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Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing
external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications.
We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained
by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around
atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the
marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

1. Introduction

The geometric structure of macromolecules, such as proteins
or nucleic acids, is directly related to their function [1–3].
Consequently, studying this structure is of capital impor-
tance in the understanding and simulation of numerous life
processes. It allows researchers to save a lot of time and
money for various applications such as drug design [4, 5]
or mutation effect prediction [6, 7]. In this context, working
with molecules external surface can be useful, for instance,
to predict the geometrical complementarity between two
molecules [8] or to visualize them [9]. The prediction
of geometric complementarity is one of the keystones of
molecular docking [10–13], the modeling of interactions
between molecules. The localization of potential binding
sites of molecules [14–16] is a frequently used tool for
docking and generally requires a good description of the
protein surface [17–19]. The estimation of the surface area
may also be related to the stability of a particular molecule
3D conformation [20].

At first, the external surface of a molecule has to
be defined. Indeed, molecules are made of atoms which
have no real surface. The most frequent molecular surface
representations are the Van der Waals Surface (VdWS), the
Solvent Accessible Surface (SAS), and the Solvent Excluded

Surface (SES) [21, 22]. In the case of the VdWS, the electron
clouds around atoms are approximated by rigid spheres with
radii corresponding to the Van der Waals (VdW) radii of
the atoms. The SAS (resp., SES) is the inner surface of the
volume filled by the possible positions of the center (resp.,
exterior surface) of a ball representing a molecule of solvent,
for example, water (see Figure 1).

Efficient tools to represent such surfaces are the polygo-
nal meshes, which are collection of points related by edges
and faces that approximate the considered surfaces. A lot of
methods have been proposed in the last few years for the
generation of a molecular surface meshes.

However, the computational time remains generally high
for quality meshes, and it can be a problem when there is a
great amount of data to treat. In this paper, we introduce the
Filtered Density Map (FDM) algorithm, which is a fast and
parameterizable algorithm to generate smooth molecular
surface meshes. The generated mesh is the isosurface of
frequency filtered electron density map.

This paper is organized as follows. First, some other
works related to molecular surface generation are succinctly
described in Section 2. Then, the FDM method is described
in details in Section 3. And finally, results and comparisons
with other methods are presented and discussed in Section 4.
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Figure 1: A cutaway view of a small molecule. The most frequent
molecular surface representations are detailed. Gray discs depict
the Van der Waals volumes, the gray outer line depicts the Solvent
Accessible Surface (SAS) and the continuous black line depicts the
Solvent Excluded Surface (SES). The SAS (resp., SES) is the limit
surface for the solvent molecule center (resp., external surface). The
solvent molecule is represented as a black dashed circle.

2. Related Work

In the last few years, a lot of methods have been developed
for the generation of molecular surface meshes. In 1983,
Connolly [23] proposed an analytical algorithm in which
points were strategically placed around the molecule with
a specific analytical role (maximum, minimum or saddle
point) depending on the number of atoms present in the
neighborhood. In 2003, Bajaj et al. [24] introduced another
analytical method based on NURBS that offers the advantage
to be parameterizable without recalculation. In 2002, Laug
and Borouchaki [25] used a parametric representation of
intersecting spheres to create the surface mesh. MSMS,
developed by Sanner et al. [26] is based on alpha-shapes [27]
of molecules. This algorithm is widely used because it is time
efficient. However, the generated mesh is not a manifold and
is composed of very irregular triangles. The beta-shapes [28]
are a generalization of the alpha-shapes and were used by Ryu
et al. [29] in 2007 to design a similar algorithm. Another
vertex based method was used by Cheng and Shi [30]. In
this method, molecular surfaces are generated with the help
of restricted union of balls. Finally, some methods based on
volumetric computation exist, such as the one of Zhang et
al. [31] in which the solvent accessible surface is seen as the
isosurface of Gaussian shaped electron density maps, and the
algorithm of Can et al. [32] (the LSMS) which is based on a
front propagation from atom center and on level-sets.

Comparisons between the FDM method and the meth-
ods mentioned in this section are shown in Section 4.2.

3. Method

The FDM method is based on volumetric electron density
and a frequency filtering. Each atom is seen as a Gaussian
electron cloud, the dimensions of which are depending on
the VdW radius. Then, the electron density map is created
by taking the local maximum value of these clouds. After
a Fourier Transform, it is filtered by an ideal low pass

filter, in order to remove frequencies corresponding to a
spatial element smaller than a solvent molecule. Finally,
a marching cubes [33] algorithm is used on the inverse
Fourier Transform to find an isosurface. A refinement of the
final mesh constitutes an optional step of the method. The
whole algorithm was implemented in C++ with vtk (Visual
ToolKit) (http://www.vtk.org/).

3.1. Electron Density Map. A Gaussian function is con-
structed around each atom. The value of this function at a
point i for an atom a is:

Ga(i) = te−(r2
a−‖ai‖2/r2), (1)

where t is a threshold parameter, r is a radius parameter, ‖ai‖
is the Euclidean distance between the center of a and the
point i, ra is the VdW radius of the atom a. So, the isosurface
for the threshold t is the VdW sphere because if i is located
on the VdWS of a, ‖ai‖ = ra and Ga(i) = t. In this work, r is
set to 3 Å because this value is suitable for an ideal low-pass
filter (see Section 3.2).

For the implementation, the three-dimensional space is
divided into voxels. The spacing (Te) between voxels is an
adaptable parameter. The more Te is small, the more the
surface approximation is fine.

The density map of the whole molecule for a point in
the space is defined as the maximal value of all the Gaussian
functions at this point. The maximum of the Gaussian
functions is chosen instead of the summation because it is
not possible to evaluate the SES using the isosurface of a
summation of Gaussian functions. It can be shown by the
following counterexample, in which the Gaussian affected
to the atoms a and b must have contradictory properties
depending on the situation.

In the first situation, the space between a and b is just
small enough to block the way to a solvent molecule (see
Figure 2(a)). The other atoms are considered to be too far
to have an influence. Thus, the SES has a concave shape at
this place and the value of the density map at the “center”
of the concavity c1 must be influenced by the fields of a and
b: Ga(c1) > 0, Gb(c1) > 0. We can state that ‖ac1‖ > ra + rs
because s, the center of the solvent molecule, can be very close
to the ab axis.

In the second situation, ‖ab‖ < ra + rs/2, which is often
the case for covalent bonds. Let c2 be a point belonging both
to the SES and to the VdWS of b with the necessary condition
‖bc2‖ = rb (see Figure 2(b)). The point c2 should not be
influenced by the field of a, so Ga(c2) = 0. If ‖ac2‖ > ‖ac1‖,
this condition is in contradiction with Ga(c1) > 0, because
the Gaussian function is strictly decreasing in the positive
domain. Using the Al-Kashi theorem, we know that

‖ac2‖2 = r2
b + ‖ab‖2 − 2rb‖ab‖ cosβ,

‖ac1‖2 > (ra + rs)
2 = (rb + rs)

2 + ‖ab‖2

− 2(rb + rs)‖ab‖ cosβ,

(2)

where β is the ̂ab f angle. Thus, ‖ac1‖ > ‖ac2‖ if

r2
s + 2rbrs − 2rs‖ab‖ cosβ > 0, (3)

http://www.vtk.org/
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Figure 2: Two situations in which the Gaussian functions would
have contradictory properties. (a) Two atoms of the molecule, a and
b, are just close enough to block the way to a solvent molecule s. The
point c1 is on the SES and must be influenced by the filed generated
by a, Ga. (b) a and b are close. The point c2 is on the SES but also
on the VdWS. So, it should not be influenced by Ga. It is possible to
show that in some (frequent) configurations, ‖ac1‖ > ‖ac2‖.
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Figure 3: Minimal wavelength allowed on the SES. It corresponds
to four times the solvent radius rs and determines the cutoff
frequency for the filtering.

what is verified by the hypothesis: ‖ab‖ < rb + rs/2 because
cosβ ≤ 1.

In order to avoid interferences, the maximum is preferred
to the summation of Gaussian functions. Isosurfacing this
density map returns the VdWS. This surface is not smooth
and in order to compute the SES, the density map must first
be filtered.

3.2. Fourier Transform and Filtering. The Fourier Transform
of this electron density map is computed using the FFT
algorithm [34]. The frequency representation of the function
is filtered by an ideal low pass filter in order to eliminate
frequencies corresponding to elements smaller than a solvent
molecule, for example, inflexion points between two VdW
spheres.The cutoff frequency is fc = 1/4rs, where rs is the
radius of the sphere approximating the solvent molecule
(typically 1.4 Å for water). The wavelength must be four
times longer than rs because a molecule solvent diameter has
to fit in a half wavelength (see Figure 3).

Gaussian functions are preferred to balls in the spatial
domain because an ideal low-pass filter makes the Gibb’s
phenomenon appear on sharp edges. An ideal filter is used
because the cutoff frequency is exactly known and because
it is numerically possible. An ideal low-pass filter in the
frequency domain is equivalent to a convolution product
with a sinc function in the space domain. Let X = (x, y, z) be

b

a

c1

c2 s

c3

Figure 4: In this example, the atoms a and b are 5 Å far from
each other and have both a VdW radius of 1.8 Å. The radius of the
solvent molecule s is 1.4 Å. The conditions to verify for the density
map before (M) and after (˜M) filtering are: M(c1) = ˜M(c1) = t,
M(c2) < ˜M(c2) = t, and M(c3) < t and ˜M(c3) < t, with t, the
threshold value for the isosurfacing.

the space variable inR3 and M(X) the initial electron density
map. Then, the filtered density map is:

˜M(X) = (M(•)∗2 fc sinc
(

2 fc•
))

(X), (4)

where • represents the variable. The parameter r of the
Gaussian functions in (1) is related to the width of the
function. To keep the isosurface at the same place, a wider
function has a smaller maximum. If this maximum is too
high, that is, if r is too small, the secondary ripples of the sinc
function take too much importance when they are in phase
with this maximum. It makes oscillations appear in the final
density map, which can lead to the apparition of unwanted
surfaces after isosurfacing. Simulations with several 1D and
2D functions were performed to verify the effect of r. The
three main conditions to verify are the follwing:

˜M
(

Xc1

) = t for c1 lying on the SES and on the VdWS,

˜M
(

Xc2

) = t for c2 lying on the SES but not on the VdWS,

˜M
(

Xc3

)

< t for c3 lying outside the molecule.
(5)

Here is a 2D example:

M(x) = max(Ga(x),Gb(x)), (6)

with the atom a centered in (xa, ya) = (0,−2.5) and the atom
b in (xb, yb) = (0, 2.5), the threshold t = 1, and ra = rb = 1.8
(Figure 4). The values of the density maps M(X) and ˜M(X)

for c1 = (0, xa − ra), c2 = (
√

x2
a + (ra + rs)

2 − rs, 0), and c3 =
(x3, y3) are plotted as a function of r in Figure 5. (x3, y3) is the
position of the maximal value of the density map outside the
“molecule” for r = 1. When the parameter r = 3, conditions
(5) are verified and the Gaussian functions are not too wide,
what leads to shorter execution times. The 2D density maps
M(X) and ˜M(X) with r = 3 as well as ˜M(X) with r = 1 are
shown in Figure 6. The isocontours, representing the VdWS
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Table 1: Computation times (in s) for different methods. ((b) from [32].)

PDB code No. atoms FDM1.9rs ,0 FDM4/3rs ,1 LSMS PyMol Swiss-PDBV Chimera MSMS

1A8R 26400 0.65 2.61 5.56 10.52 6.38 16.36(b) 0.95

1H2I 32318 0.72 1.83 6.50 11.37 5.25 40.04(b) 3.03

1GTP 34740 0.51 2.20 6.98 13.15 4.75 67.04(b) 9.02

1FKA 34977 0.75 2.77 7.89 26.29 7.36 77.25(b) 4.50

1GT7 42700 0.95 2.43 7.32 16.10 6.50 54.39(b) 3.32

1GAV 43335 0.55 2.54 7.05 28.86 7.71 78.35(b) 4.22

1G3I 45528 0.54 2.85 8.18 19.45 6.21 — 7.67

1PMA 45892 0.40 1.97 8.23 18.67 6.72 — 12.90

1FJG 51995 0.71 2.88 8.01 25.18 8.05 — 15.11

1AON 58870 0.62 2.64 8.83 26.36 8.91 — 10.87

1J0B 60144 0.69 3.07 6.87 32.66 7.92 — 5.61

1OTZ 68620 0.67 2.28 8.46 30.14 9.56 — 9.03

1IR2 77088 0.65 2.88 7.09 29.31 9.55 93.87(b) 9.49

Table 2: Computation times (in s) for different methods. ((a) from [30].)

PDB code No. atoms � No. triangles FDMrs/2,1 Cheng MSMS

200D 232 65 k 0.55 1.35(a) 0.33

1FG1 873 100 k 0.85 2.41(a) 0.65

3EBZ 1651 200 k 1.37 15.43(a) 0.97

Table 3: RMSD and percentage of big differences with reference
surfaces.

Spacing (Å) RMSDw (Å) ‖ · ‖ > 1.9rs ‖ · ‖ > rs ‖ · ‖ > rs/4
1.9rs = 2.66 0.78 0.41% 6.89% 67.04%

rs = 1.4 0.26 0% 0% 20.20%

rs/4 = 0.35 0.20 0% 0% 8.71%

or the SES, are depicted in white and we can see the artifacts
appearing for too small values of r.

It is important to notice that if the spacing (Te) for the
spatial sampling is too large, there would be no filtering.
Normally, the sampling frequency, fe = 1/Te, has to verify
the Nyquist-Shannon theorem: fe > 2 fmax, where fmax is the
higher frequency with a nonzero coefficient in the original
signal. However, for this application the errors resulting
from a subsampling are not too important and the sampling
frequency is chosen such that fe > 2 fc, that is, Te < 2rs. In
this situation, the filtering is always possible.

3.3. Isosurfacing. The final triangular mesh is an approxima-
tion of the isosurface of the filtered electron density map.
The most popular technique to extract an isosurface from
a 3D image is the marching cubes algorithm [33]. In this
algorithm, the voxels are screened by group of eight sharing
a same point. Mesh vertices, faces, and edges are added
depending on the value of these eight voxels. There are 256
(28) possibilities that can be reduced to 15 situations thanks
to symmetries and complementarities.

3.4. Refinement. The visual appearance of the final mesh
can be improved by magnifying the number of vertices. The
number of vertices is increased using a smooth interpolation
scheme such as the piecewise smooth surface reconstruction
of Hoppe et al. [35], or the algorithm based on the butterfly
scheme proposed by Zorin et al. [36].

4. Results and Discussion

Some numerical results pointing out advantages and draw-
backs of the FDM are shown in this section. The main
characteristics to be observed are the computation time and
the quality of the generated mesh. The section is divided
into three parts: the analysis of the effects of the different
parameters of the FDM, the results of computation time
comparisons with other existing methods, and a quality
measurement of the generated meshes.

4.1. Parameters. There are three main parameters modifiable
by the user. First, the spatial spacing Te, that is, the distance
between two neighbor voxels center, which determines the
total number of voxels. Second, the cutoff frequency fc,
which determines the smoothness of the final mesh. And
third, the refinement rate kr , that is, the number of new
points in a triangle for the final mesh magnification. In this
section, the effect of these parameters on the visual quality,
on the computation time and on the memory space, are
discussed.

4.1.1. Spatial Spacing. With a small spatial spacing, it is pos-
sible to represent fine details. However, it drastically increases
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Figure 5: Value of the density map before (continuous gray line)
and after (dashed black line) filtering at a point belonging to both
the SES and the VdWS, c1 (a) a point belonging to the SES but
not the VdWS, c2 (b) and a point outside the molecule, c1 (c) (see
Figure 4). t = 1, so, when r = 3, conditions (5) are satisfied.

the memory space needed as well as the computation time.
Indeed, reducing Te by a factor α increases the number
of voxels by α3. The parts of the method depending on
the number of voxels are the creation of the density map
(time: O(nv) and space: O(nv), with nv the number of
voxels) and the Fast Fourier Transform (time: O(nv lognv)
and space: O(nv)). A visual comparison between meshes
generated with Te = 1.9rs, Te = rs and Te = rs/3 is
shown in Figure 7. In these examples, fc = 1/4rs and
kr = 0, that is, the meshes represent the SES without final
refinement.
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Figure 6: Value of the density map for the example of Figure 4. x
and y are the two spatial dimensions (Å) and the colors represent
the value of the density map before filtering and with r = 3 (a) after
filtering and with r = 3 (b) and after filtering with r = 1 (c). The
contour for t = 1 is depicted with a white line. It represents the
VdWS (a), the SES (b), and the SES with artifacts (c).

4.1.2. Cutoff Frequency. In order to generate a mesh repre-
senting the SES, fc is set to 1/4rs (see Section 3.2). However,
depending on the application, the surface could be other
than the SES. For instance, if fc > fe/2, there is no actual
filtering, and so, the generated mesh represents the VdWS.
On the other hand, to obtain a smooth approximation of
the molecule shape, fc can be reduced. It is equivalent to
consider a bigger solvent molecule. Changing this parameter
does not have any effect neither on the computation time nor
on the memory space needed. A visual comparison between
meshes generated with fc > fe/2 (VdWS), fc = 1/4rs, and
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Figure 7: Meshes generated from electron density map at a spatial spacing of Te = 1.9rs (a), Te = rs (b), and Te = rs/3 (c) (PDB code: 3EBZ).
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fc = 1/4rs
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Figure 8: Meshes generated from electron density map filtered at a cutoff frequency of fc > fe/2 (a) to give the VdWS, fc = 1/4rs (b) to give
the SES, and fc = 1/16rs (c) to give an approximation of the general shape. (PDB code: 3EBZ).

fc = 1/16rs (shape approximation) is shown in Figure 8.
In these examples, Te = rs/3 and kr = 0, that is, a
solvent molecule diameter takes 6 voxels and there is no final
refinement.

4.1.3. Refinement Factor. The final mesh refinement gives
foremost an esthetic advantage. The memory space needed
does not increase a lot because the number of voxels remains
the same. Only the size of the mesh changes and this is
negligible in comparison with the space needed by the voxels
representation. The computation time slightly increases but,
when kr = 1 (which gives a good visual improving),
this is negligible in comparison with the voxels operations
computation time. A visual comparison between meshes
generated with kr = 0, kr = 1 and kr = 2 is shown in
Figure 9. In these examples, Te = rs and fc = 1/4rs, that is,
a solvent molecule diameter takes 2 voxels and the meshes
represent the SES.

4.2. Time Comparisons. In this section, computation times
are compared between the FDM algorithm and algorithms
found in the literature for equivalent qualities. When avail-
able, the algorithms were run on the same computer, when
not, the computation times were the ones announced in the
original paper. Can et al. made a comparison of their method
computation time with three molecular visualization tools:
UCSF Chimera [37], Swiss-PDBViewer [38], and PyMol
[9]. We added MSMS [26] to this set of methods. These
programs, as well as the one of Can (LSMS), are available
for free, so, the computation time could be measured on the
same computer than for our method, except for Chimera
that was not supported by the system. Thus, the computation
times mentioned here for Chimera are the one announced
in the paper of Can et al. [32]. For the LSMS method, the
grid size is set to 256 × 256 × 256. In this condition, Te �

1 with the tested molecules. Other programs are run with
defaults settings, that is, Te � 1. Two tests are made for
the FDM method. In the first one, the parameters are set
to Te = 1.9rs and kr = 0 to be as fast as possible while
keeping a correct solution. In the second one, the parameters
are set to Te = 4/3rs and kr = 1 which gives a correct mesh
with a good appearance (see Figure 10). The computation
times are shown in Table 1. The computation times reported
only include the mesh generation time, that is, it does not
take the loading time into account. In addition, for three
molecules, computation times for the method of Cheng and
Shi [30] are reported from their paper. The computation
times comparison is shown in Table 2. All the tests were
performed on a AMD Athlon(tm) 64 X2 Dual Core Processor
3800+, 2 gigabytes RAM. The computers were more or less
equivalent in the cited papers.

It appears in Tables 1 and 2 that all the molecule surfaces
in this data set are computed faster with the FDM than
with any other method and for different values of the
parameters.

4.3. Quality Results. In order to validate the quality of the
results, different generated surfaces (SESs) were compared
with references surfaces. These reference surfaces were
generated by isosurfacing a field composed of a union
of VdW balls at good resolution (spatial spacing of rs/8)
after morphological closing with a structuring element of
the size of the solvent molecule. This approach, similar
to [32], directly follows the definition of the SES [22],
because morphologically close this volume is equivalent
to make a solvent molecule roll on the VdW balls and
to consider unaccessible parts to be inside the molecule.
The molecules tested were 200D, 1FG1, and 3EBZ, because
they are small enough to generate a good reference surface
with the available memory space. The mean weighted root
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Figure 9: Meshes refined with a factor of kr = 0 (a), kr = 1 (b), and kr = 2 (c) (PDB code: 3EBZ).

Figure 10: Mesh of the SES of a molecule with Te = 4/3rs and kr =
1. (PDB Code: 1H2I).

1FG1 SES

(a)

1FG1 reference SES

(b)

Figure 11: Visual comparison between the 1FG1 SES generated
with the FDM algorithm with a spacing of rs/4 and the reference
SES generated with a spacing of rs/8.

mean square deviation (RMSD) for three spatial spacing is
reported in Table 3. The weighted RMSD is

RMSDw =
√

√

√

∑N
n=1

∥

∥pnp′n
∥

∥
2
sn

S
, (7)

where N is the number of vertices in the reference mesh, pn
is a vertex of this mesh, p′n is the closest point on the other
mesh (not necessary a vertex, it can be on an edge or on a
face), sn is the mean area of the faces pn belongs to, and S
is the total surface area. The percentages of the surface for
which ‖pnp′n‖ is greater than the spacings are shown in the
right-hand-side columns of Table 3. These error indexes are
not completely correct because the reference surfaces is not
a ground truth. However, it shows that the FDM algorithm
can provide a surface with a quality comparable to robust
methods.

A visual comparison between the SES of 1FG1 computed
with the FDM algorithm and the reference SES is shown in
Figure 11.

5. Conclusion

In this paper, we introduced an algorithm to compute molec-
ular surface meshes (the FDM algorithm). It is constructed as
an isosurface of a filtered electron density map (FDM). This
algorithm is faster than other algorithm tested in equivalent
conditions. It is slower than the MSMS algorithm for small
molecules (<30000 atoms) but it returns a smooth manifold
surface, which is not the case with MSMS. It makes possible
to compute a precise representation of the surface with a
limited number of voxels, so that the computation time
and the memory space needed are reduced. Moreover, it is
parameterizable on the spatial resolution, the refinement of
the final mesh, and the size of the solvent molecule. Thus,
the spatial resolution can be improved for a finer result but
with an important computation time increase. Similarly, a
smoother result can be obtained with a final refinement
with a small influence on the computation time but with
less precise results than reducing the spacing. Finally, the
solvent molecule size can be chosen without influence on the
computation time.

The refinement could be improved to be specific to
molecular surface. It would enable coarse meshes to be
generated rapidly and to be improved by a priori knowledge
about local geometry of molecule surfaces, such that the
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curvature deduced from the closest atom radius. In future
works, this algorithm will be used in surface-based method
to detect protein hot spots [19].
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