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Abstract. Fuzzy Logic Systems can provide a good level of inter-
pretability and may provide a key building block as part of a growing
interest in explainable AI. In practice, the level of interpretability of a
given fuzzy logic system is dependent on how well its key components,
namely, its rule base and its antecedent and consequent fuzzy sets are
understood. The latter poses an interesting problem from an optimisa-
tion point of view – if we apply optimisation techniques to optimise the
parameters of the fuzzy logic system, we may achieve better performance
(e.g. prediction), however at the cost of poorer interpretability. In this
paper, we build on recent work in non-singleton fuzzification which is
designed to model noise and uncertainty ‘where it arises’, limiting any
optimisation impact to the fuzzification stage. We explore the potential
of such systems to deliver good performance in varying-noise environ-
ments by contrasting one example framework - ADONiS, with ANFIS, a
traditional optimisation approach designed to tune all fuzzy sets. Within
the context of time series prediction, we contrast the behaviour and per-
formance of both approaches with a view to inform future research aimed
at developing fuzzy logic systems designed to deliver both – high perfor-
mance and high interpretability.

Keywords: Non-singleton fuzzy system · Interpretability · ADONiS ·
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1 Introduction

A key aspect of the vision of interpretable artificial intelligence (AI) is to have
decision-making models which can be understood by humans. Thus, while an
AI may deliver good performance, providing an insight of the decision process is
also an important asset for the given model. Even though the interpretability of
AI is widely acknowledged to be a critical issue, it still remains as a challenging
task [17].

Fuzzy set (FS) theory introduced by Zadeh [34], establishes the basis for
Fuzzy Logic Systems (FLSs). Zadeh introduced them to capture aspects of
human reasoning and in FLSs are frequently being referred to as ‘interpretable’.
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The main rationale for the latter is that FSs are generally designed in respect
to linguistic labels and are interconnected by linguistic rules, which can provide
insight into ‘why/how results are produced’ [28]. This capacity for interpretabil-
ity is one of the main assets of fuzzy logic and is often one of the key motivations
to use FLSs in decision-making [4].

While FLSs are considered to possess mechanisms which can provide a good
degree of interpretability, research establishing the latter has been comparatively
limited. Only in recent years an increasing number of studies have started to
focus on fundamental questions such as what interpretability is, in general, and
in particular in respect to FLSs? From a complexity point of view, how many
rules or how many variables per rule is interpretable? Or from a semantic point
of view, to which degree are properties of the partitioning of the variables (e.g.
completeness, distinguishability or complementarity) key for interpretable FLSs?
[1,12,15,19] These studies show that the interpretability of FLSs depends on
their various components i.e. the number of rules, the structure of the rule set
and the actual interpretability of each rule - which in turn depends on how
meaningful the actual FSs are, i.e. how well they reflect the model which the
interpreting stakeholder has in mind when considering the given linguistic label
[12,13,28].

Traditionally, AI models use statistical optimisation techniques to tune
parameters based on a data-driven approach. While these optimisation proce-
dures provide performance benefits, they commonly do not consider whether the
resulting model is interpretable or not. This poses an interesting question for the
optimisation or tuning of FLS: can we use statistical optimisation to tune FLS
parameters without negatively affecting the given FLSs interpretability? I.e., can
we have both: interpretability and good performance?

There are several established approaches to tune FLSs using statistical opti-
misation. Here, ANFIS (adaptive-network-based fuzzy inference system), intro-
duced by Jang [14], and later extended in [6] for interval type-2 fuzzy logic
system has been one of the most popular. ANFIS uses statistical optimisation to
update FLS parameters based on a given training dataset with the objective to
deliver good performance, i.e. minimum error. However, during the optimisation,
ANFIS does not consider aspects of interpretability [27], for example potentially
changing antecedent and consequent sets drastically in ways which do not align
with stakeholders’ expectations.

This paper explore whether and how we can design FLSs which can preserve
their interpretability while also providing the required degrees of freedom for
statistical tuning to deliver good performance.

To achieve the latter, we focus on Non singleton FLSs (NSFLSs) [5,22],
which are designed to model disturbance affecting a system through its inputs
within the (self-contained) fuzzification stage. Recently, NSFLS approaches have
received increasing attention [10,11,21,24–26,29,31,32], with a particular focus
on the development of FLSs which ‘model uncertainty where it arises’, i.e. FLSs
which model input uncertainty directly and only within the input fuzzification
stage. The latter provides an elegant modelling approach which avoids changing
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otherwise unrelated parameters (e.g. antecedent or consequent FSs) in respect to
disturbance affecting a systems’ inputs. Most recently, the ADONiS framework
[23] was proposed, where input noise is estimated and the fuzzification stage is
adapted at run-time, delivering good performance in the face of varying noise
conditions. As noted, ADONiS limits tuning to the fuzzification stage, leaving
rules (which can be generated based on experts insights or in a data-driven way)
‘untouched’, thus providing a fundamental requirement for good interpretability.

In this paper, we compare and contrast the effects of employing both the
ANFIS optimisation and the ADONiS adaptation frameworks in response to
varying noise levels in a time-series prediction context. We do not aim to explore
which approach delivers the best time series prediction (for that, many other
machine learning methods are available), but rather, how the resulting FLSs
compare after tuning, when both approaches deliver good or at least reason-
able results. Specifically, we focus on the degree to which the key parameters
– antecedents and consequents are preserved (we maintain an identical rule set
to enable systematic comparison), and thus to which degree the original inter-
pretability of a FLS can be preserved post-tuning using such approaches.

The structure of this paper is as follows. Section 2 gives a brief overview
of singleton, non-singleton FSs, as well as the ADONiS and ANFIS models.
Section 3 introduces methodology including details of the rule generation, train-
ing and testing. Section 4 provides detailed steps of the conducted experiments
and a discussion of the findings. In Sect. 6, the conclusions of experiments with
possible future work directions are given.

2 Background

2.1 Singleton Non-singleton Type-1 Fuzzy Sets

In the fuzzification step of fuzzy models, a given crisp input is characterised as
membership function membership function (MF). Generally in singleton fuzzifi-
cation, the given input x is represented by singleton MF.

When input data contain noise, it may not be appropriate to represent them
as singleton MFs, as there is a possibility of the actual value being distorted
by this noise. In this case, the given input x is mapped to non-singleton MFs
with a support where membership degree achieves maximum value at x. Two
samples of non-singleton MFs -under relatively low and high noise- can be seen
in Fig. 1a.

Conceptually, the given input is assumed to be likely to be correct, but
because of existing uncertainty, neighbouring values also have potential to be
correct. As we go away from the input value, the possibility of being correct
decreases. As shown in Fig. 1a the width of the non-singleton input is associated
with the uncertainty levels of the given input.

2.2 ADONiS

The recently proposed ADONiS [23] framework provides two major advantages
over non-singleton counterpart models: (i) in the fuzzification step, it captures



574 D. Pekaslan et al.

Fig. 1. Different non-singleton FSs and ADONiS framework structure

input uncertainty through an online learning method–which utilises a sequence
of observations to continuously update the input Fuzzy Sets (ii) in the inference
engine step, it handles the captured uncertainty through the sub-NS [24] method
to produce more reasonable firing strengths.

Therefore, the ADONiS framework enables us to model noise and uncertainty
‘where it arises’ and also to limit any optimisation impact to the fuzzification and
inference steps. In doing so, ADONiS limits tuning to the fuzzification stage and
remain rules (which can be generated based on experts insights or in a data-
driven way) ‘untouched’, thus providing a fundamental requirement for good
interpretability. –if rules and sets were understood well initially.

The general framework structure of the ADONiS framework can be sum-
marised in the following four steps:

1. Defining a frame size to collect a sequence of observations. For example,
when using sensors, such as in a robotics context, the size of the frame may
be selected in respect to the sampling rate of the sensors or based on a fixed
time frame.

2. In the defined frame, the uncertainty estimation of the collected observation
is implemented. Different uncertainty estimation techniques can be imple-
mented in the defined frame.

3. Non-singleton FS is formed by utilising the estimated uncertainty around the
collected input. For example, in this paper, Bell shaped FSs are used and the
detected uncertainty is utilised to define the width of these FSs.

4. In the inference engine step of NSFLSs, interaction between the input and
antecedent FSs results in the rule firing strengths which in turn determines
the degree of truth of the consequents of individual rules. In this step, in this
paper, the sub-NS technique [24] is utilised to determine the interaction and
thus firing strength between input and antecedent FSs.
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The overall illustration of ADONiS can be seen in Fig. 1b and for details,
please refer the [23,24].

2.3 ANFIS

Neuro-fuzzy models are designed to combine the concept of artificial neural net-
works with fuzzy inference systems. As one common model, ANFIS is widely
used in many applications to improve the performance of fuzzy inference sys-
tems [2,3,9,16]. With ANFIS, model parameters are ‘fine-tuned’ during opti-
misation procedures to obtain more accurate approximation than a predefined
fuzzy system. An ANFIS illustration with seven antecedents can be seen in Fig. 2
[6].

Fig. 2. ANFIS structure

3 Methodology

A Mackey-Glass (MG) time series is generated and 1009 noise-free values are
obtained for t from 100 to 1108. One of the common models for noise is additive
white Gaussian noise [20]. Three different signal-to-noise ratios (20 dB, 5 dB and
0 dB) are used to generate noisy time series with additive Gaussian white noise.
These four (noise-free and noisy) datasets are split into 70% (training) and 30%
(testing) samples to be used in different variants of the experiments. In the MG
generation, τ value is set to be 17 to exhibit chaotic behaviour.

3.1 Rule Generation

In the literature there are many different rule generation techniques, either
expert-driven or data-driven [8,18]. In this paper, one of the most commonly
used techniques for FLS rule generation – the one-pass Wang-Mendel method is
utilised. Even though in the case of interpretability assessment, Wang-Mendel



576 D. Pekaslan et al.

may not be the best approach to generate rules, in order to make a base rule set
for both ADONiS and ANFIS and make a fair comparison, we choose to use one-
pass Wang-Mendel method. In the future, different rule reduction algorithms or
other rule generation techniques can be investigated. By following similar FLS
architecture in [33], the rule generation is implemented as follows:

First, the domain of the training set [xmin, xmax] is defined. In order to
capture all inputs (including the ones which are outside of the input domain),
the defined domain is expanded by 10% and the cut-off procedure is implemented
for the inputs which are outside of this domain.

Then the input domain is evenly split into seven regions, and bell-shaped
antecedents are generated. As shown in Fig. 3, these are named as Further Left
(FL), Medium Left (ML), Close Left (CL), Medium (M), Close Right (CR),
Medium Right (MR), Further Right (FR).

As in [33], nine past values are used as inputs and the following (10th) value
is predicted, i.e. the output.

After forming the input-output pairs as ((x1 : y1), (x2 : y2), ..., (xN : yN ), )
each input value within the pair is assigned to the corresponding antecedent FS
(FL, ..,M, .., FR). As practised in the Wang-Mendel one-pass method, the same
seven FSs are used for the consequent FSs, and the outputs (yi) are assigned
to the corresponding FSs (FL, ..,M, .., FR) as well. A sample of the generated
rules can be seen in (1). For details, please refer [33].

R1 = IFx1 isMRAND... x9 isM THEN y1 isCR (1)

3.2 Training

ADONiS. When implementing ADONiS, no formal optimisation procedure is
used. Therefore, previously established antecedents (FL, .., M, .. FR) and model
rules remain untouched.

Fig. 3. An illustration of the seven antecedent MFs used.

ANFIS Optimisation. In ANFIS implementation, each of the seven
antecedent MFs are assigned an input neuron (See Fig. 2) [6]. Then, the gra-
dient descent optimisation technique is implemented to update the antecedent
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MF parameters and the consequent linear functions. In the meantime, the least-
squares estimation method [30] is used to update the parameters of consequent
linear functions in each training epoch. During each epoch, the antecedent FS
parameters are updated for each input. Therefore, while beginning with only
seven antecedents, after optimisation, many different antecedent FSs may be
generated–with associated increase in model complexity.

3.3 Performance Evaluation

In order to assess the noise handling capability of each model, we calculate the
difference between model predictions and noise-free data values at each time-
point. Both ADONiS and ANFIS performances are measured by using the com-
mon root-mean-squared-error (RMSE) and in addition, the recently proposed
Unscaled Mean Bounded Relative Absolute Error (UMBRAE) [7]. UMBRAE
combines the best features of various alternative measures without suffering
their common issues.

To use UMBRAE, a benchmark method needs to be selected. In this paper,
the benchmark method simply uses the average of input values as predictions.
With UMBRAE, the performance of a proposed method can be easily inter-
preted: when UMBRAE is equal to 1, the proposed method performs approxi-
mately the same as the benchmark method; when UMBRAE < 1, the proposed
method performs better than the benchmark method; when UMBRAE > 1, the
proposed method performs worse than the benchmark method.

4 Experiment and Results

In total, 4× 4 = 16 different experimental scenarios are implemented, using differ-
ent noise levels in both rule generation/optimisation and testing phases. Specif-
ically, four different training sets (noise-free, 20, 5 and 0 dB) and four different
testing sets (noise-free, 20, 5 and 0 dB) are used–to represent a variety of poten-
tial real-world noise levels. In each experiment of ADONiS, the first 700 values
are used to generate rules and the remaining 300 values are used for testing.
Note that as ADONiS uses 9 inputs to construct input FSs, the first 9 values of
the testing set are omitted, leaving only the final 291. In ANFIS, while using the
exact same rules as ADONiS, the first 400 data pairs are used as the training
set; the following 300 data pairs are used as a validation set; and the final 291
of the remaining 300 data pairs are used as testing set.

4.1 Experiment 1: Noise-Free Rule Generation

In the first experiment, the rule set is generated using the noise-free time series
dataset. Four different testing datasets (noise-free, 20, 5 and 0 dB) are used.

Results of the ADONiS prediction experiment, with noise free testing, can
be seen on the left hand side of Fig. 4a. Note that since there is no noise in the
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testing dataset, the generated input FSs tend to be a singleton FS. Thus, the
traditional singleton prediction is implemented in this particular experiment.

After completing noise-free testing, and using the same rule set (from the
noise-free training dataset), the 20 dB testing dataset is used in the prediction
experiment of ADONiS. The RMSE result of this experiment is shown in Fig. 4a.
Thereafter, the remaining 5 dB and 0 dB testing datasets are used with the same
rule set–RMSE results are shown in Fig. 4a.

Fig. 4. RMSE and UMBRAE results for both Experiment 1 and Experiment 2. (Color
figure online)

Following the ADONiS prediction (with noise-free rule set and four different
testing datasets), ANFIS optimisation is carried out on the previously generated
rule parameters and the antecedent parameters are updated in the ‘black-box’
manner. Then, these updated antecedents are used in the prediction of noise-free
testing dataset. The results of this experiment are shown in Fig. 4a as orange
bars. Overall, as can be seen, ANFIS outperform ADONiS significantly in this
particular experiment.

Thereafter, the same updated rules from the noise-free training dataset, are
used with the 20 dB testing dataset. The performance of ANFIS is reported in
Fig. 4a. As can be seen, ADONiS and ANFIS have similar performances under
the noise-free and 20 dB noisy testing variant.

Following this, 5 dB and 0 dB noisy datasets were used in testing–RMSE
results are illustrated in Fig. 4a. As shown, in both of these noisy conditions,
ADONiS outperform ANFIS substantially.

As the second error measure, UMBRAE is calculated between the prediction
and noise-free input datasets. These sets of experiment results can be seen right
hand side of Fig. 4a.

4.2 Experiment 2: 20 dB Noisy Rule Generation

In the four sets used in this experiment, rule generation is completed by using
the 20 dB noisy time series dataset. The resulting rules are then used in ADONiS
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predictions on the noise-free, 20 dB, 5 dB and 0 dB noisy datasets. The RMSE
experiment results are shown in Fig. 4b.

After ADONiS implementation, ANFIS optimisation is implemented on the
antecedents’ parameters, according to the 20 dB noisy training dataset. Then
the ANFIS predictions are performed on the same four (noise-free, 20 dB, 5 dB
and 0 dB) different datasets. These prediction results are illustrated in Fig. 4b.
These findings show a clear trend that under noise-free or low-noise conditions,
ADONiS and ANFIS provide similar performances. Under higher noise levels (5
and 0 dB), ADONiS has a clear performance advantage.

Equivalent results, as evaluated using the UMBRAE error measure, are illus-
trated on the right hand side of Fig. 4b.

Fig. 5. RMSE and UMBRAE results for both Experiment 3 and Experiment 4.

4.3 Experiment 3 and 4: 5 and 0 dB Noisy Rule Generation

The same procedures from the previous experiments are followed. First, rules
are generated, based upon the 5 dB noisy time series datasets. Next, ADONiS
performance is tested with the four (noise-free, 20 dB, 5 dB and 0 dB) datasets.
Afterwards, ANFIS optimisation is used to update the antecedent parameters
and ANFIS predictions are completed on the same four (noise-free, 20 dB, 5 dB
and 0 dB) testing datasets. 5 dB rule generation results are shown in Fig. 5a for
RMSE and UMBRAE.

Thereafter, 0 dB rule generation is completed and the four different testing
results are illustrated in Figs. 5b.

5 Discussion

Overall, the interpretability of a fuzzy model builds upon several components i.e.
rules, antecedents and/or consequent numbers, and the semantics at the fuzzy
partitioning level. Traditionally, while optimisation techniques may provide a
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better performance, it leads to changing the parameters (i.e. antecedents FSs)
based on a training dataset which results in a less interpretable model. However,
since FLSs have mechanisms to provide interpretability, the changing of these
parameters in a data-driven way can deteriorate the interpretability of models
by causing for example a loss of complementarity, coverage or distinguishability
of FSs across a universe of discourse and thus the meaningfulness of the used
FSs. Conversely, tuning parameters in the fuzzification step can maintain the
interpretability as well as provide a performance benefits.

Fig. 6. The used antecedent FSs in both model ADONiS and ANFIS.

Regarding the rule generation in the experiments, while different approaches
have been introduced [18], in this paper we follow the well established Wang-
Mendel [33] rule generation technique. We acknowledge that other approaches
may be equally or more viable for example in the given domain of time series
prediction, nevertheless, for this paper, our key objective was to generate one
basic rulebase which is maintained identical across all FLSs, thus providing a
basis for systematic comparison. Further, we note that the specific antecedent
and consequent FSs used here are selected arbitrarily (to evenly partition the
domain of the variables), and thus are not meaningful in a traditional linguis-
tic sense. However, in this paper, we consider the preservation of the original
shape of the FSs (post-tuning) as important (as it is that shape which will be
meaningful in applications of FLSs such as in medical decision making, common
control applications, etc.).

In the experiment, we first explore the ADONiS model which targets the
fuzzification step by limiting the optimisation effect but handling noise ‘where it
arises’. Second, traditional ANFIS optimisation is used. In this section, after a
brief performance comparison, the interpretability is discussed for both models.
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Overall, when all the results are scrutinised all together (Figs. 4a, 4b, 5a,
5b), it can be seen that ADONiS and ANFIS provide comparable performance.
While ANFIS shows better performance in the noise-free training and noise-free
cases, especially under high levels of noise, ADONiS’ performance is better than
that of the ANFIS-tuned FLS.

In the experiments, by following the structure in [33], the input domain is
divided into 7 antecedents, from Further Left to Further Right (FL, ..,M, .., FR)
(See Fig. 3) and each input is assigned with these antecedents as shown on the
left hand side of Fig. 6a. The same rule set is generated once. In the ADONiS
approach, no optimisation procedure is performed offline (all tuning is done
online through adaptation) and all the rules, antecedents, consequents remain
intact. As can be seen on the right hand side of Fig. 6a, the same antecedents
and consequents are used in the testing stage for ADONiS. Here, the input
uncertainty is captured and handled throughout the fuzzification and inference
engine process rather than optimising antecedent or consequent parameters. We
note that this is intuitive as changes affecting the inputs should not affect the
linguistic models of antecedents and consequents - preserving interpretability.
For example, when a rule is examined in (2), all the Medium (M) MFs are the
same as in Fig. 3 and it can be observed that the given sample inputs x1 and x9

are processed using the same MFs.

IF x1 isM... x5 isMR... x9 isM THEN y1 isCR (2)

On the other hand, in the ANFIS implementation, although the same rules
are used (see the left hand side of Fig. 6b) the optimisation procedure focuses
on the antecedent parameters. Thus, the parameters are changed in respect
to the training data, changing the antecedent and thus necessarily making it
different to the original (considered interpretable) model (see the right hand
side of Fig. 6b). This overall can affect both the semantics and the complexity at
the fuzzy partitioning level. For example, the Medium MF is changed through
the optimisation procedure. As can be seen in Fig. 6b and rule (3), the Medium’
(M ′) and Medium”’ (M ′′′) are not the same for inputs x1 and x9 which inhibits
the interpretability of the model.

IF x1 isM’ ... x5 isMR”... x9 isM”’ THEN y1 (3)

Therefore, overall, these initial results show that while both models can pro-
vide comparable prediction results under different levels of noise, tuning param-
eters in the fuzzification stage only can help to maintain the semantic mean-
ingfulness (completeness, distinguishability and complementarity) of the used
antecedent FSs which can overall provide a more ‘interpretable’ FLS model in
contrast to a ‘brute force’ optimisation approach such as offered by traditional
optimisation approaches for FLSs such as ANFIS.
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6 Conclusions

One of the main motivations to use FLSs is their capacity for interpretability
ability which is highly related to both complexity (number and structure of rules,
variables) and semantic (completeness, distinguishability or complementarity at
the level of the fuzzy set partitions) aspects. In regards to the performance of
FLSs, while optimisation techniques can be applied to deliver improved per-
formance, such optimisation has traditionally lead to changes of the same key
parameters which are vital for interpretability, thus delivering improved perfor-
mance at the cost of poorer interpretability. In this paper, we explore the pos-
sibility of automatically tuning an FLS to deliver good performance, while also
preserving its valuable interpretable structure, namely the rules (kept constant),
antecedents and consequents. Through a detailed set of time series prediction
experiments, the potential of the ADONiS framework, which handles input noise
where it arises, is explored in comparison to a traditional ANFIS optimisation
approach. The behaviour and performance of both approaches is analysed with
a view to inform future research aimed at developing FLSs with both high per-
formance and high interpretability.

We believe that these initial results highlight a very interesting research
direction for FLSs which can maintain interpretability by modelling complex-
ity only in specific parts of their structure. Future work will concentrate on
expanding the experimental evaluation with different rule generation techniques
and datasets while broadening the capacity for optimisation beyond the spe-
cific design of ADONiS. Also, the use of interpretability indices will be explored
to compare/contrast different model efficiently in regards to performance and
interpretability ability.
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12. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based
systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360
(2011). https://doi.org/10.1016/j.ins.2011.02.021. http://www.sciencedirect.com/
science/article/pii/S0020025511001034

13. Garibaldi, J.M., Ozen, T.: Uncertain fuzzy reasoning: a case study in modelling
expert decision making. IEEE Trans. Fuzzy Syst. 15(1), 16–30 (2007)

14. Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans.
Syst. Man Cybern. 23(3), 665–685 (1993)

15. Jin, Y.: Fuzzy modeling of high-dimensional systems: complexity reduction and
interpretability improvement. IEEE Trans. Fuzzy Syst. 8(2), 212–221 (2000).
https://doi.org/10.1109/91.842154. http://epubs.surrey.ac.uk/7644/

16. Khanesar, M.A., Kayacan, E., Teshnehlab, M., Kaynak, O.: Extended Kalman
filter based learning algorithm for type-2 fuzzy logic systems and its experimental
evaluation. IEEE Trans. Ind. Electron. 59(11), 4443–4455 (2012)

17. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing
with concept activation vectors (TCAV). arXiv preprint arXiv:1711.11279 (2017)

18. Wang, L.-X.: The WM method completed: a flexible fuzzy system approach to
data mining. IEEE Trans. Fuzzy Syst. 11(6), 768–782 (2003). https://doi.org/10.
1109/TFUZZ.2003.819839

19. Liu, H., Gegov, A., Cocea, M.: Complexity control in rule based models for classi-
fication in machine learning context. In: Angelov, P., Gegov, A., Jayne, C., Shen,
Q. (eds.) Advances in Computational Intelligence Systems. AISC, vol. 513, pp.
125–143. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46562-3 9

20. Liu, X., Tanaka, M., Okutomi, M.: Single-image noise level estimation for blind
denoising. IEEE Trans. Image Process. 22(12), 5226–5237 (2013)

https://doi.org/10.1109/TFUZZ.2012.2236096
https://doi.org/10.1109/TFUZZ.2012.2236096
https://doi.org/10.1016/0031-3203(94)00085-Z
https://doi.org/10.1016/0031-3203(94)00085-Z
http://www.sciencedirect.com/science/article/pii/003132039400085Z
http://www.sciencedirect.com/science/article/pii/003132039400085Z
https://doi.org/10.1016/j.eswa.2009.11.020
http://www.sciencedirect.com/science/article/pii/S0957417409009622
https://doi.org/10.1109/FUZZ-IEEE.2016.7737800
https://doi.org/10.1109/FUZZ-IEEE.2016.7737800
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1016/j.ins.2011.02.021
http://www.sciencedirect.com/science/article/pii/S0020025511001034
http://www.sciencedirect.com/science/article/pii/S0020025511001034
https://doi.org/10.1109/91.842154
http://epubs.surrey.ac.uk/7644/
http://arxiv.org/abs/1711.11279
https://doi.org/10.1109/TFUZZ.2003.819839
https://doi.org/10.1109/TFUZZ.2003.819839
https://doi.org/10.1007/978-3-319-46562-3_9


584 D. Pekaslan et al.

21. Mohammadzadeh, A., Kayacan, E.: A non-singleton type-2 fuzzy neural network
with adaptive secondary membership for high dimensional applications. Neu-
rocomputing 338, 63–71 (2019). https://doi.org/10.1016/j.neucom.2019.01.095.
http://www.sciencedirect.com/science/article/pii/S0925231219301882

22. Mouzouris, G.C., Mendel, J.M.: Nonlinear time-series analysis with non-singleton
fuzzy logic systems. In: Computational Intelligence for Financial Engineering. Pro-
ceedings of the IEEE/IAFE 1995, pp. 47–56. IEEE (1995)

23. Pekaslan, D., Wagner, C., Garibaldi, J.M.: Adonis - adaptive online non-singleton
fuzzy logic systems. IEEE Trans. Fuzzy Syst. 1 (2019). https://doi.org/10.1109/
TFUZZ.2019.2933787

24. Pekaslan, D., Garibaldi, J.M., Wagner, C.: Exploring subsethood to determine
firing strength in non-singleton fuzzy logic systems. In: IEEE World Congress on
Computational Intelligence (2018)

25. Pourabdollah, A., Wagner, C., Aladi, J.H., Garibaldi, J.M.: Improved uncertainty
capture for nonsingleton fuzzy systems. IEEE Trans. Fuzzy Syst. 24(6), 1513–1524
(2016). https://doi.org/10.1109/TFUZZ.2016.2540065

26. Pourabdollah, A., John, R., Garibaldi, J.M.: A new dynamic approach for non-
singleton fuzzification in noisy time-series prediction. In: 2017 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2017)

27. Rajab, S.: Handling interpretability issues in anfis using rule base simplification
and constrained learning. Fuzzy Sets Syst. 368, 36–58 (2019). https://doi.org/10.
1016/j.fss.2018.11.010. Theme: Fuzzy Systems and Learning

28. Razak, T.R., Garibaldi, J.M., Wagner, C., Pourabdollah, A., Soria, D.: Inter-
pretability and complexity of design in the creation of fuzzy logic systems - a user
study. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp.
420–426, November 2018. https://doi.org/10.1109/SSCI.2018.8628924
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