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Abstract

Establishing functional tissue-resident memory (TRM) cells at sites of infection is a newfound

objective of T cell vaccine design. To directly assess the impact of antigen stimulation

strength on memory CD8 T cell formation and function during a persistent viral infection, we

created a library of mouse polyomavirus (MuPyV) variants with substitutions in a subdomi-

nant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic

CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitor-

ing memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we

circumvented potentially confounding changes in viral infection levels, virus-associated

inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in

TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells.

Using this strategy, we found that antigen stimulation strength was inversely associated with

the function of memory CD8 T cells during a persistent viral infection. We further show that

CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epi-

topes with suboptimal stimulation strength respond more efficiently to challenge CNS infec-

tion with virus expressing cognate antigen. These data demonstrate that the strength of

antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of

TRM cells in a persistent viral infection.

Author summary

Tissue-resident memory (TRM) cells are a subset of memory T cells that primarily reside

in non-lymphoid tissues and serve as sentinels and effectors against secondary infections.

TRM cells have been extensively characterized in mucosal barriers, but much less is known

about this population in non-barrier sites such as the brain. In this study, we designed a

novel strategy to evaluate the impact of T cell stimulation strength on the generation and

functionality of memory CD8 T cells in both lymphoid and nonlymphoid tissues. Using a

mouse polyomavirus (MuPyV) library expressing variants of a subdominant epitope
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recognized by TCR transgenic CD8 T cells, we found that systemic infection producing

weaker responses during T cell priming was sufficient for recruitment of effector cells to

the brain. Furthermore, lower stimulation conferred greater functionality to memory T

cells in the spleen and to brain TRM cells. Our findings demonstrate that the strength of

antigenic stimulation experienced by a naïve T cell early in infection is a determinant of

memory functional integrity during viral persistence in a non-barrier organ.

Introduction

Following TCR engagement, pathogen-specific naïve CD8 T cells rapidly expand to generate a

large effector population to counter primary infection, with a small population of memory

CD8 T cells concomitantly generated to provide accelerated immunity to re-infection. CD8 T

cell activation and differentiation requires three signals: TCR stimulation (signal 1), co-stimu-

lation (signal 2), and inflammatory cytokines (signal 3), with the duration and intensity of

these signals determining whether an activated CD8 T cell is fated towards an effector or mem-

ory state [1–5]. The canonical naïve-to-effector/memory differentiation profile for CD8 T cell

responses to microbial infections is derived from analyzing T cell responses in secondary lym-

phoid organs. Tissue-resident memory (TRM) cells apparently circumvent this differentiation

schema by “locking” themselves in an effector-poised state having a transcription profile dis-

tinct from circulating central-memory and effector-memory T cells [6–10].

Most studies to date have characterized TRM cells in mucosal tissue barriers (e.g., skin, lung,

gut, and female reproductive tract), where they act to provide rapid protection against second-

ary infections [11–16]. Less is known about the factors involved in establishment of TRM cells

in non-barrier organs, particularly the CNS, an organ system susceptible to irreparable injury

by viral infection. Several viral CNS infection mouse models have described the establishment

of TRM cells in the brain. VSV encephalitis generates antiviral CD8 TRM cells that persist in the

brain long after antigen clearance [9, 17]. Using intracerebral (i.c.) inoculation with lympho-

cytic choriomeningitis virus (LCMV), Steinbach et al. showed that virus-specific CD8 brain-

TRM cells, in the absence of circulating antiviral CD8 T cells, conferred protection to CNS chal-

lenge with LCMV [12].

A variety of approaches have been devised to selectively define the role of TCR stimulation

in T cell effector and memory differentiation. Antigen abundance has been controlled using

mutant viruses that variably express a given T cell epitope, using low-dose inocula, and by lim-

iting the duration of infection with antiviral agents [18, 19]. Genetic disruption of proximal

TCR signal transduction has also been used to isolate the strength of signal 1 [20–23]. These

studies have typically assessed the impact of such manipulations on dominant CD8 T cell

responses to acutely cleared infections in secondary lymphoid organs. Whether changes in

TCR stimulation affect the generation or functionality of TRM cells remains to be determined.

In this study, we conceived a strategy to directly assess the impact of TCR stimulation

strength on memory T cell formation. First, we focused on a subdominant CD8 T cell response

to avoid confounding effects on viral replication and virus-associated inflammation that may

result from alterations in a dominant T cell compartment. Second, we studied the differentia-

tion of TCR transgenic donor CD8 T cells to control the size, timing of recruitment, and clon-

ality of the naïve T cell compartment. Third, we used mouse polyomavirus (MuPyV), a natural

mouse pathogen that establishes a persistent infection well controlled by the host immune sys-

tem. Fourth, we altered an epitope in a nonstructural viral protein to avoid potential effects on

host cell tropism that may occur with mutations in a capsid protein [24]. Using a library of
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MuPyVs with signal 1-altering mutations in a subdominant CD8 T cell epitope, we found that

reduced TCR stimulation quantitatively and qualitatively improved the generation of memory

T cells in both a lymphoid (i.e., spleen) and a nonlymphoid (i.e., brain) organ.

Results

Analogue epitopes differentially stimulate subdominant MuPyV-specific

CD8 T cells

MuPyV-infected B6 mice generate a CD8 T cell response to three epitopes in the nonstructural

viral T antigens, according to the following immunodominance hierarchy: Db-restricted Large

T antigen (LT) amino acids 359–368 (LT359) > Kb-restricted Middle T antigen (MT) amino

acids 246–253 (MT246) > Db-restricted LT amino acids 638–646 (LT638) [25]. The DbLT359

and DbLT638 MuPyV epitopes share homology with SV40 LT epitopes in B6 mice; e.g., muta-

genizing 4 of 10 codons in LT359 to match its homologous sequence in SV40 LT (residues

206–215) yielded an MuPyV mutant virus expressing a dominant epitope recognized by

monoclonal SV40 LT-specific CD8 T cells [26].

Using this approach, we sought to develop a strategy to incisively assess the impact of anti-

gen stimulation strength on the generation of CD8 memory T cells to MuPyV infection that

avoided altering the kinetics and magnitude of infection. The subdominant MuPyV LT638

epitope and the “immunorecessive” SV40 LT epitope corresponding to amino acids 489–497,

designated TagV, differ by three residues in the amino-half of their epitopes (Table 1). We pre-

viously demonstrated that replacing the P1 Gln of TagV with Ala improved stimulation of

TCR-V transgenic CD8 T cells specific for the TagV epitope [27]. Thus, we constructed the fol-

lowing nonameric peptides that we predicted would differentially stimulate TCR-V cells: the

native TagV and LT638 epitopes; and three variant LT638 epitopes where the P4 Ala was

replaced with Asn (TagV(N)) either alone, or in combination with substitution of the P1 Met

residue with Gln (TagV(QN)) or Ala (TagV(AN)) (Table 1). Using the RMA/S peptide stabili-

zation assay, we determined that the native TagV and LT638 peptides efficiently bound Db at

equilibrium, but that the TagV dissociated from Db faster than LT638 (Fig 1A and 1B). Each of

the analogue peptides exhibited markedly weaker binding to and faster dissociation from Db.

It is notable that these analogue peptides differentially associated with Db despite retaining the

dominant Db anchors Asn at P5 and Leu at P9 [28].

Table 1. TagV analogues.

Peptide Sequence Virus Primers

TagV QGINNLDNL MuPyV.TagV F: CAG CCA GGG CAG GGA ATC AAT AAT CT

R: GAG ATT ATC TAG ATT ATT GAT TCC CTG

TagV(AN) AGVNNLDNL MuPyV.TagV(AN) F: CAG CCA GGG GCG GGA GTG AAT AAT CT

R: GAG ATT ATC TAG ATT ATT CAC TCC CGC

TagV(QN) QGVNNLDNL MuPyV.TagV(QN) F: CAG CCA GGG CAG GGA GTG AAT AAT CT

R: GAG ATT ATC TAG ATT ATT CAC TCC CTG

TagV(N) MGVNNLDNL MuPyV.TagV(N) F: CAG CCA GGG ATG GGA GTG AAT AAT CT

R: GAG ATT ATC TAG ATT ATT CAC TCC CAT

LT638 MGVANLDNL MuPyV —

Subdominant Db-restricted CD8 T cell epitopes of SV40 and MuPyV differ by three amino acids; analogue peptide sequences shown. Residues P5 Asn and

P9 Leu are the dominant Db anchor residues. Bold letters indicate residue changes made in the MuPyV LT638 epitope. Primer sets used to mutate residues

to create the analogue TagV epitopes in parental MuPyV.

https://doi.org/10.1371/journal.ppat.1006318.t001
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We next compared these peptides for their efficiency in stimulating naïve TCR-V CD8 T

cells. Using a range of peptide concentrations, we assayed the ability of these peptides to

induce production of IFNγ, a cytokine typically used to assess T cell “functional avidity”, as

well as Nur77, an orphan nuclear receptor that is a direct measure of TCR signaling strength

[29–31]. As shown in Fig 1C and 1D, TCR-V cells recognized the native TagV peptide but not

the LT638 epitope from MuPyV, with intracellular Nur77 staining showing approximately

1-log higher sensitivity than intracellular IFNγ for detecting antigenic stimulation. Interest-

ingly, both IFNγ and Nur77 readouts revealed a fine gradient of antigenic stimulation effi-

ciency by the analogue peptides as follows: TagV > TagV(AN) > TagV(QN) > TagV(N).

Notably, the three analogue peptides differ in TCR stimulation and Db binding; e.g., the TagV

(AN) and TagV(N) peptides exhibit comparable binding to and dissociation from Db (Fig 1A

& 1B), but the former is approximately 2 logs more efficient in stimulating TCR-V cells. Col-

lectively, these data indicate that these substitutions concomitantly affect MHC and TCR bind-

ing and provide a set of analogue peptides to interrogate the impact of antigen stimulation

strength on T cell differentiation.

Suboptimal TCR stimulation improves recruitment of MuPyV-specific

CD8 T cells

Using site-directed mutagenesis of the MuPyV genomic DNA, we altered the coding sequence

of the native LT638 epitope to that of TagV and to each of the three TagV analogue peptides,

and isolated infectious virus. As depicted in Fig 2A, our approach involved adoptive transfer of

a “physiologic” number (1,000) of naïve TCR-V CD8 T cells into CD45-congenically disparate

B6 mice which were then inoculated with parental MuPyV or one of the four MuPyV variants

carrying mutations in the LT638 epitope. We first assessed whether this experimental design

Fig 1. Characterizing the T cell response to analogues of a subdominant CD8 T cell epitope. (A) RMA/S cells were cultured overnight

at 26˚C. Cells were incubated with the indicated dose of peptide for 1 h at RT followed by incubation at 37C for 2 h. Table shows the EC50 of

each analogue peptide for MHC-I binding and stabilization. (B) RMA/S cells were cultured overnight at 25˚C in 100 μM of peptide. Cells were

then resuspended in fresh media, incubated at 37C, and sampled hourly for 4 h. Table shows the half-life of the analogue peptides for

binding to MHC-I. (C-D) Splenocytes were isolated from a naïve TCR-V mouse and stimulated with TagV analogue peptides at the indicated

concentrations for 5 h at 37˚C. Nuclear Nur77 (C) and intracellular IFNγ expression (D) shown. Table shows the EC50 of each analogue

peptide for expression of these activation markers. All data plotted as percent of maximal expression ± SD.

https://doi.org/10.1371/journal.ppat.1006318.g001
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altered the dynamics of acute (day 8 p.i.) and persistent (day 30 p.i.) MuPyV infection as well

as the generation and maintenance of the CD8 T cell response to the dominant DbLT359 epi-

tope. As shown in Fig 2B and 2C, the mutant viruses were indistinguishable from parental

MuPyV in their replicative efficiency in vivo and recruitment of the dominant DbLT359-speci-

fic CD8 T cell anti-MuPyV response. Furthermore, effector-memory differentiation of the

DbLT359 population based on the KLRG1 and IL-7Rα (CD127) co-expression paradigm [32,

33] revealed no differences between parental or analogue MuPyV infection (Fig 2D).

Infection with the analogue viruses uncovered marked differences in efficiency in recruit-

ment of TCR-V CD8 T cells. During the acute phase of infection, TCR-V cells mounted the

largest response to infection by mutant viruses carrying the TagV(AN) and TagV(QN) epi-

topes, which significantly exceeded the magnitude of the response to infection by MuPyV.

TagV, which expresses the cognate TCR-V epitope (Fig 3A). TCR-V cells were not detected in

spleens of mice infected with parental MuPyV (as expected) or the mutant TagV(N) virus

Fig 2. Infection by analogues of the subdominant TagV epitope does not affect the endogenous anti-MuPyV response. (A) 1 x 103

TCR-V CD8 T cells were adoptively transferred i.v. into B6 mice. Mice were infected with 2 x 106 PFU of MuPyV via hind footpads the

following day and sacrificed at day 8 or day 30 p.i. (B) Viral load in the spleen at day 8 (top panel) or day 30 (bottom panel) p.i. (C) Number of

LT359-specific CD8 T cells in the spleen at day 8 p.i. (top panel) or day 30 p.i. (bottom panel). (D) Percent of LT359-specific CD8 T cells that

are KLRG1hiCD127lo (black) and KLRG1loCD127hi (gray) at day 8 (top panel) or day 30 (bottom panel) p.i. Mean ± SD plotted: no significant

differences. N = 12–18 mice from 4–6 independent experiments.

https://doi.org/10.1371/journal.ppat.1006318.g002
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carrying the single P4 Ala-to-Asn substitution in the LT638 epitope; thus, all subsequent

experiments used only the TagV, TagV(AN), and TagV(QN) variant viruses. Based on KLRG1

and CD127 co-expression and expression of the T-box transcription factors T-bet and eome-

sodermin (eomes), no differences were seen in markers of effector and memory differentiation

by TCR-V cells recruited by MuPyV.TagV, MuPyV.TagV(AN), and MuPyV.TagV(QN) infec-

tion (Fig 3B–3D). Moreover, direct ex vivo stimulation with cognate TagV peptide induced

similar expression of Nur77 and IFNγ/TNFα co-functionality by TCR-V cells (Fig 3E) despite

differences between these three viruses in their capacity to stimulate naïve TCR-V cells (Fig 1C

& 1D).

Lower TCR stimulation increases memory CD8 T cell function

Because strong, sustained antigen stimulation dampens the functionality of CD8 T cells, we

next asked whether lower TCR stimulation could improve memory T cell differentiation. At

day 30 p.i., TCR-V cells recruited in response to infection by TagV, TagV(AN), and TagV

(QN) mutant MuPyVs gave rise to a population of memory T cells, with MuPyV.TagV(QN)

infection generating a significantly larger population (Fig 4A). When stimulated ex vivo with

1μM cognate TagV antigen, TCR-V cells primed by MuPyV.TagV(QN) infection yielded

Fig 3. TCR stimulation strength does not affect CD8 T cell memory differentiation in the spleen during acute infection. TCR-V cells

were transferred i.v. into B6 mice one day prior to infection with TagV analogue viruses and sacrificed at day 8 p.i. (A) Number of TCR-V cells

in the spleen. (B) Percent of TCR-V cells that are KLRG1hiCD127lo (left panel) or KLRG1loCD127hi (right panel). Representative dot plots

shown. (C-D) Expression of T-bet (C) and eomes (D) by splenic TCR-V cells. Representative histograms shown. Gray shaded histograms

represent fluorescence-minus-one controls. (E) IFNγ and TNFα co-expression (left panel) and Nur77 expression (right panel) in splenocytes

stimulated for 5 h ex vivo with 1 μM TagV peptide. Mean ± SD plotted. N = 9–18 mice from 3–6 independent experiments.

https://doi.org/10.1371/journal.ppat.1006318.g003
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Fig 4. Memory splenic CD8 T cells primed with lower TCR stimulation exhibit superior recall responses. (A-B) TCR-V

cells were adoptively transferred into B6 mice one day prior to infection with cognate Tag V or TagV analogue viruses, then

sacrificed at day 30 p.i. (A) Number of TCR-V cells in the spleen. (B) IFNγ and TNFα co-expression (left panel) and Nur77

expression (right panel) in splenocytes stimulated for 5 h ex vivo with 1 μM TagV peptide. (C-D) Intracellular IFNγ (left panel) and

Nur77 (right panel) expression by TCR-V cells isolated from the spleen at day 8 p.i. (C) or day 30 p.i. (D) stimulated for 5 h ex

TCR stimulation strength impacts TRM cell functionality
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memory cells that were capable of co-producing IFNγ and TNFα to a significantly higher level

than those recruited by MuPyV.TagV or MuPyV.TagV(AN) infection (Fig 4B, left panel).

Notably, a significantly higher fraction of TagV(QN) epitope-primed memory CD8 T cells

produced Nur77 as well, indicating that these T cells possessed improved sensitivity to the cog-

nate antigen (Fig 4B, right panel). To address this possibility, we performed peptide dose-

response curves on TCR-V effector and memory cells from the spleen. Splenocytes from day

8- and day 30-infected mice were stimulated for five hours with TagV, TagV(AN), TagV(QN),

TagV(N), or LT638 peptide at concentrations ranging from 1 μM to 1 pM, then analyzed for

intracellular IFNγ and Nur77. Effector and memory TCR-V cells exhibited higher functional

avidity to the cognate TagV peptide than to the analogue peptides irrespective of which of

these viruses was used for the primary infection, suggesting that a recall response would be

optimally elicited by cognate antigen (S1 Fig). Effector TCR-V cells from MuPyV.TagV-

infected mice stimulated with cognate TagV peptide had a lower EC50 for IFNγ and Nur77

expression than those from MuPyV.TagV(AN)- and MuPyV.TagV(QN)-infected mice (Fig

4C). By day 30 post infection, however, memory TCR-V cells primed with MuPyV.TagV(AN)

and MuPyV.TagV(QN) infection acquired higher functional avidity, a three-to-four log

decrease in EC50, than those recruited with MuPyV.TagV infection (Fig 4D), indicating an

evolution toward lower activation threshold for cognate antigen for memory cells primed with

a weaker TCR stimulus.

We next compared the in vivo antigen recall responses of TCR-V memory cells generated

by infection to TagV, TagV(AN), and TagV(QN) mutant MuPyVs. Following systemic infec-

tion with MuPyV, mice mount a robust neutralizing antibody response that prevents repeat

infection with the same virus. Thus, we used TagV epitope-expressing fibroblasts, 116A1 cells,

to present a new source of TagV antigen [34]. 116A1 cells were injected intraperitoneally (i.p.)

at day 30 p.i., and splenic TCR-V cells were enumerated five days later (Fig 4E). Both MuPyV.

TagV(AN) and MuPyV.TagV(QN) infected mice showed a significant increase in TCR-V cell

expansion upon 116A1 cell challenge compared to infection-matched unchallenged mice, with

TagV(QN)-primed TCR-V cells exhibiting the highest level of expansion (Fig 4F). When

stimulated ex vivo with cognate TagV antigen, TagV(QN)-primed secondary effector TCR-V

cells had significantly improved co-production of IFNγ and TNFα (Fig 4G). Together, these

data show a marked increase in memory potential in TCR-V cells primed with lower TCR

stimulation.

Systemic MuPyV infection recruits tissue-resident memory CD8 T cells

to the brain

TRM cells protect against microbial infections in non-lymphoid tissues [11–16]. Because JC

polyomavirus causes a devastating demyelinating brain disease [35], we asked whether differ-

ential TCR signaling from systemic infection affected establishment of brain-resident TCR-V

memory cells. CD11a and CD49d, subunits of the LFA-1 and VLA-4 integrins, respectively,

involved in CNS entry by circulating T cells [36, 37], were upregulated in circulating TCR-V

cells at day 8 p.i. irrespective of infection with MuPyV.TagV, Tag(AN), or Tag(QN) viruses.

(Fig 5A). As shown in Fig 5B, the TCR-V cell population responding to infection by viruses

vivo with varying concentrations of the cognate TagV peptide. (E) 1 x 103 donor TCR-V CD8 T cells were transferred into B6

mice. Mice were infected with 2 x 106 PFU of MuPyV via hind footpads the following day, challenged i.p. with 5 x 107 116A1 cells

at day 30 p.i., and sacrificed five days post-challenge. (F) Number of TCR-V cells in the spleen with or without secondary

challenge and fold change of TCR-V cells in mice receiving secondary challenge compared to day 30 averages. (G) IFNγ and

TNFα co-expression in splenocytes stimulated for 5 h ex vivo with 1 μM TagV peptide. Mean ± SD plotted. N = 6–18 mice from

multiple independent experiments. *, p < 0.05; ****, p < 0.0001; ANOVA with Tukey’s test for significance.

https://doi.org/10.1371/journal.ppat.1006318.g004
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with the cognate TagV epitope and the TagV(AN) and TagV(QN) analogue epitopes under-

went expansion and contraction in the spleen, and contracted after migrating into the brain

but to a lesser extent than in the spleen. Compared to splenic TCR-V cells (S2A Fig) and

brain-infiltrating TCR-V cells at day 8 p.i., brain-derived memory TCR-V cells for each virus

expressed low CD62L, elevated CD69, as well as elevated CD8α (Fig 5C), a phenotype consis-

tent with TRM cell differentiation [6]. CD103 expression was not detected on these cells (S2B

Fig), a finding in line with evidence from us and others that CD103 is not a faithful TRM

Fig 5. Systemic infection with TagV analogue MuPyVs recruits anti-PyV CD8 T cells to the brain. (A) Circulating TCR-V cells at day 8

p.i. show increased expression of adhesion markers CD11a and CD49d. Dashed line indicates baseline expression on naïve TCR-V cells.

(B) Percentage of TCR-V cells in the spleen (left panel) and brain (right panel) at days 8 and 30 p.i. (C) gMFI of CD8, CD62L, and CD69

expression on TCR-V cells in the brain at days 8 and 30 p.i. Representative histograms shown. Gray shaded histogram refers to

fluorescence-minus-one control. (D) Percentage (right panel) and number (left panel) of TCR-V cells in the brains of mice given systemic

anti-CD8α or control rat IgG. (E) IFNγ and TNFα co-expression in brain-resident TCR-V cells stimulated for 5 h ex vivo with 1μM TagV

peptide. Mean ± SD plotted. N = 9–15 mice from 3–5 independent experiments. *, p < 0.05; **, p, 0.005; ***, p< 0.0005; ANOVA with

Tukey’s test for significance.

https://doi.org/10.1371/journal.ppat.1006318.g005
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marker [38]. Further confirmation that these are TRM cells comes from the finding that their

presence in the brain was unaffected following depletion of circulating CD8 T cells (Figs 5D &

S3). Brain-resident TCR-V cells generated in response to infection by TagV, TagV(AN), or

TagV(QN) MuPyVs exhibited similar cytokine effector capability upon stimulation by the cog-

nate TagV peptide (Fig 5E). Together, these data indicate that lower TCR stimulation in the

context of a systemic viral infection generates functional brain-TRM cells.

Brain-resident memory cells primed with lower stimulation have

improved memory function

We next compared the recall responses by brain TRM cells recruited by infection with MuPyV.

TagV, MuPyV.TagV(AN), and MuPyV.TagV(QN) viruses. A strongly neutralizing antibody

response in MuPyV-immune mice negates the ability to rechallenge mice systemically with

MuPyV. Because the blood-brain barrier largely excludes circulating immunoglobulins, we

investigated the possibility that i.c. injection of MuPyV would allow reinfection in the brain in

MuPyV-immune mice. On day 30 p.i., mice were challenged i.c. with MuPyV.TagV virus and

sacrificed five days later (Fig 6A). To confine analysis to brain-TCR-V TRM cells, mice received

CD8 depleting mAb starting day 10 p.i. after the cells had migrated to the brain. We observed

that only TCR-V TRM cells generated by MuPyV.TagV(AN) infection underwent significant

Fig 6. Brain-TRM cells primed with lower stimulation exhibit increased recall potential. (A) 1 x 103 donor TCR-V CD8 T cells were

adoptively transferred into recipient C57BL/6 mice. Mice were infected with 2 x 106 PFU of MuPyV via hind footpads the following day

and given depleting anti-CD8α on day 10 p.i. and once/week for 3 weeks. Mice were challenged i.c. with MuPyV.TagV virus on day 30 p.i.

and sacrificed five days post-challenge. (B) Number of TCR-V cells in the brain with or without secondary challenge (left panel) and fold

change of TCR-V cells in mice receiving secondary challenge compared to day 30 averages (right panel). (C) IFNγ and TNFα co-

expression from TCR-V cells stimulated for 5 h ex vivo with 1 μM TagV peptide. Mean ± SD plotted. N = 6–15 mice from 2–5 independent

experiments. *, p < 0.05; ANOVA with Tukey’s test for significance.

https://doi.org/10.1371/journal.ppat.1006318.g006
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expansion to MuPyV.TagV challenge infection (Fig 6B). Despite these differences in size of the

recall response, no significant differences in cytokine effector capability were seen (Fig 6C).

Together, these data demonstrate that infection with MuPyV mutants carrying a suboptimally

stimulating epitope can promote establishment of functional TRM cells having an improved

capacity to counter re-infection.

Discussion

In this study, we show that strength of TCR stimulation is a central determinant guiding the

differentiation of functional antiviral CD8 TRM cells in persistent infection. To insulate effects

of TCR stimulation from dynamic changes associated with host immunity, and do so in a nat-

ural host viral infection, we mutated a weak subdominant CD8 T cell epitope in MuPyV and

monitored the differentiation of donor CD8 T cells from a TCR transgenic mouse. By altering

a subdominant CD8 T cell epitope within a virus and not impacting viral fitness or tropism,

we circumvented variations in antigen processing, virus-associated inflammation, and host

antiviral immunity that could impact T cell fate. In addition, adoptive transfer of a physiologic

number of TCR transgenic CD8 T cells served to eliminate evolution of the polyclonal

response and timing of T cell recruitment on T cell differentiation [39, 40]. Using this strategy,

we found that infection by MuPyVs carrying altered epitopes that reduced TCR stimulation

strength (1) recruited a larger number of antiviral effectors than those elicited by cognate anti-

gen, and (2) generated a memory population in both lymphoid and nonlymphoid tissues

endowed with superior recall response capability. These findings provide direct evidence that

TCR signal strength, as an isolated variable, plays a dominant role in the differentiation of TRM

cells.

A number of approaches have been used to investigate the influence of TCR signaling

strength in T cell differentiation, including genetic alterations in TCR signaling, and modu-

lating the level and duration of antigen and inflammation [18, 41, 42]. Inducible systems

have been developed to disrupt proximal TCR signaling at the level of Lck [22], SLP-76 [23],

and the TCR [20]. These studies collectively suggest that while TCR signaling is required for

activation and expansion of naïve CD8 T cells, it is not required for memory T cell mainte-

nance, self-renewal, or a secondary response. In contrast, OT-I cells with a point mutation in

the TCR transmembrane domain that retains peptide:MHC ligand binding and proximal sig-

naling, but has reduced NF-κB activity, undergo accelerated and deeper contraction and

exhibit defective memory development [21]. Antigen availability has also been shown to

affect the magnitude of CD8 T cell recruitment, but without impacting memory function,

implicating an “all-or-nothing” phenomenon [19]. Temporal ablation of dendritic cells car-

rying a diphtheria toxin receptor transgene to vary the duration of antigen presentation cur-

tailed the magnitude of the T cell response, but did not impede memory generation [43].

Other studies using antibiotic/antiviral treatment [32, 44] or transfer of early effector cells

into infection-controlled hosts [33] to shorten the duration of antigen and inflammation

have shown improvement in memory formation. We previously demonstrated that reducing

the MuPyV inoculation dose was associated with increased memory T cell fitness [45]. It

merits pointing out that each of these prior studies assessed T cell expansion and effector

memory differentiation on a population level. At the single-cell level, TCR signaling appears

to behave in a digital fashion, such that clonal expansion is engaged once a minimum thresh-

old of TCR activation is reached [31]. Our finding that MuPyVs with altered subdominant

epitopes drive equivalent or greater T cell clonal expansion than the native epitope fit with

this concept; our data are also at odds with the notion of a positive correlation between TCR

stimulation strength and clonal burst size.
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Alteration of memory T cell differentiation as a function of TCR stimulation has been stud-

ied using analogue peptide epitopes that either differentially engage TCRs (altered peptide

ligands; APLs) or MHC molecules (MHC variant peptides; MVPs). Using APLs of the Kb-

restricted SIINFEKL epitope with varying affinities for OT-1 cells expressed by recombinant

Listeria monocytogenes, Zehn et al. found a direct correlation between affinity of the priming

APL and OT-1 cell numbers. This correlation was explained by preferential retention of OT-1s

in secondary lymphoid organs when priming involved the higher affinity APLs, such that cell

numbers peaked earlier than with the lower affinity APLs; irrespective of APL affinity, OT-1

cells differentiated into functional memory cells [46]. In contrast, we found that weaker ligands

for TCR-V cells elicited a larger expansion, and did so without affecting the kinetics of the

response. This discrepancy may result from differences in innate signals induced by L. mono-
cytogenes vs MuPyV infection, in acutely vs persistently infecting pathogens, the dominant

Kb/SIINFEKL OT-1 epitope vs the weak subdominant Db/TagV TCR-V epitope, and/or in the

TCR stimulation strength of the analogue epitope ligands used in these infection models.

Regardless of the MuPyV mutant used, TCR-V cells were not detected in the lymph nodes or

the spleen prior to day 6 p.i. (S4 Fig). Furthermore, the relative percentage of TCR-V cells in

the spleen at day 6 p.i. mirrored the trend seen at day 8 p.i., suggesting that the increased mag-

nitude of TCR-V expansion in MuPyV.TagV(AN) infected mice was not due to earlier recruit-

ment or delayed egress. Using an LCMV mutant carrying an MVP of the GP33 epitope

recognized by P14 transgenic CD8 T cells, Evavold and colleagues observed early contraction

of P14 cells due to accelerated apoptosis [47]. Although none of the analogue TagV peptides

had changes in the dominant Db anchoring residues (P5 asparagine and P9 leucine), these ana-

logues reduced stabilization of Db by RMA/S cells (Fig 1A); thus, the TagV analogues appear

to straddle the line between APLs and MVPs. In any event, MuPyVs expressing analogue epi-

topes that have weaker TCR stimulatory capacity elicit a larger expansion of donor TCR-V

cells than those carrying the cognate epitope (Fig 3).

A central finding in this study is that the strength of TCR stimulation affects the generation

of CD8 TRM cells. We found that lower TCR stimulation in the setting of a persistent viral

infection generates brain TRM cells with superior anamnestic potential and having increased

functional avidity (Figs 4 & 6). It is possible that the increased functionality of TCR-V cells

recruited by lower stimulation was due to unique programming. No differences in expression

of T-bet/eomes among memory TCR-V cells generated in response to infection with the ana-

logue viruses were detected (Fig 3); however, we cannot exclude the possibility for differences

in epigenetics or other transcription factors shown to guide memory differentiation [48].

What we did observe, however, was an improvement in polyfunctionality and a dramatic

increase in functional avidity of TCR-V cells primed with lower stimulation (Fig 4). While

effector TCR-V cells recovered at day 8 p.i. from MuPyV.TagV-infected mice displayed

slightly increased sensitivity to cognate TagV peptide, memory T cells recovered from MuPyV.

TagV(AN)- and MuPyV.TagV(QN)-infected mice had superior functional avidity for cognate

antigen, with EC50 values approximately three-to-four logs lower than the MuPyV.TagV-

infected mice (Fig 4C & 4D). This result fits with the possibility that persistent low TCR stimu-

lation, here via modulating residues in a cognate epitope, fosters generation of memory T cells

having elevated functionality to the cognate epitope.

Functional avidity, an experimental readout reflective of TCR-pMHC affinity, TCR levels

and topology, co-receptor levels, and number and activation of signaling molecules [49], has

been shown to evolve with the state of differentiation of both polyclonal and TCR transgenic

cells [50–52]. Indeed, our results show that memory TCR-V cells have increased functional

avidity compared to naïve TCR-V cells (Figs 1, 4 & S1). Both TCR (CD3ε gMFI) and co-recep-

tor (CD8α gMFI) levels were unchanged in either the spleen or the brain over the course of
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infection with MuPyV.TagV or the analogue viruses (S5 Fig). An increase in functionality of

monoclonal populations of effector and memory cells, as seen with the TCR-V:MuPyV infec-

tion system, has been attributed to clustering of TCRs and signaling molecules to immunologi-

cal synapses [53–55], and increased efficiency of signal transduction [50, 56].

Although the theme of lower TCR stimulation conferring greater memory potential holds

true in both organs, we noted a disparity in the best responders to secondary challenge

between the splenic memory T cells and the brain TRM cells, in that cells generated to MuPyV.

TagV(QN) infection exhibited higher recall responses in the spleen, but those in the brain

were higher for memory TCR-V cells recruited by MuPyV.TagV(AN) infection (Figs 4 & 6).

This difference might be explained by the different antigen challenge approaches (s.c. implan-

tation of transformed TagV+ cells vs i.c. inoculation with TagV+ MuPyV). The superior recall

response exhibited by the TagV(AN)- or TagV(QN)-primed TCR-V cells may in part also

reflect the lower frequency of these cells at the time of secondary infection, which could extend

the period of antigen availability and enable a longer secondary expansion phase.

Although the brain-resident CD8 T cells in our study lacked expression of CD103, a surface

marker implicated in defining TRM cell populations, it should be noted that CD103 appears to

not be a reliable indicator for identifying TRM cells [6, 57]. Expression of CD103 may be

dependent on route of infection and the subsequent level of inflammation and recruitment of

cells into the brain parenchyma, both of which are low in the brain following a systemic

MuPyV infection. A defining characteristic of TRM cells is their lack of dependence on replen-

ishment from the circulation; indeed, depletion of CD8 T cells from the circulation did not

affect stability of TCR-V cell numbers in the brain (Fig 5). Further studies are needed to assess

the impact of route of inoculation and subsequent changes in local inflammation and antigen

abundance on the generation of TRM cells.

A sizeable body of literature indicates that subdominant CD8 T cells are an integral compo-

nent of anti-microbial immunity. Studies in respiratory syncytial virus (RSV) and Mycobacte-
rium tuberculosis have established a protective role for subdominant CD8 T cells, which in

some cases have been shown to be more effective at clearing pathogens than the dominant T

cell population [58, 59]. A study of HIV-1 vaccine design approached the idea of subdominant

epitope vaccinations by inactivating immunodominant epitopes to foster compensatory

expansion of the subdominant antiviral CD8 T cell populations, and showed that they were

capable of inducing robust, protective responses [60]. A vaccine formulation that elicited mul-

tiple Ebola virus epitope-specific CD8 T cell populations, including those to subdominant epi-

topes, displayed significant protective capability [61].

T cell vaccine design typically focuses on generating high-affinity, dominant epitope-spe-

cific CD8 T cells. Weak TCR-antigen interactions, however, are capable of inducing expan-

sion and phenotypic differentiation of naïve CD8 T cells into effector and memory cells [46,

62, 63]. Strong, sustained interaction of antigen with TCRs upregulates inhibitory receptors

on CD8 T cells, rendering them dysfunctional [64–67]. Moreover, host-pathogen interactions

are dynamic, leading to selection of pathogens with mutations in epitopes that interfere with

recognition by pathogen-specific T cells [68–72]. Epitopes targeted by dominant T cell

responses are especially susceptible to mutations that handicap binding to an MHC molecule

and/or interfere with TCR engagement. Our data demonstrate that TRM cells directed to a

subdominant epitope are generated by infection with a persistent viral pathogen; these sub-

dominant TRM cells are endowed with strong memory potential such that they expand locally

and produce antiviral cytokines during secondary challenge (Figs 4 & 6). By extension, evi-

dence presented here highlights the importance of investing in vaccine strategies to generate

subdominant memory T cell populations in nonlymphoid tissues.
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In summary, we have explored the effects of TCR stimulation strength in a subdominant T

cell population on the formation of lymphoid and brain-resident memory cells. Whereas

clonal expansion and CD8 effector function have typically been considered to correlate directly

with TCR stimulation, we have shown that lowering TCR stimulation strength results in larger

T cell clonal expansion and maintains effector function while improving memory potential.

Furthermore, our data provides evidence that systemic infection by a persistent virus express-

ing analogue epitopes with decreased TCR stimulatory capacity can recruit higher functioning

tissue-resident memory cells to the brain.

Materials and methods

Ethics statement

All experiments involving mice were conducted with the approval of Institutional Animal

Care and Use Committee (Protocols 45575 and 46194) of The Pennsylvania State University

College of Medicine in accordance with the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The Pennsylvania State University College of Medicine

Animal Resource Program is accredited by the Association for Assessment and Accreditation

of Laboratory Animal Care International (AAALAC). The Pennsylvania State University Col-

lege of Medicine has an Animal Welfare Assurance on file with the National Institutes of

Health’s Office of Laboratory Animal Welfare; the Assurance Number is A3045-01.

Mice

Female C57BL/6 (B6) were purchased from the National Cancer Institute (Frederick, MD).

CD45.1 TCR-V transgenic mice expressing a TCR specific for Large T antigen (LT) amino

acids 498–505 (“SiteV”) of SV40 have been previously described [73]. Mice were used at 8–10

weeks of age.

Cells

RMA/S cells [74] were cultured in RPMI 1640 medium supplemented with 10% FBS, 100

units/ml penicillin, and 100 μg/ml streptomycin. TagV-only expressing 116A1 cells (B6/T

116A1 Cl-C) [75], were cultured in DMEM supplemented with 10% FBS, 100 units/ml penicil-

lin, 100 μg/ml streptomycin.

Synthetic peptides

HPLC-purified peptides synthesized by Peptide 2.0, Inc. (Chantilly, VA) were dissolved in PBS

and stored at -20˚C. Peptides are listed in Table 1.

Viruses

The A2 strain of MuPyV was prepared in baby mouse kidney cells as described [76]. TagV var-

iant viruses were created using the QuikChange Site-Directed Mutagenesis kit (Agilent Tech-

nologies). Primer sets (Integrated DNA Technologies) are listed in Table 1. Viruses were

titered by plaque assay on BALB/3T3 clone A31 cells (American Type Culture Collection,

Manassas VA) as described [77]. Mice were infected in hind footpads with 2 x 106 PFU.

RMA/S peptide stabilization assays

For MHC-I stabilization assays, RMA/S cells were cultured overnight at 26˚C, resuspended

in RPMI containing 10% FBS (10% RPMI) and peptides of different concentrations, then
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incubated for 1 h at room temperature followed by 2 h at 37˚C. For peptide dissociation

assays, RMA/S cells were cultured overnight at 26˚C in the presence of 100 μM peptide, then

resuspended in 10% RPMI at 37˚C. Each hour for 4 h an aliquot of cells was stained for 30

mins at 4˚C with phycoerythrin-conjugated anti-Db (clone 28-14-8; eBioscience), acquired

on a BD FACSCanto10 instrument, and the geometric mean fluorescence intensity (gMFI)

determined using FlowJo Software (Tree Star). The percent maximum gMFI was calculated

as (gMFIpeptide-gMFIno peptide)/(gMFImax- gMFIno peptide) x 100. EC50 and T1/2 were calculated

using Prism software (GraphPad, La Jolla CA).

Intracellular mAb staining

Splenocytes were cultured for 5 h in DMEM containing 10% FBS, 100 units/ml penicillin,

100 μg/ml streptomycin and supplemented with 1ug/ml brefeldin A (Sigma-Aldrich). Cells

were exposed to Fixable Viability Dye eFluor 780 (eBioscience), then surface stained with

mAbs to CD8α (clone 53–6.7; eBioscience), CD44 (clone IM7; eBioscience), and CD45.1

(clone A20; BioLegend), permeabilized with Cytofix/Cytoperm buffer (BD Biosciences) or

FoxP3 buffer (eBioscience), and stained for intracellular IFNγ (clone XMG1.2; Biolegend),

TNFα (clone TN3-19.12; eBioscience), IL-2 (clone JES6-5H4; BD Biosciences), and Nur77

(clone 12.14; eBioscience). DbLT359 and SiteV tetramers [25, 75] were provided by the NIH

Tetramer Core Facility (Atlanta, GA).

CD8 T cell isolation and adoptive cell transfer

CD8 T cells were purified from CD45.1 TCR-V mice using a negative selection CD8 T cell iso-

lation kit (Miltenyi Biotec) according to manufacturer’s instructions; transferred cells were

>90% CD8+. 1 x 103 TCR-V cells were injected i.v. per tail vein one day prior to infection.

Viral genome quantitation

TaqMan real-time PCR was performed using 10 μg template DNA purified from snap fro-

zen tissues using the Maxwell 16 nucleic acid isolation system (Promega, Madison WI) as

described [25].

T cell isolation and flow cytometry

Spleens and brains were harvested at indicated days p.i. Brains were minced and digested with

collagenase (100 U/ml in DMEM with 2% FBS, 200 U/ml penicillin, 200 g/ml streptomycin, 2

mM L-glutamine, 5 μM HEPES, 1 μM MgCl2, 1 μM CaCl2) for 30 min at 37˚C, passed through

a 70 μm nylon cell strainer (BD Biosciences). Cells were isolated by centrifugation on a

44%:66% Percoll gradient. Spleens were passed through a 70 μm nylon cell strainer, then

treated with ACK buffer (0.15 M NH4Cl, 1mM KHCO3, 1mM Na2EDTA, pH 7.0) to lyse

RBCs. Cells were surface-stained in FACS Buffer (PBS, pH 7.2 with 1% BSA, 0.1% sodium

azide) for 30 min at 4˚C with mAbs to CD8α (clone 53–6.7; Biolegend), CD44 (clone IM7;

eBioscience), CD45.1 (clone A20; Biolegend), CD62L (clone MEL-14; BD Biosciences), CD69

(clone H1.2F3; BD Biosciences), PD-1 (clone RMP1-30; Biolegend), CD11a (clone 2D7; BD

Biosciences), CD49d (clone MFR4.B; BioLegend), KLRG1 (clone 2F1; BD Biosciences), and

CD127 (clone AFR34; Biolegend). Samples were collected on a BD LSR Fortessa or FACS-

Canto10 flow cytometer. Fluorescence-minus-one (FMO) samples were used to set positive

gates for each surface molecule examined.
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CD8 T cell depletion

Mice were injected i.p. with 250 μg rat anti-CD8α (YTS169.4; Bio X Cell, West Lebanon NH)

or ChromPure whole rat IgG (Jackson ImmunoResearch Laboratories, West Grove PA) at 10,

12, 19, and 26 days p.i. Depletion was confirmed in the blood by flow cytometry Absolute

Count Standard (Bangs Laboratories, Fishers IN).

TCR-V cell recall response

To assay splenic TCR-V recall, 5x107 116A1 cells in 0.5 ml PBS were injected i.p. To assay

TCR-V recall in the brain, 2 x 106 PFU MuPyV.TagV virus was injected i.c. in 30 μl DMEM

containing 2% FBS. Mice were challenged at day 30 p.i. and sacrificed five days post-challenge.

Statistical analysis

All data are displayed as mean ± SD unless otherwise indicated. p values were determined

using an unpaired Student’s t test assuming equal variance or one-way ANOVA using Graph-

Pad Prism software. All p values� 0.05 were considered significant.

Supporting information

S1 Fig. Functional avidity of effector and memory TCR-V cells responding to infection by

MuPyVs carrying cognate or analogue TagV epitopes. Intracellular IFNγ expression by

TCR-V cells isolated from the spleen at day 8 (A) or day 30 p.i. (B) that were stimulated for 5 h

ex vivo with varying concentrations of cognate or analogue TagV peptides.

(TIF)

S2 Fig. Expression of CD8α, CD62L, CD69, and CD103 on effector and memory TCR-V

cells. (A) gMFI of CD8α (left panel), CD62L (middle panel), and CD69 (right panel) on

TCR-V cells in the spleen at days 8 and 30 p.i. with analogue viruses. (B) gMFI of CD103 on

TCR-v cells in the spleen and brain at days 8 and 30 p.i. with analogue viruses.

(TIF)

S3 Fig. Efficiency of antibody-mediated depletion of non-CNS CD8+ cells. Number of CD8

T cells pre-depletion (day 10 p.i.) and post-depletion (day 29 p.i.) with CD8+ cell-depleting

antibody. CD8 T cells were depleted 42-fold in the blood (A), 13.2-fold in the spleen (B), and

8.7-fold in the cervical lymph nodes (C).

(TIF)

S4 Fig. TCR-V cell expansion in the spleen and cervical lymph nodes. (A) Percent of TCR-V

cells in the cervical lymph nodes at days 2, 5, 8, and 30 p.i. (B) Percent of TCR-V cells in the

spleen at day 6 and day 8 p.i.

(TIF)

S5 Fig. TCR and CD8 co-receptor expression on effector and memory TCR-V cells. gMFI

of CD3 (A) and CD8 (B) on TCR-V cells from the spleen (right panels) and brain (left panels)

at days 8 and 30 p.i.

(TIF)
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