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Abstract
Background: Complex biological systems are often modeled as networks of interacting units.
Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and
trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical
processes that shape and traverse these systems. The degrees of nodes (numbers of interactions)
and the extent of clustering (the tendency for a set of three nodes to be interconnected) are two
of many well-studied network properties that can fundamentally shape a system. Disentangling the
interdependent effects of the various network properties, however, can be difficult. Simple
network models can help us quantify the structure of empirical networked systems and understand
the impact of various topological properties on dynamics.

Results: Here we develop and implement a new Markov chain simulation algorithm to generate
simple, connected random graphs that have a specified degree sequence and level of clustering, but
are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered
Random Networks) provides the generation of random graphs optimized according to a local or
global, and relative or absolute measure of clustering. We compare our algorithm to other similar
methods and show that ours more successfully produces desired network characteristics.

Finding appropriate null models is crucial in bioinformatics research, and is often difficult,
particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can
serve as random controls when investigating the impacts of complex network features beyond the
byproduct of degree and clustering in empirical networks.

Conclusion: ClustRNet generates ensembles of graphs of specified edge structure and clustering.
These graphs allow for systematic study of the impacts of connectivity and redundancies on
network function and dynamics. This process is a key step in unraveling the functional
consequences of the structural properties of empirical biological systems and uncovering the
mechanisms that drive these systems.
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Background
Over the last decade, network models have advanced our
understanding of biology at all scales, from gene regula-
tory networks to metabolic cycles to global food webs [1-
4]. They are also driving the forefront of sociology, infor-
mation technology and many other disciplines [5-7].
Researchers often build network models from empirical
data and then seek to characterize and explain non-trivial
structural properties such as heavy-tail degree distribu-
tions, clustering, short average path lengths, degree corre-
lations and community structure [1,6-12]. Many of these
properties appear in diverse natural and man-made sys-
tems, and can fundamentally influence dynamical proc-
esses of and on these networks [13-19].

Clustering is a network characteristic describing the pres-
ence of triangles in a network, that is, the propensity of

neighbors of a common vertex to also be neighbors with
each other. (See Figure 1a and 1b.) It is an important top-
ological characteristic that can significantly impact
dynamical processes over complex networks [1,20-23,19].
Clustering is often correlated with local graph properties
such as correlations in the number of edges emanating
from neighboring vertices [21] and graph motifs [24,4], as
well as global properties such as community structure
[25].

Clustering in biological and other empirical networks can
stem from two sources: (a) it can arise as a byproduct of
other, more fundamental, topological properties such as
the degree sequence (distribution) or degree correlations
(the dependence of a node's degree on its neighbors'
degrees); or (b) it can be generated directly by some inher-
ent property or mechanism within the system, for exam-

(a) a triple among the nodes i, j, k (b) a triangle among the nodes i, j, k (c) A rewiring of edges (i, j) and (k, l) can result in (i, k) and (j, l), or (i, l) and j, k) (d) Four (among many) scenarios for the result of one rewiring step of our algorithmFigure 1
(a) a triple among the nodes i, j, k (b) a triangle among the nodes i, j, k (c) A rewiring of edges (i, j) and (k, l) can 
result in (i, k) and (j, l), or (i, l) and j, k) (d) Four (among many) scenarios for the result of one rewiring step of 
our algorithm. The configuration of edges before (left) and after (right) a rewiring step are shown for each scenario. The two 
bottom scenarios would be rejected by our algorithm as they do not strictly increase the number of triangles.
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ple, "the friends of my friends tend to become my friends"
in social networks.

Some researchers have claimed that high clustering is a
general feature of complex networks [21]. When we meas-
ure clustering in a variety of empirical networks, however,
we find that it varies considerably. Table 1 shows that the
clustering coefficients and transitivity values (a local and
global measure of clustering, respectively) for these net-
works span the entire range of possible values (zero to
one). Thus, it is important to understand not only the ori-
gins of clustering, but also the impact of clustering on net-
work functions and dynamics. Towards this end, we
introduce a method for generating random networks with
a specified level of clustering.

Related Work
Random graphs are graphs that are generated by some
random process [26]. They are widely used as models of
complex networks [5] and can assume various levels of
complexity. The simplest model for generating random
graphs, with only a single parameter, is the Bernoulli or
Erdös-Renyi random graph model, which produces
graphs that are completely defined by their average degree
and are random in all other respects. A slightly more com-
plex and general model is one that generates graphs with
a specified degree distribution (or degree sequence) and
ones which are random in all other respects [27]. These
models can be extended to include additional structural
constraints, such as degree correlations or the density of
triangles or longer cycles, as we will demonstrate below.

Existing methods for generating clustered graphs, how-
ever, do not take this approach. One of the first examples
is the seminal work of Watts and Strogatz [1]. They intro-
duced a model that produces networks with high cluster-
ing and low average path length (typical distances
between pairs of nodes in the network are small), now
known as the small world property. Although not intended
as a generative algorithm for clustered graphs, the model
produces graphs with clustering spanning the range from
0 to 1. The graphs generated under this model, however,

have rigid spatial structure and cannot accommodate var-
ying degree distributions.

The first algorithms that were designed to generate graphs
with a specified level of clustering for arbitrary degree dis-
tributions belonged to the class of projected bipartite
graphs. Newman [20] introduced a three-step method
that first builds a bipartite graph of individuals and affili-
ations, then projects the bipartite graph to a unipartite
graph of individuals only, and finally runs a percolation
process over the unipartite graph. This results in a clus-
tered graph with a degree distribution that depends on the
original distributions of numbers of individuals per group
and groups per individual. The level of clustering in the
final graph varies smoothly from 0 to 1 as a function of
the percolation probability. In [28], Guillaume suggested
a similar bipartite graph approach. Although these
approaches can generate clustered graphs with diverse
degree distributions, they lack straightforward methods
for choosing parameters that yield graphs with not only a
pre-specified clustering coefficient but also a pre-specified
degree distribution. These algorithms also tends to pro-
duce graphs that leave a significant proportion of the
graph vertices isolated.

A second class of clustered graph models use "growing
network" algorithms [29-31]. The inputs to these models
are a degree distribution and level of clustering. The
method begins with a set of vertices with no edges; the
graph is then "grown" by adding edges based on the
degree and clustering constraints. Although the algo-
rithms of this class allow for arbitrary degree distributions
and levels of clustering, they either require a complex
implementation [29], produce graphs of a highly specific
structure [31] or introduce large amounts of degree corre-
lations [31,30].

Finally, the family of statistical models known as expo-
nential random graph (ERG) models [32,33] also provide
tools to fit the structure of observed networks, for statistics
such as degree distribution and number of triangles. These
ERG model-based methods, although they have advanced
significantly in recent years (e.g. [34]), still suffer from

Table 1: Topological properties of some empirical networks

Empirical Network N <d > <d2 > C T

Little Rock Foodweb Interactions 183 27.3 1215 0.37 0.37 0.44 0.58
Yeast Protein Interactions 4713 6.3 152 0.13 0.06 0.14 0.18

C. elegans Metabolic Interactions 453 8.9 358 0.66 0.12 0.74 0.60
Vancouver Epidemiological Contacts 2627 13.9 265 0.07 0.09 0.09 0.14

US Air Traffic Links 165 38.0 2765 0.86 0.58 0.97 0.96

The number of nodes (N), the average node degree (<d >), the mean-squared of node degree (<d2 >), clustering coefficient (C), transitivity (T), 

Soffer-Vasquez clustering coefficient ( ), and Soffer-Vasquez transitivity ( ) for a set of empirical networks.
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problems of degeneracy and computational intractability
for large networks.

Our Approach
Here, we present a model that generates undirected, sim-
ple and connected graphs with prescribed degree
sequences and a specified frequency of triangles, while
maintaining a graph structure that is as random (uncorre-
lated) as possible. (A simple graph is one which contains
no self-loops (edges from a node to itself) or multiedges
(multiple edges between the same pair of nodes); and a
connected graph is one where every node in the graph is
reachable by a path of edges from every other graph
node.) Prior models in this area were intended to generate
clustered graphs that replicate the properties of real-world
networks; our goal, on the other hand, is to generate a
class of null networks with arbitrary degree distributions
that are simple and connected and have a high density of
triangles, but are random in all other respects.

This method thus leads to two valuable applications. First,
network structure fundamentally influences the functions
of and dynamical processes on networks. We can use clus-
tered random graphs to systematically study the conse-
quences of clustering, both independently and in
combination with various degree patterns. Second, these
networks can serve as null models for detecting whether
an empirical network can be boiled down to its degree dis-
tribution and clustering values or, instead, contains sub-
stantial degree correlations or other important structures
(beyond the byproducts of the degree distribution and
clustering). One would first use the algorithm to generate
an ensemble of networks that match the empirical degree
sequences and clustering values, and then compare the
structural, functional, or dynamical properties of the
empirical network to those of the clustered random net-
works. We focus here on the role of these networks as null
models as it is crucial to have appropriate random con-
trols in the study of biological systems, as has been dem-
onstrated in [24,35,36].

The rest of this article is organized as follows. In the
Implementation section, we review common measures of
clustering and introduce our Markov chain model and
algorithm for generating clustered graphs with a specified
degree sequence. In the Results section, we test our algo-
rithm with numerical simulations and explore the struc-
tural properties of the generated graphs. The Discussion
section is devoted to a demonstration of the randomly
generated clustered networks as null networks for the
analysis of empirical networks. We finish off with our con-
clusions, presenting the benefits of our Markov Chain
simulation method for biological networks.

Implementation
Our clustered random graph generation method begins
with a random graph and iteratively rewires edges to
introduce triangles. Network rewiring, also known as edge
swapping, is a well-known method for generating net-
works with desired properties [37,36,38]. Two edges are
called adjacent if they connect to a common node. Each
rewiring is performed on two non-adjacent edges of the
graph and consists of removing these two edges and
replacing them with another pair of edges. Specifically, a
pair of edges (i, j) and (k, l) is replaced with either (i, k)
and (j, l), or (i, l) and (j, k) (as illustrated in Figure 1c).
This change in the graph leaves the degrees of the partici-
pating nodes unchanged, thus maintaining the specified
degree sequence. Below we describe a rewiring algorithm
that increases the level of clustering in a random graph,
while preserving the degree sequence.

The algorithm we develop below is implemented in
Python as ClustRNet. It is based on Networkx, an open-
source Python library available for download at [39],
which provides standard graph library functionality (e.g.
data structure, input/output, and layouts). The source
code for ClustRNet, along with documentation and test
network datasets, is available on the web [40]. Our algo-
rithm joins a existing suite of random graph model-based
software tools for the analysis of biological networks and
the dynamics on them [41,42].

Measures of Clustering
We begin with a graph G = (V, E) which is undirected and
simple. V is the set of vertices of G and E is the set of the
edges. We let N = |V| and M = |E| denote the number of
nodes and edges in G, respectively. The degree of a node i
will be denoted di. The set of degrees for all nodes in the
graph makes up the degree sequence, which follows a prob-
ability distribution called the degree distribution.

Clustering is the likelihood that two neighbors of a given
node are themselves connected. In topological terms,
clustering measures the density of triangles in the graph,
where a triangle is the existence of the set of edges (i, j), (i,
k), (j, k) between any triplet of nodes i, j, k (Figure 1b).

To quantify the local presence of triangles, δ(i) is defined
as the number of triangles in which node i participates.
Since each triangle consists of three nodes, it is counted
thrice when we sum δ(i) for each node in the graph. Thus
the total number of triangles in the graph is

d d( ) / ( ).G i
i V

=
∈
∑1 3
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A triple is a set of three nodes, i, j, k that are connected by
edges (i, j) and (i, k), regardless of the existence of the edge
(j, k) (Figure 1a). The number of triples of node i is simply

assuming di ≥ 2. To compute the total number of triples in
the graph, τ(G), we sum τ(i) for all i ∈ V.

The clustering coefficient was introduced by Watts and Stro-
gatz [1] as a local measure of triadic closure. For a node i
with di ≥ 2, the clustering coefficient c(i) is the fraction of
triples for node i which are closed, and can be measured
as δ(i) = τ(i). The clustering coefficient of the graph is then
given by:

where N2 is the number of nodes with c(i) ≥ 0. Some
authors do define the clustering coefficient for all nodes of
G [43].

A more global measure of the presence of triangles is
called the transitivity of graph G and is defined as:

Although they are often similar, T(G) and C(G) can vary
by orders of magnitude [22]. They differ most when the
triangles are heterogeneously distributed in the graph.

These traditional measures of clustering are degree-
dependent and thus can be biased by the degree sequence
of the network. The maximum number of possible trian-

gles for a given node i is just its number of triples (τ(i)).
For a node which is connected to only low degree neigh-
bors, however, the maximum number of possible trian-

gles may be much smaller than τ(i). To account for this, a
new measure for clustering was introduced in [22] that
calculates triadic closure as a function of degree and
neighbor degree. Specifically, the Soffer-Vasquez cluster-

ing coefficient ( ) and transitivity ( ) are given by:

where ω(i) measures the number of possible triangles for

node i, and Nω is the number of nodes in G for which ω(i)

> 0. We note that  and  are undefined if ω(G) = Σi ω(i)

= 0. ω(i) is computed by counting the maximum number
of edges that can be drawn among the di neighbors of a

node i, given the degree sequence of i's neighbors; this

value is often smaller than [22]. For example, con-

sider a star network of five nodes, where four nodes have
degree 1 and one node has degree 4. Although the total

number of triples is τ(G) = 6, the number of possible tri-

angles is ω(G) = 0 because the degree one nodes preclude

their formation. The computation of ω(i) must be done
algorithmically and is not possible in closed form. (From

here on, we refer to  as the SV-clustering coefficient and

to  as the SV-transitivity.)

Generative Model
Here we develop a model to generate a simply connected
random graph with a specified degree sequence and a
desired level of clustering. Generating random graphs uni-
formly from the set of simply connected graphs with a
prescribed degree sequence is a well-studied problem with
algorithmic solutions [37]. One of the simplest and most
popular of these generative algorithms was suggested by
Molloy and Reed and is known as the configuration
model [27]. Given a specific realizable degree sequence
[44], {di}, this method assigns dj half-edges to each node
j, and then randomly connects pairs half-edges to create
edges until there are no half-edges left. (A realizable degree
sequence is one which satisfies the Handshake Theorem
(the requirement that the sum of the degrees be even) and
the Erdos-Gallai criterion (which requires that for each
subset of the k highest degree nodes, the degrees of these
nodes can be "absorbed" within the subset and the
remaining degrees.) Although the model sometimes pro-
duces graphs that are not simple or connected, this can be
remedied by subsequently removing multiple edges and
self loops from the constructed graph and keeping only
the largest connected component [37]. Our method
begins by using this approach to generate a simple, con-
nected random graph G, with a specific realizable degree
sequence D. We then introduce triangles into G using a
Markov Chain process without disturbing the degree
sequence until we achieve the desired level of clustering,
as follows.

Let GD be the set of all simple, connected graphs with

degree sequence D. If  are the graphs of

τ( )i
di=

⎛

⎝
⎜

⎞

⎠
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GD, then we let  be the states of the

Markov chain, P, where Xi represents the state in which

our graph G = Gi. The states Xi and Xi+1 are connected in

the Markov Chain if Gi can be changed to Gi+1 with the

rewiring of one pair of edges. The state space of the
Markov chain P is connected because there exists a path
from Xi to Xj (for any pair i, j) by one or more rewiring

moves that leave the degree sequence unchanged [45].

Our clustered graph generation algorithm involves start-
ing with the random graph G (generated with the config-
uration model above) and transitioning from the state
corresponding to G (XG) to other states of P until a halting
condition is reached. A transition from one state of the
Markov chain to another only occurs when the algorithm
makes an edge rewiring that both increases the clustering
of the graph and leaves the graph connected. Since a rewir-
ing does not alter the degree sequence of the graph, the
rewired graph is still in GD. The transition probabilities of
the Markov chain for a pair of connected states, Xi to Xj,
are:

where clust(Gx) is a clustering measure for graph Gx, which
can be replaced by any of the measures introduced in Sec-
tion. The algorithm continues searching for a feasible
rewiring (one that increases the clustering and does not
disconnect the graph) until one is found. If a feasible
move is not found, a transition is not made and the proc-
ess remains in the current state.

The Markov chain above is finite and aperiodic, but not
irreducible as the process can never transition to a state in
which the graph has lower clustering. It does, however,
have an absorbing state, X*, in which the transitivity of G*
is greater than or equal to the desired transitivity or is the
maximum possible transitivity given the particular degree
sequence and connectivity constraints.

Algorithm
To generate clustered graphs, we apply the above Markov
Chain simulation model by iteratively applying rewirings
that increase graph clustering. Each rewiring takes a set of
five nodes {x, y1, y2, z1, z2}, connected by four edges {(x,
y1), (x, y2), (y1, z1), (y2, z2)}, and swaps the outer edges:
{(x, y1), (x, y2), (y1, y2), (z1, z2)}(illustrated in Figure 1d).
This introduces a triangle among nodes {x, y1, and y2},
without perturbing the degree sequence. The algorithm
proceeds as follows:

Input: A realizable degree sequence {di} a desired cluster-
ing value, target

Initialization: Generate a random graph G with degree
sequence {di} (using the configuration model), and meas-
ure the clustering of G, clust(G).

while clust(G) <target do

1. uniformly select a random node, x, from the

 set of all nodes of G such that dx > 1.

2. uniformly select two random neighbors, y1 

and y2, of x such that dy1 > 1 and

dy2 > 1 and y1≠y2.

3. uniformly select a random neighbor, z1 

of y1 and a random neighbor, z2 of

y2 such that z1 ≠ x, z2 ≠ x,

z1 ≠ z2.

4. Gcand: = G where Gcand is the candidate

graph to which the transition may be made.

5. if (y1, y2) and (z1, z2) do not exist then

Rewire two edges of Gcand: delete (y1, z1) and
(y2, z2), add (y1, y2) and (z1, z2).

end

6. Update the value of clust(Gcand) by measuring

δ (i) (and ω (i) if relevant) for the nodes involved

in the rewiring and their neighbors.

7. if clust(Gcand) > clust(G) and Gcand 

is connected then

G: = Gcand

end

end

X X X GD1 2, , , | |…

P
clust G clust G G

ij
j i j=

− >1 0

0

if  and  is connected

otherw

( ( ) ( ))

iise

⎧
⎨
⎩
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Output: A random graph, G with degree sequence {di}
and clust(G) ≥ target.

The algorithm terminates when the graph attains at least
the desired level of clustering or reaches a threshold
number of unsuccessful rewiring attempts. In the latter
case, the algorithm returns the graph with the maximum
clustering achieved. For practical purposes, a threshold is
placed on the number of unsuccessful attempts made by
the algorithm in ClustRNet for the case that the desired
clustering cannot be reached. Due to the random restarts
made at every step, the algorithm is prevented from get-
ting trapped in local minima.

The algorithm is designed to increase clustering while pre-
serving both the degree sequence and connectedness of
the graph. However, there are some cases where the
desired clustering can only be reached by disconnecting
the graph; and thus ClustRNet provides the option of
removing the connectivity constraint (see Additional file
1, Figure S2).

Choice of Clustering Measure

The algorithm is defined independent of the choice of
clustering measure. The term clust(G) in the algorithm
above can be replaced by any clustering measure
described in Section. ClustRNet includes all four of these

clustering measures (C, , T; ).

The algorithm output varies with the choice of clustering
measure. The clustering coefficient is a local measure; and

thus C and  yield networks that are only locally opti-
mized for the desired level of clustering. The algorithm
may have difficulty attaining target clustering values when
using the absolute clustering measures (C or T) because of
joint degree constraints (the degrees of adjacent nodes)
on the possible numbers of triangles, as with the example
presented in Section. The Soffer-Vasquez clustering meas-
ures, which explicitly consider joint degree constraints,
provide a way around this difficulty [22]. Although the
rewiring in our algorithm changes the joint degree distri-
bution (and thus the degree correlations) of the graph,

ω(G) is not altered significantly during network genera-
tion (as shown in Additional file 1, Figure S3). Thus, when

using  or , clustering is increased primarily by the

addition of triangles (that is, increasing δ (G)) rather than

decreasing ω(G)).

Types of Graph Changes
As shown in Figure 2, there are six types of triangles that
can be added or removed for every pair of edges that are

rewired. As illustrated in Figure 1d, these additions and
removals can occur in combination.

• Type A: The addition of the edge between vertices y1
and y2 guarantees the addition of one triangle in every
rewiring event.

• Type B: The addition of the edge (y1, y2) could create
new triangles with shared neighbors of y1 and y2.

• Type C: The addition of the edge (z1, z2) could add a
triangle if there existed edges between x and z1 and x
and z2.

• Type D: The addition of the edge between vertices z1
and z2 could create new triangles with shared neigh-
bors of z1 and z2.

• Type E: The removal of edges (y1, z1) and (y2, z2)
removes one triangle each if the edges (x, z1) or (x, z2)
exist.

• Type F: The removal of the edges between vertices y1
and z1, and y2 and z2 could lead to the removal of exist-
ing triangles with shared neighbors of y1 and z1 or y2
and z2.

We note that although the type A addition is a special case
of type B, the type C addition is a special case of type D,
and the type E removals are a special case of type F, we dis-
tinguish them because they have different probabilities of
occurrence. Our look-ahead strategy only allows rewiring
moves when the total number of Type E and F losses is
fewer than the total number of Type A, B, C, and D gains.

Computational Complexity

Like many heuristic search methods, the algorithm we
propose can be computationally expensive. The method
outlined in Section 2.2 requires O(M) steps to generate a
connected graph, and up to O(M) steps to randomize the
graph, where M is the number of edges in the graph. At
each step of randomization, we test that the graph
remains connected (an O(M) operation), resulting in an
overall O(M2) random network generation process. A
naive computation of the transitivity/clustering coeffi-
cient requires checking every node for the existence of
edges between every pair of neighbors of the node. This

step requires O( ) operations, where N is the

number of nodes and dmax is the maximum degree of any

node in the graph. The most expensive step of our algo-
rithm is the introduction of triangles via rewiring. A single
rewiring step requires O(M) operations for switching
edges, checking for connectivity and updating the cluster-

�C �T
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ing measure. Although we cannot analytically calculate
the number of attempted rewiring steps required to reach
the desired transitivity, we have found it empirically to be
O(M). Thus, the average complexity of the clustered net-
work algorithm presented here is O(M2). This complexity
has been computed for the most naive versions of our
algorithms; and more efficient implementations may
improve the complexity greatly. For example, we might
improve efficiency by performing connectivity tests once
every x rewirings (for some number x) rather than during
every rewiring, as proposed in [46].

Results
Performance

To test our algorithm, we generate networks with three
different degree distributions and for a range of clustering

target values. Specifically, we use Poisson (pd = e-λ λd/d!),

exponential (pd = (1 - eκ)e-κ(d-1)) and a truncated scale-free

(pd = d-γe-d/κ/Liγ(e-1/κ)) degree distribution, each with a

mean degree of five. Starting with random graphs with

specific degree sequences matching these degree distribu-
tions, we rewire the networks towards (1) SV-transitivity

(( )) targets and (2) transitivity (T) targets in addition to
allowing the algorithm to generate disconnected graphs.
These targets allow us to evaluate how the clustering
measure and connectivity requirement constrain the
results, and the second target, in particular, allows us to
compare results to other algorithms. Figure 3 illustrates
the rewiring of a network with a Poisson distributed
degree sequence evolving towards higher transitivity.

We evaluate the performance of our algorithm in compar-
ison to one representative network growth algorithm [30]
and one representative bipartite network method [20].
Specifically, we measured the discrepancies between input
and output degree distributions (Figure 4 left graphs) and
transitivity values (Figure 4, right graphs). Our algorithm
preserves the input degree sequence perfectly, while there
are considerable mismatches between the input and out-
put degree distributions in the Volz and Newman models.
For both comparisons, the transitivity values of the output

�T

Possible triangle additions (green) and removals (red) in one step of the rewiring procedureFigure 2
Possible triangle additions (green) and removals (red) in one step of the rewiring procedure. Black lines represent 
existing edges and edges added after a rewiring event, gray lines represent edges lost during a rewiring event.
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graphs from our algorithm exactly match the target transi-
tivity values, when those values can be attained given the
network topology and the requirements of the algorithm.
Some values at the lower end of the clustering scales can-
not be reached because the expected transitivity for ran-
dom graphs of specified degree distributions scales as

 where pk is the degree distribution [21,8,43]. This

value is small for the Poisson degree distribution but can
be quite high (especially when measured as SV-transitiv-
ity) for highly-skewed degree distributions such as the
scale-free degree distribution. For the first comparison,
the connectivity constraint imposes a maximum on the
attainable clustering value, thus the highest SV-transitivity
values cannot be reached without disconnecting the

graphs. In these cases, our algorithm returns the graph
with the largest attainable SV-transitivity that is less than
the desired SV-transitivity. For the second comparison,
(with requirements to match the other algorithms), our
algorithm performs better in all cases compared to the
Volz and Newman models. Due to the definition of the
standard transitivity measure (T), however, we see that the
networks reach a maximum T value, beyond which no fur-
ther clustering can be accommodated by the network
topology.

Structural Properties of Generated Networks
There are several other topological properties (besides
degree sequence and clustering) that can strongly influ-
ence network function and dynamics. Among these are
degree correlations (the dependence of a node's degree on

k pk
kpk

2∑
∑

The evolution with our algorithm of a Poisson-distributed random graph with 50 nodes from (a)  ≈ 0,(b)  = 0.1,(c)  = 0.5 and (d)  = 0.8, with the connectivity constraintFigure 3

The evolution with our algorithm of a Poisson-distributed random graph with 50 nodes from (a)  ≈ 0,(b)  = 

0.1,(c)  = 0.5 and (d)  = 0.8, with the connectivity constraint.

�T �T
�T �T
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Discrepancies between input and average output degree distributions (left panels) and average transitivity values (right panels) for an ensemble of 15 Poisson (top panels), exponential (middle panels) and scale-free graphs (bottom panels) as generated by our algorithm and the algorithms presented in [30] and [20]Figure 4
Discrepancies between input and average output degree distributions (left panels) and average transitivity val-
ues (right panels) for an ensemble of 15 Poisson (top panels), exponential (middle panels) and scale-free 
graphs (bottom panels) as generated by our algorithm and the algorithms presented in [30]and [20]. Each graph 
has N = 500 and mean degree, �d� = 5. In the left graphs, the input degree distribution is shown as a black circles; and output 
degree distributions are shown for the Newman (green dashed line) and the Volz (gray dashed line) algorithms. Output degree 
distributions are not shown for ClustRNet as the degree sequence always perfectly match the input. In the right graphs, the 

input is shown as black circles, and output transitivity values are shown for two runs: (1) using SV-transitivity (( )) as the clus-
tering measure in ClustRNet (blue line), and (2) ClustRNet [without a connectivity constraint] (orange line), the Newman algo-

rithm (green dashed line) and the Volz algorithm (gray dashed line), all with transitivity (( )) as the clustering measure.
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its neighbors' degrees), community structure (groups of
nodes that are highly intra-connected and only loosely
inter-connected), and average path length (typical dis-
tances between pairs of nodes in the network). We have
specifically developed this model to increase clustering
with minimal structural byproducts. Thus, we confirm
that we have reached this goal by measuring the above
properties in the networks generated by our algorithm.

We evaluated the extent to which the algorithm intro-
duces degree correlations by comparing random (unclus-
tered) graphs to clustered random graphs generated by
our algorithm and the Volz [30] and Newman [20] algo-
rithms (Figure 5. While our algorithm essentially pre-
serves the correlation structure of the random graph, the
other algorithms produce highly correlated graphs.
Results are not shown for scale-free graphs as initial tran-
sitivity values were larger than 0.5 for all generated graphs.

Several authors have discussed the relationship between
clustering and community structure [8,25,47,21]. As Fig-
ure 3 shows, the addition of triangles leads to modular
structure. This behavior is not surprising: as the number of
edges in the graph is constrained, sets of connected nodes
with high ω(i) values (often high-degree nodes) must be
brought together to create additional clustering. Although
the presence of a significant proportion of triangles tends
to separate the network into modules, it is not clear that
clustering is always sufficient to explain the modular
structure of a graph. We explore this further below.

Short average path lengths are a characteristic feature of
random graphs [26]. To quantify the impact of our algo-
rithm on path lengths, we calculated the average path
length for each node to all other (N - 1) nodes, and then
compared the distributions of these values for several ran-
dom and random clustered graphs (Figure 5). While our
algorithm mostly maintains short average path lengths,
the mean of the path length distribution does tend to be
slightly larger for the clustered graphs than for the corre-
sponding random graphs. The intuition behind this
increase in average path length may lie in the increased
community structure: as graphs become more clustered
and separate into subgroups, nodes in different groups
require more links to reach each other (Figure 3). Given
that our algorithm can generate graphs of high clustering
while preserving short path lengths, this introduces a
novel method of generating graphs with the small world
property without the correlations of Watts-Strogatz graphs
[1].

Discussion
Application: Analysis of Empirical Networks
It is crucial to have random controls in the study of bio-
logical systems. Our algorithm can be used to generate

null models and applied to the detection of structure in
empirical biological networks. We can generate ensem-
bles of clustered random networks with empirically esti-
mated degree sequences and clustering values to ascertain
whether empirical networks have significant non-random
structure in other respects. We demonstrate this applica-
tion using representatives from four classes of biological
networks. We also analyze one non-biological network
that is made of human transportation links as it provides
contrast to the range of topological properties and design
principles found in the biologically-motivated networks.
The five real networks are as follows: a) a trophic exchange
network for the Little Rock Lake in Wisconsin [48]; b) a
protein interaction network for yeast [3]; c) a metabolic
network for the eukaryote Caenorhabditis elegans [49]; d) a
network made up of epidemiologically-relevant contacts
for individuals in the city of Vancouver [13]; and e) a
transportation network, made up of US metropolitan
areas connected by air travel [50]. These networks repre-
sent a diverse set of applications and are systems that are
well-studied in their respective literatures. The basic statis-
tics of these networks, including clustering values, are
listed in Table 1.

We use the following method to quantify deviations from
randomness in these networks. First, we use our algorithm
to generate 25 clustered random networks constrained to
match the empirical degree sequence and clustering val-
ues. Second, we select a set of network topological meas-
ures (other than degree distribution and clustering), and
compare these quantities for the empirical graph to the
corresponding average quantities across the ensemble of
generated graphs.

Specifically, we generate 25 clustered random networks
for each empirical network, constrained to match the
empirical degree sequence and SV-transitivity. In addition
to the degree and clustering metrics, we also calculated
diameter (longest shortest path length between any pair
of nodes in the graph) [51], degree correlation coefficient
[11] and modularity (degree of community structure)
[52] (Table 2). Other than diameter, each of these metrics
range from 0 to 1. The standard deviations for all statistics
are negligible across the ensembles and thus not reported.
For every statistic, we also give the deviation between the
empirical value and the average across the generated
ensemble of random clustered networks (specifically,
deviation = ensemble mean - observed value). Small devi-
ations suggest that the empirical network structure boils
down to the degree distribution and clustering, and thus
we turn our attention to possible mechanisms underlying
these properties. In contrast, large deviations suggest that
there are other fundamental properties to consider in
addition to or, perhaps, instead of clustering.
Page 11 of 15
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Degree correlations (A and B) and average path lengths (C and D) in random graphs with specified degree distributions (Pois-son and exponential with mean degree = 5) compared to clustered random graphs with the same degree distributions and T = 0.5 generated by our algorithm (with the connectivity constraint), as well as the Volz [30] and Newman [20] algorithms (in A and B)Figure 5
Degree correlations (A and B) and average path lengths (C and D) in random graphs with specified degree dis-
tributions (Poisson and exponential with mean degree = 5) compared to clustered random graphs with the 
same degree distributions and T = 0.5 generated by our algorithm (with the connectivity constraint), as well as 
the Volz [30]and Newman [20]algorithms (in A and B). The graphs present averages over 15 graphs generated by each 
algorithm. Our algorithm introduces fewer degree correlations than the alternatives, and the clustered graphs have only 
slightly higher average path lengths than their random counterparts: 4.05 for the Poisson random graphs versus 4.39 for the 
clustered graphs; and 3.95 for the exponential random graphs versus 4.14 for the clustered graphs.
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Of all the empirical networks analyzed, the random coun-
terparts of the the US air traffic network are the only ones
that have structural properties almost identical to the real
network (with the network of Vancouver epidemiological
contacts being the next closest). This suggests that the
structure of the US air traffic network comes almost exclu-
sively from its degree patterns. (In fact, even the high clus-
tering is explained exclusively by the degree patterns.) We
note that the US air traffic network is the only non-biolog-
ical one and the most engineered of the networks we con-
sider, and thus may have fewer emergent properties. The
remaining empirical networks (all biological) differ con-
siderably from their random counterparts, suggesting that
there are important mechanistic features not captured in
the random model.

Degree correlations vary somewhat systematically among
the four biological networks (Table 2). The Vancouver
human epidemiological contact network has significantly
higher degree assortativity than our random networks,
thus showing that the positive degree correlations are not
just the result of degree distribution or clustering, both of
which have been found to be positively correlated with
assortativity [53]. This suggests the existence of social
rules among humans that go beyond (a) variation in
numbers of "friends" and (b) the tendency for "my
friend's friend also to be my friend" [11]. The remaining
biological networks (the yeast protein interactions, the
Little Rock Lake foodweb, and the C. elegans metabolic
networks), on the other hand, all have negative degree
correlations. Our results show that the C. elegans meta-
bolic network, in particular, has degree correlations
approximately equal to the amount expected to arise as a
random byproduct of degree distribution and clustering.
One reason that a biological network only show random
degree correlations might be due to the lack of a clear
functional or structural advantage for strong correlations:
negatively correlated networks are vulnerable to failures
because functionality often depends on a few high degree

nodes that provide essential connectivity. If any of these
fail (e.g., because of a gene deletion in a metabolic net-
work) the whole system fails [11,12]. On the other hand,
positively correlated networks, which have short distances
between hub (high-degree) nodes, may be less favorable
because they allow for the propagation of random pertur-
bations (e.g., changes in the concentration of a protein in
a protein-interaction network) [36].

All of the natural networks we study have significantly
higher modularity than the corresponding clustered ran-
dom networks, despite having a wide range of transitivity
values. This suggests that clustering and community struc-
ture are not necessarily positively correlated, as has been
previously suggested [52,8]. The high modularity of the
Little Rock foodweb, in particular, has been attributed to
its high clustering [54]. Our generated clustered random
graphs, however, indicate that the degree distribution and
high transitivity only account for about half the modular-
ity of the foodweb graph (Table 2). There is an extensive
literature on the presence and evolution of modularity in
protein, metabolic, and ecological networks highlighting
its possible roles in functional specialization, innovation
and robustness [55-60]. Since clustering and the mecha-
nisms that give rise to it cannot fully account for the mod-
ularity of these empirical networks, such mechanistic
explanations for the structure are warranted.

Conclusions
In this work, we have introduced a Markov chain simula-
tion algorithm to generate clustered random graphs with
a specified degree sequence and level of clustering. Our
algorithm perfectly preserves the degree sequence of a ran-
dom graph and generally maintains other fundamental
properties of random graphs like short path length and
low degree correlations. The use of random graphs as con-
trols is a common and effective method for identifying
important structural characteristics of biological networks
(as, for example, has been seen in [61,54,62,49,13]). Our

Table 2: Comparisons between empirical networks and clustered random networks

Generated Network Type N <d > <d2 > T Diam r Q

Little Rock Foodweb Interactions 183 27.3 1215 0.38 [0.009] 0.58 [0.0] 4 [0.0] -0.09 [0.15] 0.11 [-0.21]
Yeast Protein Interactions 4713 6.3 152 0.07 [0.01] 0.18 [0] 12.5 [0.5] 0.11 [0.38] 0.39 [-0.10]

C. elegans Metabolic Interactions 453 8.9 358 0.14 [0.02] 0.60 [0] 6 [-1] -0.19 [0.04] 0.29 [-0.09]
Vancouver Epidemiological Contacts 2627 13.9 265 0.09 [0] 0.14 [0] 6 [0] 0.15 [-0.4] 0.28 [-0.15]

US Air Traffic Links 165 38.0 2765 0.58 [0] 0.97 [0] 3 [0] -0.55 [0] 0.11 [-0.01]

For each empirical network, we generated 25 random graphs constrained to have the observed degree sequences and Soffer-Vasquez transitivity 
values. The table reports average values of several network statistics for the clustered random graphs: network size (N), mean degree (�d�), mean 

squared degree (�d2�), Soffer-Vasquez clustering coefficient ( ), Soffer-Vasquez transitivity ( ), maximum shortest path length between any two 
nodes (diam), degree correlation coefficient (r), and modularity (Q). The value given in brackets is the deviation of the ensemble mean from the 
corresponding statistic for the empirical network. (A positive deviation indicates that the ensemble mean was greater than the empirical statistic 
and vice versa.) Deviations are not listed for N, �d� and �d2� as network size and degree sequence are constrained by our algorithm to match the 
empirical networks perfectly.

�T
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method provides a new null model for use with this tech-
nique. Since this method is based on a dynamic process,
it can be used to generate both static networks with a spec-
ified amount of clustering and dynamic networks with
evolving levels of clustering. Furthermore, since the proc-
ess is a "memoryless" one, additional clustering can be
added to any network without having to grow a new one
from scratch. These clustered networks can provide valua-
ble insights into the interdependent impacts of connect-
edness and redundancy on biological processes, and serve
as appropriate null models for investigating the biological
significance of other structural attributes.
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