaviors, and the inclusion of this locally beneficial term is not detrimental to whole field

motion estimation.

Finally we note that the principles discussed in the context of linear motion estimators also

apply in other counterintuitive contexts. For example, consider an autocorrelator,

A= ðf *V1Þðg*V1Þ− ðf *V2Þðg*V2Þ; (81)

which correlates visual signals from the same point in space. Like the HRC, it is mirror anti-

symmetric:

fV1ðtÞ;V2ðtÞg↦ fV2ðtÞ;V1ðtÞg⇒A↦ −A; (82)

but it is uncorrelated with the velocity. Nevertheless, the autocorrelator’s correlation with the

HRC is determined by

ÆRAæ= Æðf *V1Þ2ðg*V1Þðg*V2Þæ+ Æðg*V1Þðf *V2Þ2ðg*V2Þæ
−Æðf *V1Þðf *V2Þðg*V2Þ2æ− Æðf *V1Þðg*V1Þ2ðf *V2Þæ (83)

and need not be zero. Empirically, we find the relevant correlation coefficient to be −0.40
across the ensemble of naturalistic motions, so Equation 76 implies that this autocorrelator

would enhance the HRC by 8.9%. However, such improvements do not sum over space. Thus,

autocorrelators might be relevant for local motion estimates, but not for motion estimates that

average over space.
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Appendix 11

Regarding the computational problem of visual motion
estimation.

Throughout this paper, we have illustrated connections between the computations performed

by our models and spatiotemporal correlations. These links are important for both practical and

theoretical reasons. First, the many experimental successes of the HRC already suggest that the

fly’s computation of motion is organized around spatiotemporal correlations in the stimulus

(Silies et al., 2014). Thus, by relating our models to spatiotemporal correlations, we were able

to discern how each model generalizes this canonical model. For example, Figure 3—figure

supplement 1B shows that the optimal weighted 4-quadrant model supplements the standard

HRC with a specific subclass of odd-ordered correlations, an observation that both reiterates

the importance of the HRC and highlights the most critical signals that it lacks. Second,

spatiotemporal correlations provide a fundamental connection between the motion estimation

strategies used by invertebrates and vertebrates (Adelson and Bergen, 1985; van Santen and

Sperling, 1985). In particular, although the HRC and motion energy models differ in their

architectural details, both models are ultimately driven by 2-point correlations in the stimulus.

Therefore, general arguments framed in terms of spatiotemporal correlations are easy to

investigate in the specific context of either the HRC or motion energy model. Third, an

understanding of the spatiotemporal correlations computed by each model facilitates the

design of psychophysical experiments that test the models. For example, glider stimuli (Hu and

Victor, 2010) provide flexible experimental tools to probe how specific correlations contribute

to motion percepts. Future work will lead to a variety of more realistic models that can also be

characterized by the stimulus correlations that they detect. These models can be distinguished

by carefully designed glider experiments.

From a theoretical point of view, correlation functions are important because they provide a

mathematical basis in which to decompose neural computations (Poggio and Reichardt, 1973,

1980; Fitzgerald et al., 2011). David Marr famously proposed that neural computation must

be understood at several levels (Marr and Poggio, 1976). He described his second level as

“that at which the algorithms that implement a computation are characterized.” Our emphasis

on correlation functions is directed towards unraveling motion estimation at this algorithmic

level. As illustrated concretely by Figure 3—figure supplement 1, it’s possible for an algorithm

to have a simple characterization in terms of correlation functions, even when the fundamental

computational units (e.g., the quadrants) do not actually compute correlations. Furthermore,

correlation functions intuitively relate the visual signatures of motion to measurable features of

natural visual environments (Appendix figure 1). Nevertheless, it’s possible that correlation

functions will ultimately provide an inefficient basis for representing the algorithms of visual

motion estimation. For example, although the weighted 4-quadrant model is well understood

in terms of the correlations that it detects, it would be nontrivial to discern its underlying

simplicity based solely on its responses to glider stimuli, because the constraints relating

various higher order correlators would be a priori unknown. Overall, we consider correlation

functions to provide a useful lens for characterizing and understanding the algorithms of visual

motion estimation, but research should also consider visual motion estimation in alternate

bases that might reflect the brain’s biological substrates more directly (Rust et al., 2006).

Our characterization of visual motion estimation in terms of correlation functions provides an

interesting perspective on the computational problem faced by Drosophila’s visual motion

estimator in natural environments. Natural images contain many low and high-order

correlations (Geisler, 2008), and this implies that the fly brain could in principle use a wide array

of correlations for visual motion estimation (Appendix figure 1). However, each correlation is

only weakly associated with the velocity of motion in naturalistic settings (Dror et al., 2001;

Clark et al., 2014). The reason for this is that the specific structure of the scene that is moving
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acts as a nuisance parameter that hinders the unambiguous assignment of a velocity to pattern

of light input. For example, it’s well known that the temporal frequency of a moving sinusoidal

grating shapes the HRC’s output (Egelhaaf et al., 1989), thereby conflating the velocity with

the grating’s spatial frequency. More generally, the variability of a multipoint correlator across

an ensemble of moving scenes is determined by higher-order statistics of the image ensemble

(e.g., see Appendix 2). The fact that the same natural image drives every multipoint correlator

also implies that the correlators co-vary with each other across the naturalistic motion

ensemble. This shared variability can sometimes enable higher-order multipoint correlators to

compensate effectively for image-induced noise that contaminates the HRC (Clark et al.,

2014).

Questions of how brains compute behaviorally relevant stimulus features from sensory inputs

are central to neuroscience, but they are extraordinarily difficult to answer, even in principle. In

the context of Drosophila’s visual motion estimator, the ensemble of photoreceptor signals

contains many nonlinear cues that are weakly correlated with the stimulus velocity and with

each other under naturalistic conditions. There are many ways to pool these signals into an

improved motion estimate. The space of possible stimuli is astronomically large, so it is

impossible for experiments to sample it completely. Nevertheless, synthetic laboratory stimuli

can be designed to rule out specific algorithms that the brain might use to estimate motion.

Thus, to deconstruct a neural computation, one must find ways to dramatically restrict the

space of candidate models and to identify interesting models that can be experimentally ruled

out. It’s important to note that we did not construct our models to reproduce the behavioral

data, even though this is a straightforward exercise (Figure 4—figure supplement 1). Instead

we aimed for a predictive framework that can relate behavioral responses to the statistics of

natural sensory inputs, the statistics of natural behavior, and the constraints imposed by the

neural circuits that implement the computation. Such constructions are complicated and

depend on features of neural circuits that are incompletely known. Nevertheless, we hope that

this added complexity will eventually pay off in computational models that have a rational

structure from the viewpoint of the stimulus, the animal, and the brain.
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