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Abstract: Bisphenol A (BPA) is a ubiquitous plasticizer which is absorbed by ingestion and dermal
contact; propyl paraben (PPB) inhibits the microbiome and extends the shelf life of many personal
care products, whereas triclosan (TCS) is commonly found in antiseptics, disinfectants, or additives.
In this work, Caenorhabditis elegans was used as a biological model to assess the toxic effects of BPA,
PPB, and TCS. The wild type strain, Bristol N2, was used in bioassays with the endpoints of lethality,
growth, and reproduction; green fluorescent protein (GFP) transgenic strains with the hsp-3, hsp-4,
hsp-16.2, hsp-70, sod-1, sod-4, cyp-35A4, cyp-29A2, and skn-1 genes were evaluated for their mRNA
expression through fluorescence measurement; and quick Oil Red O (q ORO) was utilized to stain
lipid deposits. Lethality was concentration-dependent, while TCS and PPB showed more toxicity
than BPA. BPA augmented worm length, while PPB reduced it. All toxicants moderately increased
the width and the width–length ratio. BPA and PPB promoted reproduction, in contrast to TCS,
which diminished it. All toxicants affected the mRNA expression of genes related to cellular stress,
control of reactive oxygen species, and nuclear receptor activation. Lipid accumulation occurred in
exposed worms. In conclusion, BPA, PPB, and TCS alter the physiology of growth, lipid accumulation,
and reproduction in C. elegans, most likely through oxidative stress mechanisms.
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1. Introduction

Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds and are called
xenoestrogens because of their capability to disrupt endocrine functions by mimicking or blocking
endogenous hormones [1,2]. For many years, EDCs have been widely introduced into the environment
and to the human food chain, exposing living organisms to their actions [3,4]. Among the EDCs,
bisphenol A, propyl paraben, and triclosan are some of the most important chemicals due to their
extended use.

Bisphenol A (2,2-bis (4-hydroxyphenyl) propane) (BPA) is widely used in the production of
polycarbonate plastics, epoxy resins, thermal paper, paints, water-pipes, electronic equipment, toys,
packaging, bottles, medical devices, surface coatings, printing inks, flame retardants, laptops, mobile
phones, electronic devices, dental sealants, and laboratory and hospital equipment, among others [5–9].
Some of these applications were the causes of human exposure to BPA through food and drinks [10,11],
or by inhalation and dermal contact [12–14]. Furthermore, due to its wide range of industrial uses,
BPA is released into the environment, raising concerns regarding aquatic and terrestrial ecosystems
as BPA is now present in surface water, atmospheric dust, sediment, and biota [14–16]. BPA has
been identified in house dust at concentrations between 0.2 and 17.6 µg/g, in air samples at an
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average concentration of 0.51 ng/m3, and in air samples from workplace plastics (208 ng/m3) [17]
at concentrations of 2.4–3.59 ng/m3 [18]. In human hair, the mean BPA concentration amounts to
411.2 ng/g [19].

BPA binds to various receptors such as estrogen and androgen, aryl hydrocarbon receptor (AhR),
and peroxisome proliferator-activated receptor (PPAR), all of which are associated with the endocrine
system [20]. Moreover, BPA is able to disrupt the function of sex hormones, leptin, insulin, and thyroxin.
It is also known that, even at a nanomolar level, BPA is able to induce genotoxic, mutagenic, hepatotoxic,
immunotoxic, neurotoxic, teratogenic, and carcinogenic effects [21,22]. More recently, it has been
suggested that BPA increases the risk of obesity, diabetes, and heart disease in humans and is related
to epigenetic modifications [9,23–26].

Parabens are alkyl esters of p-hydroxybenzoic acid, an excellent preservative with antimicrobial
activity, and they are used to control molds and yeasts in food, beverages, and cosmetic and
pharmaceutical products due to their relatively low toxicity and safety [27,28]. Human exposure
to parabens may take place through ingestion, inhalation, or dermal absorption, and several
parabens have been suggested to interfere with endocrine signaling and to stimulate adipocyte
differentiation [29]. Propyl p-hydroxybenzoate, commonly referred to as propyl paraben (PPB),
is a member of this family which most inhibits microbial growth and extends the shelf life of a range
of consumer products [30]. PPB is a stable molecule over the pH range, and it is soluble enough in
water to produce an effective concentration in an aqueous phase [31]. It is readily biodegradable under
aerobic conditions, and its potential for bioaccumulation is low to moderate due its low octanol–water
partition coefficient [32,33]. It is known that the estrogenic effect of PPB is approximately 10,000-fold
lower than 17β-estradiol, but is equal in potency to 4-nonylphenol [34]. Despite the fact that parabens
are considered relatively safe compounds with a low bioaccumulation potential [35], their detection
in human fluids [36–41] and human tumors [42,43] have demonstrated in several in vivo and in vitro
screening tests that parabens have endocrine-disrupting activity that may represent a potential risk
to human health [44–46]. PPB was detected in human urine at concentrations of 75.3 µg/L and in
cord blood plasma samples at concentrations below 0.27 µg/L [47]. PPB may alter the viability of
human sperm, and in animals, some studies showed that its exposure stimulates cell proliferation in
the forestomach of rats [48,49]. Meanwhile, a study involving hamsters reported that PPB augmented
the labeling index of their urinary bladder epithelium [50]. In addition, other investigations have
concluded that exposure of rats and mice to PPB negatively affected the secretion of testosterone [51]
and caused significant vitellogenin induction in male rainbow trout, [52] in medaka [53], and in
Danio Rerio [54]. Consequently, the unwitting and continued exposure of this preservative exerts
deleterious effects on humans and environmental health.

Triclosan (TCS) is widely used in personal care products such as antiseptics and disinfectants,
or in additives used in clinical applications, cosmetics, household cleaners, plastics, paints, and textiles,
among others. TCS has been detected in environmental samples such as waters, sediments, and soils.
Due to its extensive use, persistence, low water solubility, and high octanol–water partition coefficient,
TCS can accumulate in soils and sediments, and it has been found in wastewaters, surface waters,
sediments and biological samples [55], and wastewater treatment effluents [56,57]. For instance, in fish
muscle, TCS concentrations have been registered at <0.2–3.4 ng/g [58]. Underground water has been
reported to have up to 0.10 nM TCS [59], whereas untreated surface waters had reported concentrations
between 7.9 and 39 nM [60]. At high concentrations, TCS is a biocide with several cytoplasmic and
membrane targets, whereas at minor concentrations found in commercial products, it inhibits bacterial
fatty acid synthesis [61].

Some studies have reported the toxicity of TCS in different organisms, including
Daphnia magna [62–64] Thamnocephalus platyurus [65], Ampelisca abdita, Americamysis bahia [66],
Artemia salina [67], Eisenia fetida [30,68,69], Achatina fulica [70] Dreissena polymorpha [71],
Chironomus riparius [72–74], Chlorococcum sp. [75], Chlamydomonas reinhardtii [74], Gammarus pulex [76],
Tigriopus japonicas [77], Bufo gargarizans [78], and Chlamydomonas reinhardtii [79], among others.
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These studies have been related to several toxicity endpoints and mechanisms such as oxidative
stress and changes in gene expression. Some authors studied the effects of TCS as an endocrine
disruptor; for instance, studies on Chironomus riparius showed that TCS may alter the transcriptional
activity of endocrine-related genes [74]. In bioassays using Daphnia magna, TCS induced a significant
decrease in the number of neonates [64]. Moreover, TCS reduced the fecundity of Tigriopus japonicas [77]
and has been associated with alterations in the endocrine function in humans [80]. More recently,
it has been reported that TCS causes an acute toxicity in C. elegans and also an induced reduction in its
reproduction, lifespan, and delay in its hatching [81].

In this work, the nematode Caenorhabditis elegans was used as a biological model to assess the toxic
effects of BPA, PPB, and TCS. This organism is widely used as a model to assess the toxicity of several
compounds such as metals [82,83], pesticides [84], nanoparticles [85,86], and emerging pollutants [87].
C. elegans has been a popular biological model that has been used to investigate the effects of toxicants
through several endpoints such as body length, development, and brood size, among others [88],
and it is an excellent model to evaluate reproductive toxicity [89]. Lethality was used to establish the
sublethal concentrations of these compounds. Growth, reproduction, changes in gene expression, and
lipid accumulation were endpoints selected to analyze endocrine disruption.

2. Materials and Methods

2.1. Nematodes and Bacteria

The C. elegans wild-type strain Bristol N2 was used in the bioassays of growth and fertility.
Green fluorescent protein (GFP) transgenic nematodes integrated to genes coding for heat shock
proteins (hsp-3, hsp-4, hsp-16.2, and hsp-70), antioxidant enzymes (sod-1 and sod-4), biotransformation
enzymes (cyp-35A4 and cyp-29A2), and transcription factor (skn-1), were used to determine changes in
gene expression. Escherichia coli OP50 was used as nourishment in K agar that was prepared with KCl,
NaCl, agar, peptone, cholesterol, CaCl2, and MgSO4. An age-synchronized population of worms was
obtained by bleaching them in an alkaline solution [39].

2.2. Solutions and Exposure

The reagents that were purchased from Sigma Aldrich were BPA (CAS Number 80-05-7; Sigma,
St. Louis, MO, USA), PPB (CAS Number 94-13-3; St. Louis, MO, USA), and TCS (CAS Number
3380-34-5; Sigma, St. Louis, MO, USA). The structural formula of each compound is displayed in
Figure 1. Age-synchronized nematodes were exposed to 0.05–5000 µM of each compound. A K
medium (NaCl 52 mM and KCl 32 mM in ultra-filtered water) [39] was utilized as a solvent and as a
control. Four replicates were performed per sample, and each experiment was repeated three times.

Figure 1. Structural formula of pollutants. (A) Bisphenol A; (B) Propyl paraben; (C) Triclosan.

2.3. Lethality Assay

Nematodes in the L4-larval stage were exposed to toxic solutions. Approximately 10 ± 1 worms
were used for treatment. After 24 h, the number of live and dead worms was counted through visual
inspection using a dissecting microscope. Worms were scored as dead when physical stimuli failed to
generate any response [39,90].
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2.4. Growth Assay

The growth of nematodes was assessed in larval age L1 after 48 h exposure to toxic solutions.
E. coli OP50 was inoculated as a source of food. After their exposure to toxic solutions, the nematodes
were heated to 50 ◦C, and this aimed to make their bodies adopt a straight line. Body length and width
were then measured by analyzing a photograph recorded by a dissecting microscope and using the
software Image J. The width and body length ratio (WBR) was estimated as the quotient between the
body length and the width. About 30 nematodes were examined per treatment [91–94].

2.5. Reproduction Assay

Nematodes previously exposed for 24 h to toxic solutions were set individually in K agar
plates seeded with E. coli OP50, and the number of offspring at all stages was counted after 24 h.
About 10 nematodes were examined per treatment [95–98].

2.6. Gene Expression through Fluorescence Measuring

The effects on gene expression were monitored utilizing GFP transgenic C. elegans strains
containing the hsp-3, hsp-70, sod-1, sod-4, gpx-4, and gpx-6 genes. Equal aliquots of nematodes on
all larval stages were placed into black, non-fluorescent, U-bottomed, 96-well microplates with
the toxic solutions of BPA, TCS, and PPB. The plates were incubated at 15 ◦C, and after 24 h,
the fluorescence intensity was quantified using a plate reader (Fluoroskan Ascent, Thermo Scientific,
Waltham, MA, USA) with excitation/emission filters of 485/525 nm [99–103]. The relative fluorescence
was calculated as the quotient between the solution’s fluorescence and that of the control [90].

2.7. q-ORO Assay

The q-ORO assay was done as described [104]. Age-synchronized Bristol N2 wild type nematodes
in the L4-larval stage were exposed for 24 h to toxic solutions of BPA, PPB, and TCS. To prepare the
dye solution, a 0.5% oil red O (MP, Cat. No. 155984) stock solution was prepared in high-quality
100% isopropanol, incubated at room temperature for a day, and then filtered through a 0.45 µm
filter. The stock was freshly diluted to 60% with filtered water the day before its use, and it was
then incubated at room temperature overnight. The stock was filtered through a 0.45 µm filter.
Two hundred microliters of high-quality 60% isopropanol was added to the worms in the 96-well
PCR plates (Thermo Scientific, Waltham, MA, USA). Worms were settled to the bottom of the wells,
and then they were aspirated with up to 175 µL of buffer. Two hundred microliters of freshly filtered
ORO working solution was added, which sealed the plates. Worms were stained for 6–18 h at 25 ◦C;
after 6–18 h, the supernatant was aspirated. Then, 100 µL of 0.01% Triton X-100 was added in the S
buffer. Images were recorded by using an optic microscope [104].

2.8. Statistical Analysis

Data are presented as mean ± standard error. Normality and variance homogeneity were
verified using the Kolmogorov–Smirnov and the Bartlett tests, respectively. Significant differences
between means were determined with one-way analysis of variance (ANOVA) test. The Dunnett
test was applied to compare each solution with the control. The significance level or criterion of
significance was set at p < 0.05. Statistical analyses were performed with SPSS for Windows (Version 23,
Statistical Package for the Social Sciences, Inc., Chicago, IL, USA) and Graphpad Prism (Version 5.0,
GraphPadSoftware, San Diego, CA, USA).
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3. Results

3.1. Lethality

The results of the lethality bioassay are displayed in Figure 2. The lethality was
concentration-dependent, and the LC50 after 24 h exposure for BPA, PPB, and TCS were 113.5, 261.7,
and 43.2 µM, respectively (Table S1). At concentrations greater than 0.5 µM, all compounds caused
lethality, with statistical differences being related to the control. At lower concentrations, only TCS
(0.05 µM) was bioactive.

Figure 2. Lethality of C. elegans exposed to bisphenol A, propyl paraben, and triclosan. * Significant
difference compared to control (p < 0.05).

Figure 3. Changes in body length (A), width (B), and width/length ratio (C) in C. elegans exposed to
bisphenol A, propyl paraben, and triclosan. * Significant difference compared to control (p < 0.05).
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3.2. Growth

Changes in the body length, the body width, and the body width–length ratio of nematodes
exposed to BPA, PPB, and TCS solutions are shown in Figure 3. Body length was slightly increased by
BPA but was not concentration-dependent. In contrast, PPB reduced the body length, while TCS did
not have an effect on this parameter. All the toxic chemicals moderately increased the body width,
without a clear relationship with concentration, although the response elicited by BPA was bimodal.
The relation between the body width and the body length of the nematodes was moderately increased
by an exposure to the tested chemicals, but PPB was the most active, suggesting a probable association
with obesity in the C. elegans model.

3.3. Reproduction

The brood size of nematodes exposed to BPA, PPB, and TCS solutions are shown in Figure 4.
The greatest brood size after BPA exposure was reached at 5 µM; afterwards, it decreased
in response to higher concentrations. Similarly, PPB increased the brood size until 0.5 µM,
with declining effects at greater concentrations. In contrast, TCS decreased the brood size following a
concentration-dependent trend.

Figure 4. Brood size of C. elegans exposed to bisphenol A, propyl paraben, and triclosan solutions.
* Significant difference compared to control (p < 0.05).

3.4. Changes in Gene Expression

The relative changes in gene expression in C. elegans carrying gfp-reporter genes are displayed in
Figure 5, and graphs are presented in Figures S1–S9 in Supplementary Material. The most sensitive
genes, in descending order, were sod-4, hsp-4, hsp-16.2, and skn-1. These genes increased their expression
after their exposure to all the compounds, indicating a toxic response related to the generation of
reactive oxygen species (ROS). There was no evidence of concentration dependence in these results.
Furthermore, low concentrations caused the overexpression of some genes; for instance, BPA at
concentrations of 0.05 and 0.5 µM caused a 3-fold expression of hsp-4. However, high concentrations
also affected the expression of several genes such as sod-4, which showed a 5-fold upregulation after
its exposure to PPB and TCS at concentrations of 500 µM when compared to the control.
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Figure 5. Changes in the mRNA expression profiles of evaluated genes measured in relation to control.
Blue: <2-fold; Green: 2–3-fold; Yellow: 3–4-fold; Orange: 4–5-fold; Red: >5-fold.

3.5. q-ORO Stain

Representative images of nematodes that were exposed to the BPA, PPB, and TCS solutions
and stained with q-ORO are displayed in Figure 6. All the tested chemicals caused lipid deposition
inside the bodies of exposed nematodes. According to the intensity of the color recorded in the
images, the deposits formed show an increasing trend related to concentration. BPA caused more
lipid accumulation, followed by PPB and TCS. This result is consistent with the changes in the body
width–length ratio that were registered in the worms after their exposure to these molecules.

Figure 6. q-ORO staining of nematodes exposed to BPA, PPB, and TCS.

4. Discussion

Exposure to BPA, PPB, and TCS alters the physiology of C. elegans in terms of growth, reproduction,
and gene expression. In this work, TCS exerted the greatest acute toxicity on C. elegans, followed by
BPA and PPB. There is extensive information on BPA toxicity for several organisms. For example, in the
snail, Pomacea lineata, the 96 h LC50 was 11.1 mg/L [105], whereas in the sea squirt, Ciona intestinalis, the
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LC50 was 5.4 µM [106]. Other authors have also reported toxicity data for BPA on C. elegans, with a 24 h
LC50 value of 1422 µM (324.7 mg/L) [107]. However, they used 1-day-old (L1/L2) larvae, which may
explain the observed difference in the order of magnitude in toxicity. Propyl paraben was less toxic
than BPA, although organisms such as D. magna and Pimephales promelas were more sensitive to PPB
exposure than C. elegans, with LC50 values of 12.3 mg/L and 9.7 mg/L, respectively [108]. Finally,
the 24 h LC50 for TCS was 43.2 µM (9.84 mg/L), comparable to 3.65 mg/L as previously reported [81].
Other model organisms, such as Artemia salina, Thamnocephalus platyurus, and Chironomus riparius have
showed LC50 values after 24 h exposure of 171, 470, and 3428 µg/L TCS, respectively [65,67,74].

The effect of BPA on the growth of C. elegans varied according to the level of exposure, and as
presented here, the concentration–response relationship is not always monotonic [109,110]. The effects
of PPB and TCS have not been reported yet on the growth of C. elegans. However, other organisms
have been tested; for example, TCS at a level below 0.8 µM did not have significant effects on the body
length of D. magna [62]. In regards to PPB, the lowest concentration associated with the growth of
C. elegans that has had an observed effect has been estimated to be 0.4 mg/L (2.2 µM) for D. magna and
2.5 mg/L (13 µM) for P. promeras [108].

The reproductive outcome of C. elegans after its exposure to tested chemicals suggests that
endocrine disruption had occurred. For instance, the effect of BPA on nematode reproduction is
exemplified by a non-monotonic, inverted U-shape curve, where the effects of increasing concentrations
of the compound appear to increase up to a peak and then decrease [111]. This nonlinear
concentration–response relationship has also been described for some endpoints of BPA studies
on C. elegans [112–114]. It has also been proven that the exposure to BPA decreases fecundity [109].
This effect and others associated with reproduction have been related to strong negative effects of this
plasticizer on the germline function of C. elegans [114]. Although PPB induced a small increase in broad
size at 0.5 µM, it seems to follow a slight concentration-dependent reduction in the reproduction of
C. elegans. Interestingly, the effect of TCS was definitively inhibitory and dependent on concentration,
as previously reported for this model [81] and also in D. magna [62].

Some studies about the changes in gene expression of C. elegans that were exposed to BPA
have reported that the expression of hsp-70 exhibited a hormetic decrease, while hsp-16.2 showed
a dose-dependent increase, which was also observed for sod-3 expression [109]. The mechanisms
of action by which xenobiotics regulate Superoxide dismutase (SOD) enzymes in C. elegans are not
completely elucidated. The activation of the antioxidant system in C. elegans, which includes SOD,
among others, can be rather complex, and the deletion of free radicals and their toxic effects may occur
through a multistep process [115]. C. elegans is highly susceptible to oxidative stress, and even its
manipulation could generate stress and influence the internal redox balance [116]. The fact that all
tested xenobiotics overexpress genes coding for molecules involved in the biological defense processes,
such as sod-1 and sod-4, may result from the organism avoiding ROS formation. However, once ROS
levels pass the required threshold, the defense against oxidative stress decreases, leading to toxicity.
The activation of hsp-70 transcription suggests protection against protein oxidation and neuronal
damage [117], which suggests that these chemicals play a role in oxidative damage.

Bisphenol A, PPB, and TCS caused the overexpression of cyp-34A9. This gene encodes
monooxygenases, one of the cytochrome P450 proteins which catalyze reactions involved in drug
metabolism and in the synthesis of steroid hormone signaling [118]. Moreover, the CYP system is one
of the main targets of different nuclear xenobiotic receptors, directing different pathways of xenobiotics
metabolism [119,120]. These processes may also have an indirect link to endocrine disruption by
binding to estrogenic hormone receptors in the worm [121], especially since BPA is an estrogen-receptor
ligand [122] that has been shown to transcriptionally activate the CYP2C9 promoter [123].

Bisphenol A, PPB, and TCS also up-regulated skn-1. This gene encodes the SKN-1 proteins,
which are required for longevity and oxidative stress resistance in C. elegans [124]. There are indeed
some similarities between the pattern expression of sod-1/sod-4 and skn-1 genes after their exposure
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to the tested compounds (Figure 5), which corresponds with the role of this gene in oxidative stress
responses [125].

One of the most interesting findings in this work was that BPA, PPB, and TCS promoted lipid
accumulation in C. elegans, a process verified through the fixation of q-ORO to lipidic deposits.
An important aspect is that there are no reports of obesogenic effects, in terms of lipid accumulation,
on C. elegans, as a marker of endocrine disruption elicited by these compounds. However, BPA has been
recognized as an obesogen, promoting the adipogenesis, the lipid dysregulation, and the inflammation
of adipose tissue [126]. It should be emphasized that more studies are needed to verify these results
and the mechanisms involved in the lipid accumulation process carried out by the nematode.

5. Conclusions

Triclosan generated more acute toxicity than bisphenol A and propyl paraben in C. elegans.
Bisphenol A and propyl paraben increased the brood size of C. elegans, and triclosan had a negative
effect on reproduction. All compounds increased the expression of stress response genes such as sod-4
and skn-1, which are related to the oxidative stress response; hsp-4 and hsp-16.2, which are associated
with cellular stress; and other genes such as cyp-34A9, which may be a response to their interaction
with nuclear xenobiotic receptors. These molecules also increased the lipid accumulation in C. elegans.
Taken together, these results suggest that these chemicals promote endocrine disruption mechanisms at
levels which influence reproduction and obesity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/4/684/s1.
Table S1. LC50 values and confidence limits for tested compounds after 24 h exposure. Figure S1. Effects of BPA,
PPB and TCS on hsp-3 gene expression measured as GFP fluorescence. Figure S2. Effects of BPA, PPB and TCS on
hsp-4 gene expression measured as GFP fluorescence. Figure S3. Effects of BPA, PPB and TCS on hsp-16.2 gene
expression measured as GFP fluorescence. Figure S4. Effects of BPA, PPB and TCS on hsp-70 gene expression
measured as GFP fluorescence. Figure S5. Effects of BPA, PPB and TCS on sod-1 gene expression measured as GFP
fluorescence. Figure S6. Effects of BPA, PPB and TCS on sod-4 gene expression measured as GFP fluorescence.
Figure S7. Effects of BPA, PPB and TCS on cyp-29A2 gene expression measured as GFP fluorescence. Figure S8.
Effects of BPA, PPB and TCS on cyp-34A9 gene expression measured as GFP fluorescence. Figure S9. Effects of
BPA, PPB and TCS on skn-1 gene expression measured as GFP fluorescence.
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