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Abstract: The importance of mitogen-activated protein kinases (MAPK) in human pathology is
underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number
of different diseases, including inflammatory disorders and cancer. One of the key events in
MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and
progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression.
The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK
and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared
to other MAPK enables multiple levels of regulation of its expression and activity. In particular,
the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and
chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5
nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this
review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus,
and discuss how these processes might be exploited to design new strategies for cancer treatment.

Keywords: nuclear localization; nuclear signaling; MAPK; BMK1; MAPK7; alternative kinase targeting;
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1. Introduction

Protein phosphorylation is one of the key mechanisms used to transduce extracellular signals
and transmit the information to the nucleus [1,2]. In particular, mitogen-activated protein kinases
(MAPK) are a group of proteins able to translate environmental signals elicited by a plethora of
stimuli, including growth factors and stresses, into different biological responses such as survival,
apoptosis, proliferation and differentiation [3,4]. The importance of MAPK is underlined by the
abnormal signaling conveyed by members of MAPK family in a number of human diseases, including
Parkinson’s disease, inflammatory disorders and cancer [4,5]. There are several MAPK in mammals.
The extracellular signal-regulated kinases 1 and 2 (ERK1/2), probably the best characterized among the
classical MAPK, are activated mainly by growth factors, and are primarily involved in the transmission
of proliferative signals. The c-Jun N-terminal kinase (JNK) 1/2/3 and p38MAPK α/β/γ/δ are activated
mainly by inflammatory cytokines, and are primarily involved in adaptation to stress, apoptosis and
differentiation. ERK5 (also known as Big MAPK 1, BMK1), the least characterized classical MAPK, is
activated by both growth stimuli and stress, and plays critical roles in a number of cellular processes,
including proliferation, differentiation and migration [6]. The MAPK family also includes the ERK3,
ERK4, ERK7 atypical MAPK and the nemo-like kinase (NLK) [7].

MAPK pathways comprise a three-tier kinase cascade in which a MAPK is activated upon
phosphorylation by a MAPK kinase (MAPKK), which in turn is activated when phosphorylated by
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a MAPKK kinase (MAPKKK) [8–10]. MAPK are evolutionarily well-conserved enzymes found in
virtually all eukaryotes [11], and phosphorylate serine and threonine residues preceding a proline.
Target specificity of each MAPK is determined by different docking domains [12]. These include the
D-domain that consists of a conserved cluster of positively charged amino acids (a.a.) surrounded by
hydrophobic ones, and is recognized by a short sequence of negatively charged a.a. of the C-terminus
of MAPK, called the common docking (CD) domain. By tethering the MAPK to substrate, docking
interactions contribute to the efficiency of kinase reaction [13,14]. This kind of regulation enhances
the complexity of the MAPK signaling cascade and is responsible for the tuning of the wide variety
of functional effects of MAPK family. Another important feature of MAPK signaling is the large
number of cascade substrates, which include transcription factors, protein kinases and phosphatases,
components of cytoskeleton, regulators of apoptosis, and a variety of other signaling-related molecules.
Many of these substrates are localized in the nucleus, where they are involved in the regulation of
transcription, while others are in the cytosol or cytoplasmic organelles and are responsible for processes
such as translation, mitosis, apoptosis and migration [6].

2. Extracellular Signal-Regulated Kinase 5

ERK5 is expressed in many tissues, including heart, skeletal muscle, placenta, lung and kidney [15,16].
Discovered in 1995 independently by two research groups, ERK5 is encoded for by the MAPK7 gene,
which has a total length of 5824 bases and includes an open reading frame of 2451 bp. The gene product is
a protein of 816 a.a. that has a two-fold molecular weight compared to the other classical MAPK family
members, which explains why ERK5 was also given the name BMK1 [15].

Structurally, the ERK5 protein contains an N-terminal half (a.a. 1–406) endowed with kinase
activity, and a C-terminal half of 410 a.a., important for the intracellular localization of ERK5 and the
transcriptional regulation of target genes. The N-terminus includes a region required for cytoplasmic
targeting (a.a. 1–77) and a kinase domain (a.a. 78–406) which shares 66% sequence identity to the kinase
domain of ERK2. The kinase domain includes a region essential for the interaction of ERK5 with MEK5
(a.a. 78–139), an oligomerization domain (a.a. 140–406) and a CD domain (a.a. 350–358) important
for the association with D-domain-containing substrates [17]. The C-terminal half includes a nuclear
localization sequence (NLS) important for ERK5 nuclear targeting (a.a. 505–539), two proline-rich (PR)
domains, namely PR1 (a.a. 434–465) and PR2 (a.a. 578–701), which are considered potential binding sites
for Src-homology 3 (SH3)-domain-containing proteins, a nuclear export sequence (NES) and a myocyte
enhancer factor 2 (MEF2)-interacting region (a.a. 440–501) [18]. The C-terminus of ERK5 also possesses a
transcriptional transactivation domain (a.a. 664–789) [19] that undergoes autophosphorylation, thereby
enabling ERK5 to directly regulate gene transcription, an ability unique to ERK5 amongst MAPK [20].
Furthermore, the C-terminus regulates ERK5 activation, autophosphorylation and nucleo-cytoplasmic
shuttling (see below), and seems to have an auto-inhibitory function, as its truncation results in
increased ERK5 kinase activity [21].

Initially identified as a stress MAPK, as it is activated by both oxidative and osmotic stresses [22],
ERK5 was later shown to be also activated by a plethora of extracellular stimuli, including growth factors
such as vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), fibroblast growth
factor-2 (FGF-2), platelet-derived growth factor (PDGF), colony-stimulating factor-1 (CSF-1), nerve
growth factor (NGF), and interleukin 6 (IL-6) [23–26]. Furthermore, physiological and pathological
conditions including laminar shear stress, ischemia and hypoxia are able to activate ERK5, although
via mechanisms which still need to be fully elucidated [22,27–29]. Following activation by the
above-listed stimuli, ERK5 controls cell survival and apoptosis, proliferation, differentiation, motility
and angiogenesis [30–33]. Indeed, one of the first in vivo studies showed that ERK5 may support the
viability of endothelial cells in adult animals [34], and is critical for embryogenesis, probably due to its
role in the control of proliferation of endothelial cells and vasculogenesis [27,35,36].

How activated membrane receptors couple to ERK5 is still partially unclear. Growth factor
receptors may cause ERK5 activation through Ras in certain cell types [37,38], but not in others [39].
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In addition, other intracellular kinases, such as MEKK2/3 [40], c-Cot [41] and c-Src [42] may activate
ERK5. Of note, the adaptor protein Lad1/RIBP by regulating MEKK2, but not MEKK3, is involved in
ERK5 pathway activation [43]. Direct ERK5 activation is classically operated by the upstream MAPKK,
MEK5, that has ERK5 as its only known substrate [15] and phosphorylates ERK5 at T218/Y220 in the
conserved threonine-glutamic acid-tyrosine (TEY) motif of the catalytic domain [39]. MEK5-dependent
phosphorylation contributes to ERK5 stabilization in an active conformation, the latter event being
further promoted by ERK5 auto-phosphorylation at the C-terminus. Importantly, phosphorylation of
the C-terminus is required for maximal ERK5 transactivator activity, which is exerted following its
nuclear localization and the consequent phosphorylation of nuclear targets [21]. On the other hand, it
has been shown that the nuclear localization of a mutant ERK5 form devoid of kinase activity results
in the activation of transcription through the transcriptional activation domain (TAD) located at the
C-terminus [44].

Like other MAPK, ERK5 phosphorylates its substrates at S/T-residues immediately preceding a
proline. Intriguingly, residue T28 in the ERK5 N-terminal half and residues S421, S433, S496, S731 and
T733 in the C-terminal half are not followed by proline, but undergo autophosphorylation. Furthermore,
ERK5 is capable of phosphorylating MEK5 at specific proline-unrelated sites, the residues S129, S137,
S142 and S149 [45]. Taken together, these findings suggest that the substrate specificity of ERK5 may
differ from that of other MAPK family members. The best characterized ERK5 substrates are nuclear
transcription factors, while the known ERK5 cytosolic substrates are very few and include p90RSK
kinases [46], the pro-apoptotic protein BAD and the GAP junctional protein CX43 [47]. Although the
direct phosphorylation of these substrates by ERK5 has not been demonstrated (except for CX43), it is
a fact that ERK5 silencing reduces the phosphorylation of these proteins.

Once ERK5 has been activated, it translocates into the nucleus where it phosphorylates and
activates a number of transcription factors, of which the MEF-2 family members MEF2A, C and D are
the best characterized [39,48,49]. In particular, ERK5 phosphorylates MEF2C in S387, thus increasing
its transcriptional activity that in turn enhances c-Jun expression [50]. MEF2D has been shown
to be an ERK5-specific substrate [48,49], whereas the activities of MEF2A and C are controlled by
both ERK5 and p38 MAPK [51,52]. As mentioned above, ERK5 contains a MEF2-interacting region
and a transcriptional transactivation domain in its C-terminus, both being critical to regulate MEF2
activity [19], as demonstrated by the fact that an ERK5 mutant lacking the C-terminus fails to stimulate
MEF2 activity [18]. Besides regulating MEF2, ERK5 controls the transcription of c-MYC, CREB and
Sap1a [38,53]. Furthermore, it has been shown that, while both ERK5 and ERK1/2 are capable to
phosphorylate c-Fos at S387, ERK5 activation determines c-Fos phosphorylation at additional sites,
leading to maximal c-Fos transactivation activity; phosphorylation of these c-Fos sites requires the
C-terminal tail of ERK5 [54]. Finally, ERK5 activates other transcription factors, such as peroxisome
proliferator-activated receptor delta (PPARδ) [55] and probably PPARγ [56] and nuclear factor κB
(NFκB) [57]. Importantly, ERK5 possesses an intrinsic transcriptional transactivation activity, which was
demonstrated to induce the transcription of Nur77 gene upon calcium signals in T cells [19].

With respect to other downstream pathways of ERK5, it has been reported that it plays a relevant
role in regulating cell cycle progression [58], and that there is a link between ERK5 and NFκB in
the regulation of cell cycle through the control of G2-M transition and timely entry into mitosis [59].
This function requires ERK5-dependent activation of NFκB via ribosomal S6 kinase 2. Moreover,
during mitosis, ERK5 is constitutively phosphorylated and binds and inactivates BIM, a BCL2 family
mediator of cell death, suggesting that ERK5 plays a role in the survival of cells in mitosis [60].

3. Mechanisms of Regulation of ERK5 Nuclear Translocation

As reported above, many MAPK exert their ultimate activities in the nucleus. Translocation of
MAPK from the cytosol to the nucleus is indeed essential for the regulation of gene transcription and
cellular processes such as cell cycle progression, differentiation and circadian clocks [61,62]. Small
molecules including proteins can enter the nucleus by simple diffusion through the nuclear pore,
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while proteins with a molecular mass larger than around 60 kDa, including many MAPK, are actively
transported from one side to the other of the nuclear envelope by nuclear transporters. Regarding the
latter, for example, ERK1/2 are shuttled by Importin-7 (Imp7) [63,64], while JNK and p38 are shuttled
by a dimer of Imp3 with either Imp9 or Imp7 [65]. With respect to ERK5 nuclear translocation, several
mechanisms of regulation have been described (Figure 1).
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phosphorylation by CDK1 at S753 and/or T732 in mitosis; (3) MEK1/2-ERK1/2-dependent mechanism, 
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Figure 1. ERK5 nuclear translocation. In the inactive state, the N-terminal half of ERK5 interacts
intra-molecularly with the C-terminal half, and the chaperones HSP90 and CDC37 are bound to ERK5.
In this conformation ERK5 resides in the cytosol. (1) Upon MEK5-mediated phosphorylation of the
TEY motif and subsequent activation, ERK5 auto-phosphorylates its C-terminal half determining the
intramolecular interaction, and inducing a conformational change that results in the dissociation from
HSP90, exposition of the NLS, and nuclear translocation. Alternatively, MEK5-independent mechanisms
resulting in ERK5 phosphorylation and nuclear translocation include: (2) phosphorylation by CDK1 at
S753 and/or T732 in mitosis; (3) MEK1/2-ERK1/2-dependent mechanism, involving ERK5 phosphorylation
at T732, under growth factors stimulation and/or oncogene activation. (4) Regulation of ERK5 nuclear
shuttling by SUMOylation at the N-terminus. Solid lines indicate direct established regulatory interactions,
whereas broken lines illustrate putative interactions (created with Biorender.com).

ERK5 is expressed in a number of cell types, and its intracellular localization under routine
culture conditions varies largely [21], ranging from a predominantly nuclear pattern, such as that in
COS-7, HeLa, BT474 and SKBR3 cells [50,66,67], to an overall diffuse pattern, like in MCF7 cells [66].
In the murine myoblast cell line C2C12 and the breast cancer cell line MCF7, ERK5 localizes in the
cytoplasm as a result of serum deprivation and translocates into the nucleus in response to FGF or
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neuregulin [50,66]. In HeLa cells, ERK5 is localized in the nucleus even in the absence of stimulation,
but treatment with EGF causes a further increase of nuclear ERK5 [50,67]. Furthermore, following
EGF-induced nuclear translocation, ERK5 is activated by nuclear MEK5, after this kinase is activated,
in turn, by nuclear MEKK2 [67]. More recently, it was reported that EGF-induced MEKK2 nuclear
translocation is affected by calcium levels, so that low as well as high calcium levels reduce ERK5
activity in the nucleus [68]. Other growth factors reported to induce ERK5 nuclear translocation are
CSF-1 in murine macrophages [69] and PDGF in human hepatic stellate cells [70]. Finally, activated Src
as well as mutated BRAF (BRAFV600E) cause ERK5 nuclear translocation [37,71].

The presence within ERK5 of a large C-terminal tail raises questions about its potential role in
affecting ERK5 signaling. Buschbeck and colleagues showed that C-terminal half influences not only
ERK5 activation but also its nuclear shuttling [21]. Indeed, deletion of the last one hundred C-terminal
residues (ERK5∆713) not only leads to a marked increase of ERK5 kinase activity, probably due to the
fact that the C-terminal tail possesses an autoinhibitory function of kinase activity [53], but also results
in ERK5 nuclear accumulation. Further deletion of most or all of the ERK5 C-terminal half (ERK5∆575,
ERK5∆464 and ERK5∆409) in COS-7 cells results in the loss of its predominant nuclear localization
and in an equal distribution between the cytosol and the nucleus. Such an altered distribution of
differently truncated ERK5 forms can be explained by the presence of a functional NLS (a.a. 505–539)
and a NES (a.a. 440–501) in the C-terminal half of ERK5 [18]. This is in agreement with the cytoplasmic
accumulation of a murine ERK5 variant truncated in the C-terminus (mERK5-t) after residue 492 [72].
Additional lines of evidence linked nuclear ERK5 to a pro-tumoral effect. Indeed, in HeLa cells,
the expression of another truncated ERK5 form (ERK5∆570), which resides in the nucleus constitutively,
reduces apoptotic cell death in response to TRAIL receptor activation [44]. Interestingly, ERK5 nuclear
localization has been proposed to be an early event in the onset of hepatocellular carcinoma [70], and a
strong nuclear ERK5 expression is associated with a relatively poor prognosis of prostate cancer [73].
Later work showed that Mir143 has a tumor suppressor role in prostate cancer by controlling cell
proliferation and survival through modulation of ERK5 [74], and that Mir143 expression inversely
correlates with nuclear ERK5 immunoreactivity in clinical prostate cancer [75].

3.1. MEK5-Dependent Nuclear Translocation of ERK5

Under basal conditions, i.e., in unstimulated cells and/or in the absence of oncogenic stimuli,
cytosolic ERK5 is in an unphosphorylated inactive folded form, where the N- and the C-terminal
halves are bound to each other, so that the NLS is hidden and nuclear translocation is prevented [18].
This conformation is stabilized by the interaction of ERK5 with the co-chaperone CDC37 and the
chaperone HSP90, the latter ensuring cytosolic anchorage of ERK5 protein. Besides stabilizing ERK5 in
an inactive conformation, the trimeric complex ERK5-CDC37-HSP90 facilitates ERK5 recognition and
activation by MEK5 [76]. In the folded structure, the C-terminus masks the CD domain of the N-terminus,
preventing ERK5 interaction with its substrates. MEK5-dependent phosphorylation at the TEY region
initiates the kinase activity of ERK5, which can phosphorylate itself in the C-terminus, thereby
promoting HSP90 release from the complex. Furthermore, following phosphorylation of the C-terminus,
ERK5 may assume an open conformation, exposing the NLS sequence that allows ERK5 nuclear
translocation [76,77]. The latter event likely involves Impα/β [78], that transports NLS-containing
proteins across the nuclear envelope [79,80]. Finally, a mutated form of ERK5 that cannot be
phosphorylated by MEK5 (ERK5-AEF, where TEY has been mutated to AEF) as well as ERK5∆713-AEF
are unable to translocate into the nucleus upon stimulation [21,66]. Thus, phosphorylation of ERK5 at
the MEK5 consensus site seems necessary for nuclear translocation, at least under certain conditions
(see below). Once in the nucleus, ERK5 enhances gene transcription either by phosphorylating
transcription factors or, in a kinase-independent manner, by interacting with transcription factors
through the TAD domain.
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3.2. MEK5-Independent Nuclear Translocation of ERK5

Besides MEK5-dependent activation, other mechanisms driving ERK5 nuclear translocation
have been described. Among these, the overexpression of CDC37 in cancer cell lines induces HSP90
dissociation from ERK5, and nuclear translocation of wild type ERK5 as well as of a kinase-inactive form
(D200A) which retains transactivation activity [76]. As stated above, ERK5 nuclear shuttling requires
phosphorylation at the C-terminal half. This event may be promoted by ERK5 itself or by other kinases.
Referring to the latter occurrence, it has been reported that four residues (S753, T732, S773, S706) of ERK5
C-terminal half may be phosphorylated during mitosis in a cyclin-dependent kinase (CDK)1-dependent
manner, and that this phosphorylation is important for ERK5 nuclear localization [81]. Whether this
phosphorylation determines NLS exposure, like in the case of MEK5-dependent phosphorylation,
has not been clarified. On the other hand, this study could not conclude that CDK1 is the unique
kinase phosphorylating ERK5 during mitosis, as only two out of the four identified phosphorylated
ERK5 residues, S706 and T732, are followed by a proline and are CDK1 consensus target sites.

CDK5 is an unusual member of the CDK family, endowed with functions not related to cell cycle
control, and, unlike other mitotic CDK, is activated by binding to p35 or p39 [82]. Moreover, CDK5 plays
a relevant role in tumorigenesis in a number of cancers, such as breast, pancreas and neuroendocrine
thyroid carcinomas [83–85], and has been recently demonstrated to directly phosphorylate ERK5
in T732, enhancing ERK5 nuclear accumulation and modulating the oncogenic ERK5-AP1 axis in
colorectal cancer [86].

ERK1/2 may phosphorylate ERK5, resulting in an additional MEK5-independent activation of
ERK5. A recent study showed that a constitutively active RAS mutant (RASV12) resulted in ERK5
phosphorylation at T732. The involvement of ERK1/2 in this process was suggested by the fact
that treatment with a MEK1/2 inhibitor (U0126) reduces ERK5 phosphorylation at T732. This event
induces ERK5 nuclear localization and promotes ERK5-dependent transcription, without affecting the
phosphorylation status at TEY or at other (S769/S773/S775) C-terminal residues [87]. Along this line,
we recently reported that the overexpression of BRAFV600E in melanoma cells increases the nuclear
amount of total and phosphorylated ERK5 at S753 and T732, indicating that oncogenic BRAF, likely
via ERK1/2 and CDK1, enhances ERK5 functions as well as nuclear localization. More importantly,
oncogenic BRAF increased chromatin-bound ERK5, and enhanced the ability of ERK5 to induce
transcription activity of MEF2, demonstrating that BRAF can also influence the latter ERK5 function [88].
All the above-described MEK5-independent mechanisms result in the nuclear translocation of ERK5
which exerts a transcriptional transactivation activity independently of its kinase activity.

Beyond kinases and chaperones, ERK5 activity and nuclear translocation are regulated by other
mechanisms. The protein Ser/Thr phosphatases PP1/PP2A [89] and protein tyrosine phosphatases
(PTP) not only block ERK5 activation but prevent ERK5 translocation to the nucleus [90]. Finally,
the dual-specificity protein phosphatases DUSP5 and DUSP6 regulate ERK5 dephosphorylation at
TEY motif [91]. If these events are linked to ERK5 nuclear trafficking has not been addressed.

3.3. ERK5 Ubiquitination and Chaperone-Dependent Transport to the Nucleus

Ubiquitination is a post-translational modification consisting of the attachment of ubiquitin
peptides to a substrate through lysine-linked isopeptide bonds, and involves three steps: activation,
conjugation and ligation, which are catalyzed by specific enzymes. The ubiquitin-activating enzyme
(E1) binds ubiquitin in an ATP-dependent manner and transfers it to a ubiquitin-conjugating enzyme
(E2) that, with the help of ubiquitin-protein ligases (E3), attaches ubiquitin to target proteins [92].
Ubiquitin consists of 76 a.a., including seven lysine residues (K6, K11, K27, K29, K33, K48, and K63),
which can be conjugated with lysine residues of other ubiquitin molecules, forming poly-ubiquitin
chains. Ubiquitination targets substrates to the proteasome [93], thereby regulating the degradation of
non-functional (i.e., unfolded) or fast-turnover (such as cyclins) proteins. Ubiquitination can also be
related to non-proteolytic effects. Indeed, while poly-ubiquitin chains linked through K48 of ubiquitin
usually target a protein for degradation by the proteasome, those linked through other lysine residues
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may lead to proteolytic as well as non-proteolytic events [94]. With respect to the latter effect, it has been
demonstrated that K63-linked poly-ubiquitination of the yes-associated protein (YAP), a transcriptional
regulator involved in cell proliferation, promotes YAP cyto-nuclear translocation, transcriptional
activity and growth-promoting functions. This non-proteolytic ubiquitination is mediated by the
S-phase kinase-associated protein 2 (SKP2), that acts as an oncogenic E3 ligase [95].

ERK5 interacts with the HSP90-CDC37 chaperones in resting cells, and inhibition of HSP90 or
CDC37, by geldanamycin or celastrol, respectively, results in ERK5 ubiquitination and degradation [76].
MEK5-dependent phosphorylation/activation of cytoplasmic ERK5 drives HSP90 dissociation from
ERK5-CDC37-HSP90 trimeric complex and determines ERK5 nuclear translocation and transcription
activation by a mechanism which requires ERK5 autophosphorylation at the C-terminus. Consistently,
active ERK5 is no longer sensitive to HSP90 inhibitors [76].

3.4. Impact of SUMOylation on ERK5 Nuclear Translocation

Besides phosphorylation and ubiquitination, protein modification by SUMOylation has come into focus
as an important regulator of intracellular signaling due to the transient nature of these modifications [96].
Like ubiquitination, SUMOylation consists in the covalent attachment of small proteins, the small
ubiquitin-like modifier (SUMO) proteins (SUMO1-4), to the lateral chain of lysine residues in the substrate,
and occurs in three steps (activation, conjugation and ligation) led by enzymes different from those
involved in ubiquitination. The SUMOylation cascade contains a SUMO-activating enzyme (E1), which is
necessary for the activation of SUMO precursors, a SUMO-conjugating enzyme (E2) and a number of
SUMO ligases (E3). Cell proteins constantly undergo SUMOylation and de-SUMOylation: the enzymes
primarily responsible for deconjugating SUMOylated proteins are the sentrin-specific proteases (SENP),
of which SENP2 has been identified as the protease that removes SUMO from ERK5 [96].

SUMOylation regulates biological processes involved in survival, apoptosis, proliferation,
differentiation and senescence, and is critically involved in cancer onset and progression. SUMOylation
impacts on the function of a number of proteins by modifying their subcellular localization, protein
partnering, DNA binding and transactivating functions [97,98]. This mechanism of regulation is different
from that operated by ubiquitination, which mostly results in substrate degradation. It is well known
that SUMOylated proteins and proteins expressing SUMO-binding motifs co-aggregate in sub-nuclear
compartments called promyelocytic leukemia factor (PML) nuclear bodies (NB). PML-NB are among the
regulators of transcription, genome integrity, apoptosis, reaction to viral infection and tumor suppression [99].
For example, SUMOylation of the liver receptor homologue-1 (LHR-1) induces the localization of LRH-1
in PML-NB, resulting in the inhibition of its transcriptional activity. On the contrary, when LRH-1 is
de-SUMOylated, its interaction with other PML-NB components fails and LRH-1 can bind active chromatin
domains [100]. Another example concerns the transcription factor Sp3, that is typically SUMOylated and
localized at nuclear periphery and at nuclear dots in a repressed state. Upon de-SUMOylation, Sp3 is
converted into a transcriptional activator with a diffuse nuclear localization [101].

SUMOylation may induce protein redistribution from the cytoplasm to the nucleus. For example,
it has been demonstrated that SUMOylation of K195 in Flot-1 is important for its mitogen-stimulated
translocation into the nucleus in PC3 cells [102]. Another example of SUMO-dependent cytosol to
nucleus redistribution concerns the transcriptional corepressor C-terminal-binding protein 1 (CtBP1).
It has been demonstrated that SUMOylation of CtBP1 at K48 results in its nuclear localization and the
triggering of its corepressor function in the regulation of E-cadherin expression [103].

The first evidence that ERK5 may be SUMOylated has been reported by Woo and colleagues,
by showing that ROS induce SUMOylation of endogenous ERK5 at K6 and K22, resulting in the
inhibition of ERK5 transcriptional activity without affecting ERK5 phosphorylation and kinase activity
in endothelial cells. Based on that, the authors hypothesized that the reduction of ERK5 transcriptional
activity upon SUMOylation could be attributable to the increase of ERK5 interaction with repressors
or the decrease of ERK5 interaction with co-activators [104]. This study did not directly address
the question whether SUMOylation affects the amount of nuclear ERK5. More recently, Erazo and



Int. J. Mol. Sci. 2020, 21, 938 8 of 17

colleagues found that ERK5 SUMOylation supports ERK5 nuclear trafficking, and stimulates, rather
than inhibiting, ERK5-mediated transcriptional activation and cancer cell proliferation (Tatiana Erazo,
Sergio Espinosa-Gil, Nora Diéguez-Martinez, Nestor Gomez and Jose M Lizcano; submitted for
publication in IJMS, Special Issue “Targeting MAPK in Cancer”).

3.5. Possible Role of ERK5 Dimerization/Oligomerization on its Nuclear Translocation

Protein dimerization is a well-established mechanism driving the transduction of extracellular
signals. As far as the MAPK system is concerned, it has been shown in vitro that ERK2 phosphorylation
facilitates the formation of ERK2 dimers and that dimerization is necessary for ERK2 localization
to the nucleus [105]. ERK1 is also capable of dimerization when phosphorylated, both in vivo and
in vitro [106]. It has been also reported that the N-terminal (a.a. 140–406), but not the C-terminal, half
of ERK5 is involved in oligomerization. Moreover, while ERK1/2 oligomerizes upon phosphorylation,
oligomerization of ERK5 is observed in both activated and control cells (with or without the expression
of MEK5DD, a constitutively active form of MEK5), suggesting that ERK5 oligomerization does not
depend on its phosphorylation status [18]. To the best of our knowledge, no data are available in
literature about a possible impact of ERK5 dimerization/oligomerization on its nuclear translocation,
so that further studies are needed to address this point.

3.6. Possible Impact of ERK5 Mutations on its Nuclear Translocation

MAPK7 is mutated in a large variety of human cancers, although activating mutations of ERK5
have not been reported. We recently showed that five out of 479 melanoma patients harbor MAPK7
missense mutations, including P789S and A424S, two potential phosphorylation targets of C-terminus
worth being characterized for their possible impact on ERK5 nuclear shuttling [88]. In silico data
analysis of 32 types of cancers in 10,953 patients (data from TCGA PanCancer Atlas Studies available
from the cBioPortal) allowed us to establish that none of the reported MAPK7 missense mutations is
involved in ERK5 SUMOylation or is located in the TEY motif. Interestingly, five out of six mutations
found in the NLS sequence (R505W, R513C, R515L, R521W, R524W) determine the replacement of
polar arginine residues, a stretch of which constitutes the NLS, with non-polar a.a.. This fact is unlikely
pro-tumorigenic because it might result in the reduction, rather than the increase, of ERK5 nuclear
translocation. With respect to the C-terminus, six mutations (P605S, P607S, P609S, A653T, G744S, P789S)
result in the replacement of non-phosphorylatable residues with phosphorylatable ones. We may
speculate that phosphorylation at these sites may favor ERK5 nuclear shuttling. On the other hand,
none of the known phosphorylatable residues of the C-terminal tail which are primarily involved in
ERK5 nuclear translocation, including S753 and T732, are mutated in cancer patients.

4. Concluding Remarks: Targeting ERK5 Cytoplasm-to-Nucleus Shuttling

The involvement of ERK5 in the pathogenesis and progression of several types of cancer is
well established [107]. Accordingly, targeting the MEK5-ERK5 pathway is among the emerging
strategies for cancer treatment [107–109]. Several small molecule inhibitors of ERK5 or MEK5 kinase
activity have been developed (Table 1) and are very effective in reducing tumor growth in vitro and
in vivo in a number of cancers. However, it is also emerging that the oncogenic role of ERK5 may
be kinase inhibitor-insensitive [110]. A possible reason for this insensitivity is that ERK5 nuclear
accumulation, a crucial event in sustaining cancer cell proliferation [77], is indeed often independent
of the kinase activity of MEK5 or ERK5 itself as indicated by the ineffectiveness of ERK5 or MEK5
inhibitors when used as single agents. Indeed, ERK5 localizes in the nucleus of CLB-BAR and CLB-GE
human neuroblastoma cell lines even in the presence of the ERK5 inhibitor XMD8-92 [111], and neither
BIX02189 nor XMD8-92 are able to suppress ERK5 nuclear accumulation when used alone, but only in
combination with vemurafenib, in melanoma cells expressing BRAFV600E [88]. Along this line, ERK5
and MEK5 inhibitors are expected to be effective in preventing ERK5 nuclear translocation when used
in combination with ERK1/2- or CDK-targeting drugs. In this respect, the dual ERK5/CDK inhibitor
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TG02, tested in clinical trials for hematological malignancies following the promising results obtained
in preclinical studies [112,113], may provide a desirable effect in this direction.

Table 1. MEK5/ERK5 small molecule inhibitors. 1 Cell free in vitro assay; 2 Kd value determined
using the BROMOscan assay (DiscoveRx); 3 IC50 value determined by AlphaScreen binding assay;
4 ClinicalTrials.gov Identifier: NCT01699152 (I), NCT01204164 (I), NCT03904628 (I), NCT03224104 (I),
NCT03738111 (I), NCT02942264 (II); 5 Kd using an affinity steady-state 1:1 binding model; 6 ClinicalTrials.gov
Identifier: NCT00033384; NCT00034827.

Inhibitor Main Target Enzymatic
IC50

1 (nM)
Other Targets

(IC50 nM)
Mechanism

of Action
Phase

of Development Ref.

XMD8-92 ERK5 364 LRRK2 (59),
BRD4 (170 2) ATP-competitive preclinical [110,114,115]

XMD17-109
(ERK5-IN-1) ERK5 162 LRRK2 (339),

BRD4 (217 3) ATP-competitive preclinical [114,116]

JWG-045
(XMD10-78) ERK5 98 BRD4, (11,000 3)

LRRK2 (289 3)
ATP-competitive preclinical [116,117]

JWG-071 ERK5 88

BRD4 (5420 3),
LRRK2 (109 3),

DCAMKL2 (223 3),
PLK4 (328 3),

ATP-competitive preclinical [116]

AX15836 ERK5 8 BRD4 (3600 2) ATP-competitive preclinical [110]

BAY-885 ERK5 35 ATP-competitive preclinical [118]

TG02
(SB1317,

Zotiraciclib)

CDKs
ERK5

3–37
43

JAK1 (59), JAK2 (19),
FLT3 (19) I/II 4 [112,119,120]

Compound 46 ERK5 820 BRD4 (no binding 5) preclinical [121–123]

SC-1-181 MEK5 ATP-competitive preclinical [122,123]

BIX02188 MEK5 4.3
ERK5 (810),
CSF1R (280),

LCK (390)
ATP-competitive preclinical [124]

BIX02189 MEK5 1.5
ERK5 (59),
CSF1R (46),
LCK (250)

ATP-competitive preclinical [124]

GW284543
(UNC10225170) MEK5 ATP-competitive preclinical [125]

CI-1040
(PD184352) MEK1/2 17 MEK5 ATP non-competitive II 6 [126,127]

UO126 MEK1
MEK2

72
58 MEK5 ATP non-competitive preclinical [38,127,128]

PD98059 MEK1
MEK2

2–7 (µM)
50 (µM) MEK5 ATP non-competitive preclinical [38,129,130]

Based on all above, targeting ERK5 nuclear translocation provides new opportunities to inhibit
ERK5 biological functions. For example, targeting SUMOylation as well as HSP90 may prevent
ERK5 nuclear translocation [131,132], whereas the combination of ERK5 and HSP90 inhibitors was
effective in vitro and in vivo against TNBC, leading to the upregulation of pro-apoptotic effectors [133].
However, whether this is linked to the reduction of ERK5 nuclear accumulation was not addressed.
Another intriguing point to be further investigated is the possible involvement of phosphatases in
ERK5 phosphorylation at the C-terminus, possibly providing additional opportunities for targeting
ERK5 function. Finally, in case ERK5 di-/oligo-merization will be found necessary for its nuclear
redistribution, inhibitors of this phenomenon should be developed.

Besides showing that ERK5 translocation into the nucleus is regulated by a bipartite NLS-dependent
nuclear import mechanism, Kondoh and Colleagues provided evidence that ERK5 nuclear export is
CRM1-dependent and is therefore blocked by leptomycin B [49]. On one hand, this suggests to further
investigate whether nuclear export of ERK5 may be impaired in cancer cells, thus contributing to the
increase of nuclear ERK5. On the other hand, restoration of nucleus-to-cytosol efflux should be sought
after as an additional strategy to reduce the effects of ERK5 which depend on its nuclear localization.

ClinicalTrials.gov
ClinicalTrials.gov
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Finally, another possible approach to prevent ERK5 nuclear translocation is the suppression of
ERK5 protein via PROteolysisTArgetingChimeras (PROTACs), which are heterobifunctional small
molecules that modulate protein target levels by hijacking the ubiquitin-proteasome system to induce
degradation of the target. This approach would overcome the insensitivity to kinase inhibitors as well
other inhibitor classes, resulting therefore particularly powerful in the suppression of the activity of
non-druggable targets [134].

Author Contributions: A.T., Z.L. and E.R. reviewed all the literature and wrote the manuscript; I.T. and P.D.S.
provided valuable critical revisions of the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: Research in the laboratory of the authors is supported by Associazione Italiana per la Ricerca sul Cancro
(#IG15282 and #IG21349), University of Florence and Fondazione Cassa di Risparmio di Firenze.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations

BMK1 Big MAP Kinase 1
CD Common Docking
CDK1 Cyclin-Dependent Kinase 1
CtBP1 C-terminal-Binding Protein 1
CSF-1 Colony-Stimulating Factor-1
DUSP Dual-Specificity Protein Phosphatases
EGF Epidermal Growth Factor
ERK1/2 Extracellular Signal-Regulated Kinase 1/2
ERK5 Extracellular Signal-Regulated Kinase 5
FGF-2 Fibroblast Growth Factor-2
IL-6 Interleukin 6
Imp Importin
JNK c-Jun N-terminal Kinase
LHR-1 Liver Receptor Homologue-1
MAPK Mitogen-Activated Protein Kinase
MAPKK MAPK Kinase
MAPKKK MAPKK Kinase
MEF2 Myocyte Enhancer Factor 2
NB Nuclear Bodies
NGF Nerve Growth Factor
NES Nuclear Export Sequence
NLK Nemo-Like Kinase
NLS Nuclear Localization Sequence
PDGF Platelet-Derived Growth Factor
PML Promyelocytic Leukemia Factor
PP1/PP2A Protein Ser/Thr Phosphatases
PPARδ Peroxisome Proliferator-Activated Receptor Delta
PR Proline-Rich
PROTACs PROteolysisTArgetingChimeras
PTPs Tyrosine-Specific Phosphatases
SENP Sentrin-Specific Protease
SH3 Src-Homology 3
SKP2 s-Phase Kinase-associated Protein 2
SUMO Small Ubiquitin-like Modifier Proteins
TAD Transcriptional Activation Domain
TEY Threonine-Glutamic Acid-Tyrosine
VEGF Vascular Endothelial Growth Factor
YAP Yes-Associated Protein
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