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ABSTRACT: Molecular dynamics (MD) trajectories based on a classical equation of motion
provide a straightforward, albeit somewhat inefficient approach, to explore and sample the
configurational space of a complex molecular system. While a broad range of techniques can be
used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that
are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical
computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom
fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve
sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and
Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps:
(1) a FG configuration of an atomic system is dynamically propagated for some period of time
using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model;
(3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the
resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG
configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG
configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning
to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to
guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the
equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with
hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about
80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.

I. INTRODUCTION

Molecular dynamics (MD) simulations of detailed atomic
models is a powerful tool to study the properties of complex
biomolecular systems.1−3 However, while simulations based on
realistic all-atom (AA) models arguably offer the most detailed
information, such models evolve on a complex and rugged
energy surface, and their dynamics is often burdened by a host
of slow processes. For this reason, achieving an adequate
sampling of all the relevant configurations of a system from
straight MD simulations is often challenging. Most proposed
approaches to enhance sampling by accelerating the exploration
of configurational space are either not guarantied to yield
Boltzmann equilibrium or only applicable to a small subset of
degrees of freedom;4−13 see refs 14−17 for reviews. The
Metropolis Monte Carlo (MC) algorithm, which consists of
generating a random walk in configuration space from a set of
proposed moves that are attempted and then accepted or
rejected,18,19 also offers a powerful method to generate a
Boltzmann equilibrium distribution that is not, in principle,
limited by dynamical processes. In practice, its application is
only limited by the richness of the set of proposed moves that
are attempted for generating a random walk in configurational
space. Nevertheless, attempts to sample large conformational
changes with MC remain completely ineffective for complex

molecular systems in the presence of explicit solvent due to the
rejection of all proposed new configurations.
An appealing alternative approach is to consider a simplified

coarse-grained (CG) model that relies on an effective many-
body potential of mean force (PMF) associated with a reduced
set of degrees of freedom.20−23 Because the many-body PMF
governing a CG model is expected to be generally smoother
than the energy surface of its AA counterpart, its dynamics is
often intrinsically simpler and faster. However, except for the
simplest situations, the effective many-body PMF associated
with the CG degrees of freedom is not known exactly.
Commonly, an approximate PMF is constructed, which affects
many thermodynamic and kinetic results. Force-matching,
whereby information extracted from the fine-grained (FG)
model via the mapping function is transferred toward the CG
model, provides a formal route to improve the many-body PMF
underlying a CG model.22,23 However, the accuracy of the
resulting CG model remains inherently limited by the
functional form chosen to represent the many-body PMF.
Even assuming that a long trajectory of a CG model has been

generated, exploiting this information to enhance the configura-
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tional sampling of the FG model is not straightforward. In
principle, a set of configurations for the FG model could be
generated by reconstructing, via a “reverse coarse-graining”
(rCG) operation, the missing degrees of freedom onto
snapshots extracted from a CG trajectory. Unfortunately, rCG
generally involves mostly ad hoc empirical modeling procedures
that do not yield a Boltzmann equilibrium distribution. In this
sense, the information does not flow from the CG to the FG
model. More rigorous approaches allowing the information to
flow back and forth between a FG model and its associated CG
model have sought to couple the two levels via a resolution-
exchange strategy.24−30 In particular, resolution-exchange with
incremental coarsening relies on a potential energy that
interpolates between the FG and CG models according to a
parameter λ.24−26,28 The hope of resolution-exchange is to
combine the efficiency of CG simulation and the accuracy of a
FG model by swapping configurations between the two
representations, although achieving considerable gains in
computational efficiency remains a challenge. One proposed
route to improve the efficiency of the algorithm has been to
first relax configurations before an exchange is attempted, but
this procedure yields the correct canonical sampling only if the
rate of exchanges is sufficiently low.27 An alternative avenue is
the multiscale enhanced sampling (MSES) method of Zhang
and Chen, in which a small set of CG auxiliary particles
evolving on a simplified potential energy surface is coupled to

an all-atom system via harmonic springs of variable strength
within a replica-exchange simulation framework.31

Despite these previous efforts, a robust framework that
exploits the information from a CG model to generate the
proper Boltzmann equilibrium distribution for a FG model is
still needed. A promising avenue to address these issues is
presented by the recent extensions to the MC algorithm that
combines the strength of nonequilibrium molecular dynamics
(neMD) and MC.32−36 In hybrid neMD-MC, the value of some
chosen variable is altered gradually in a time-dependent
controlled manner, while the remaining degrees of freedom
are allowed to evolve freely according to the dynamical
equations of motion. The configuration generated by the
nonequilibrium switching process is then treated as a candidate
that must be either accepted or rejected via a Metropolis
criterion to generate the equilibrium Boltzmann distribution.
This hybrid neMD-MC framework has most notably been used
to formulate a constant-pH simulation algorithm.32,33,37

Here, this idea is pursued further to design a novel multiscale
method that exploits the evolution of a CG model to help
generate target candidate configurations that are then used to
guide the FG model during the neMD switching trajectories.
The coarse-grained guided hybrid nonequilibrium molecular
dynamicsMonte Carlo (CG-guided hybrid neMD-MC)
algorithm, comprises six steps, illustrated schematically in
Figure 1: (1) a FG configuration of an atomic system is
dynamically propagated for some period of time using

Figure 1. Flowchart of the CG-guided hybrid neMD-MC simulation method.
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equilibrium MD; (2) the resulting FG configuration is mapped
onto a simplified CG model; (3) the CG model is propagated
for a brief time interval to yield a new CG configuration; (4)
the resulting CG configuration is used as a target to guide the
evolution of FG system; (5) the FG configuration (from step
1) is driven via a nonequilibrium MD (neMD) simulation
toward the CG target; (6) the resulting FG configuration at the
end of the neMD trajectory is then accepted or rejected
according to a Metropolis criterion before returning to step 1. A
symmetric two-ends momentum reversal prescription is used
for the neMD trajectories of the FG system to guarantee that
the CG-guided hybrid neMD-MC algorithm obeys microscopic
detailed balance and rigorously yields the equilibrium
Boltzmann distribution.33,36 It is shown that the CG-guided
hybrid neMD-MC algorithm can be carefully engineered to
achieve a reasonably high acceptance probability, even when
using fairly short neMD switching trajectories. More
importantly, because the transition probabilities are constructed
to satisfy detailed balance, the CG-guided hybrid neMD-MC is
guaranteed to yield the equilibrium Boltzmann distribution. In
the next section, we formulate the theoretical basis of CG-
guided hybrid neMD-MC. The performance of the method is
illustrated with applications to simple model systems and
solvated polypeptides.

II. THEORETICAL DEVELOPMENTS
Let the total energy of a system be E(x) = U(r) + K(p), where
U is the potential energy, K is the kinetic energy, and x
represents all of the degrees of freedom, including the
coordinates r and the momenta p. In Metropolis Monte
Carlo, we seek to generate a stochastic random walk process
that moves the system from a configuration x to a configuration
x′ and ensure that the random walk will obey detailed balance
for the Boltzmann distribution:

π π→ ′ = ′ ′ →x x x x x x( ) ( ) ( ) ( ) (1)

where π(x) = Q−1 exp[−βE(x)] is the equilibrium probability
(β = 1/kBT), and is the transition probability. One common
approach to construct such a random walk is to separate the
transition probability into two stages: (1) the probability to
generate a proposed move and (2) the probability to accept (or
reject) this move,

→ ′ = → ′ → ′x x x x x x( ) ( ) ( )p a (2)

which leads to the condition

π π→ ′ → ′ = ′ ′ → ′ →x x x x x x x x x x( ) ( ) ( ) ( ) ( ) ( )p a p a

(3)

The probability of a proposed move describes the probability of
reaction coordinates moving toward the target value. The
probability to accept or reject the proposed move, however, is
determined after the switch. The most common approach is
when the transition probability of the proposed move is
inherently symmetric, i.e., p (x→ x′) = p(x′→ x), leading to
the condition for the acceptance probability

π π→ ′ = ′ ′ →x x x x x x( ) ( ) ( ) ( )a a (4)

that is formally satisfied by the Metropolis criterion,

→ ′ = β− ′ −x x( ) min[1, e ]E Ex x
a

[ ( ) ( )]
(5)

Examples include constant-pH simulation or biminima
simulation, where the reaction coordinates of the neMD-MC

can only choose predetermined values. For example, in a hybrid
MD/neMD-MC constant-pH simulation, the reaction coor-
dinate for neMD-MC is the protonation state. Therefore, the
target value is always the deprotonated state when the initial
value is the protonated state and vice versa. As a result, p is
always 1. In the biminima simulation, the reaction coordinates
are usually shifted for a fixed amount, and therefore p is also 1.
By substitution, it can be readily shown that

→ ′
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[ ( ) ( )] (6)

and therefore the Metropolis construct satisfies eq 1. In this
case, if the constraint schedule is time reversible and the
momentum is properly treated, the neMD-MC will generate
the correct Boltzmann distribution.33,35,36

If the long time scale relaxation of the system is known to be
dominated by the dynamics along a set of coarse-grained (CG)
variables, R, it is possible to exploit this information to increase
the efficiency of the hybrid neMD-MC algorithm. First, it is
assumed that at any time, the CG variables R(t) are uniquely
defined from x(t) through a mapping function as, R = M[x].
The general idea is to separate the transition probability (x
→ x′) into two distinct steps,

→ ′ = → ′ → ′| → ′x x R R x x R R( ) ( ) ( )CG
(7)

where GC represents the transition probability for a set of CG
variables R, and latter is the transition probability for the FG
variables x, conditional on the transition R → R′ taking place.
Here, the first step only involves changes in the CG variables.
The transition probability, GC , is constructed such that it
obeys the CG detailed balance relationship,

π π→ ′ = ′ ′ →R R R R R R( ) ( ) ( ) ( )CG CG CG CG
(8)

where πCG(R) is the equilibrium probability of the R
coordinates associated with the CG model. Assuming that the
CG model is constructed on the basis of a potential of mean
force W(R), the probability ratio is,

π
π

′ = β− ′ −R
R

( )
( )

e W WR R
CG

CG
[ ( ) ( )]

(9)

In practice, a number of methods could be used to fulfill these
conditions while propagating the CG coordinates (e.g.,
Brownian dynamics, Langevin dynamics, Metropolis MC,
etc.). In the second step, the transition R → R′ in CG space
must be used to guide the changes in the remaining atomic FG
degrees of freedom. To formalize this idea, it is useful to rewrite
the transition probability as the product of the probability of
a proposed move p, and the probability to accept or reject the
proposed move a,

→ ′| → ′ = → ′| → ′ → ′| → ′x x R R x x R R x x R R( ) ( ) ( )p a

(10)

In principle, generating the transition probability p for the
proposed move in x, conditional on the transition R → R′,
could be a daunting task. Even simply mapping the set of FG
variables x that is consistent with the CG variables R, a problem
that is commonly referred to as “reverse coarse graining”, can
be extremely difficult in general. However, all issues with such a
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reverse mapping problem are resolved naturally and rigorously
if the system’s degrees of freedom x(t) are generated from a
neMD propagation under the influence of a time-dependent
constraint dragging the CG variables from their initial R to the
final R′ value. During the neMD dynamical R → R′ switching
process, the evolution of the CG coordinates R(t) is externally
controlled and follows a fixed time-dependent schedule over a
time interval τneMD, while the remaining degrees of freedom are
propagated freely

τ
= + ′ −

⎛
⎝⎜

⎞
⎠⎟t

t
R R R R( ) ( )

neMD (11)

The CG coordinates start in the initial state R at the beginning
of the neMD switch and are gradually altered in a time-
dependent manner to reach the final state R′ at a time interval
τneMD later. This process can be implemented by evolving the
system under a time-dependent holonomic constraint, or by
applying stiff harmonic restraints centered on R(t). Finally, the
CG-guided scheme must satisfy the global detailed balance
relationship,

π
π

→ ′| → ′
′ → | ′ →

→ ′| → ′
′ → | ′ →

= ′ ′ →
→ ′

x x R R

x x R R
x x R R
x x R R

x
x

R R
R R

( )

( )
( )
( )

( )
( )

( )
( )

p

p

a

a

CG

CG (12)

To guarantee detailed balance, the time-dependent R(t) for the
forward and backward switching, R → R′ and R′ →R, must be
consistent. This is automatically satisfied if R(t) is constructed
from the linear form eq 11. A nonlinear form could also be used
for the switching, as long as it is symmetric and time-reversible.
Assuming that the transition probability of the proposed move
is symmetric,

→ ′| → ′
′ → | ′ →

=
x x R R

x x R R

( )

( )
1p

p (13)

which is verified if the dynamical propagation used to generate
the neMD trajectory is deterministic and reversible (e.g., using
a symplectic integrator), we obtain,
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It follows that in the CG-guided hybrid neMD-MC scheme, the
Metropolis acceptance probability, a, is

′ → | ′ → = β− ′ − + − ′x x R R( ) min[1, e ]E E W Wx x R R
a

[ ( ) ( ) ( ) ( )]

(15)

In the present development, it is assumed that the CG model is
propagated via a thermalized dynamics satisfying the detailed
balance condition eq 8. This is the reason why the energy
difference between the CG configurations (W(R) −W(R′))
appears in the acceptance criterion eq 15. Alternatively, one
could carry out the dynamics of the CG system with a
propagator that conserves energy, consistent with a micro-
canonical ensemble. In this case, the energy difference of CG
configurations would not appear in the Metropolis criterion. It
is also worth pointing out that the CG coordinates R

correspond to a subspace of the FG coordinate x that is
generated via the mapping functionM[x] through eq 11. In this
sense, the acceptance criterion operates only in the FG space
and this is the reason why the acceptance criterion does not
involve a joint distribution in terms of (x,R).
As illustrated in Figure 1, the CG-guided hybrid neMD-MC

algorithm comprises the following steps: (1) Propagate the FG
system with equilibrium MD using the potential energy U(x)
for a period of time τMD; (2) extract the CG coordinates R from
x via the mapping function M; (3) propagate the simple CG on
the free energy surface W(R) (for a predetermined time τCG or
until a chosen stopping criterion is met) to yield the new CG
configuration R′; (4) save the final CG coordinates R′ to use as
a target for the neMD trajectory; (5) propagate the FG model
from x to x′ under the time-dependent constraint that M[x]
changes linearly from R to R′ over an interval τneMD; and (6)
accept or reject the final configuration of the FG system
according to the Metropolis probability eq 15 before returning
to step 1.
By construction, the CG-guided hybrid algorithm yields the

correct Boltzmann equilibrium distribution for the FG model,
regardless of the underlying CG model that is chosen to
generate the attempted moves. Nonetheless, the choice of an
optimal CG model to achieve the highest efficiency is an
important issue that needs further consideration. Generally,
important sampling techniques aim at achieving variance
reduction in computer simulations by sampling high and low
probability regions with equal frequency while recovering a
correct distribution by assigning a proper statistical weight to
the different regions. The CG-guided hybrid algorithm can be
designed according to the same guiding principles by
recognizing that the potential energy driving the CG model
actually governs the statistical weight attributed to the
coordinates R. For a given FG model, the “exact” PMF with
respect to the CG degrees of freedom is defined as,

∫ δ≡ −β β− −C dr R M re [ ( )] eW UR r( ) ( )exact

(16)

where C is some constant. If Wexact(R) were known, then using
it in the algorithm would result in an optimal CG model. This is
because the CG-guided neMD simulation would sample all
regions with equal probability, as demonstrated by the
following development:

⟨ → ′ ⟩
⟨ ′ → ⟩

=
⟨ ⟩
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exact exact
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(17)

This relationship is valid for any R and R′ within the CG space.
In addition, the average acceptance probability for neMD
transitions between R and R′, which also affects the simulation
efficiency, is

⟨ → ′ ⟩ + ⟨ ′ → ⟩−
′

−x x x x
2

( ) ( )R R
1 1

(18)

When increasing W(R) relative to W(R′), ⟨ (x′ → x)⟩R′
increases while ⟨ (x → x′)⟩R decreases and vice versa; eq 18
reaches a maximum if the average acceptance probability is
roughly equal, when using Wexact(R) for the CG model. In
practice, the exact PMF with respect to the CG degrees of
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freedom is not known, but the above argument shows that, in
an importance sampling sense, the optimal efficiency will be
achieved if one chooses a reasonable approximation to
Wexact(R) that accurately captures the dominant effects.

III. ILLUSTRATIVE SIMULATIONS
(a). Linear Chain of Linked Particles. A one-dimensional

linear chain system with 12 particles linked together in a
periodic potential was designed to test and illustrate the
enhanced sampling from the CG-guided hybrid neMD-MC.
The system is shown in Figure 2. The FG system comprises 12

particles, each with a mass of 1, and each pair of adjacent
particles is connected by a bond. The only two types of forces
acting on each particles are the bond force and the potential
force. The potential force, shown in Figure 3, is defined by U(i)
= cos(2π xi) − cos(10π xi)/2, where x is the coordinate, and i is
the index of the particle (going from 1 to 12). The first part of
U(i) defines the periodicity. The second part introduces
additional ruggedness on the energy surface. The bond force is
defined by Ebond(i,j) = 20(rij − 1)2δ(|i − j| − 1), where rij is the
distance of the two particles, and the function δ indicates that
only adjacent particles are connected by a bond. The periodic
potential energy divides the configuration space into infinite
number of wells along the x axis, with the width of each well
being 1 and the energy barrier between adjacent wells being
around 2.6. The vertical dashed line in Figure 3 shows the
boundary of each well. Since the optimal bond length is also 1,
the most stable configuration of the molecule is to occupy 12
adjacent wells, each with one particle. To diffuse along the x
axis, a couple of particles, if not all, have to cross the energy

barrier at the same time. Therefore, the diffusion constant from
MD simulations is extremely low (see Figure 6a). The CG
system contains only three effective particles, each with a mass
of 4. No additional potential force is applied in the CG system.
The bond force for the CG system is given by Ebond

CG (i,j) = 20 (rij
− 4)2 δ(|i − j| − 1). The CG particles 1, 2, and 3 correspond to
the centers of mass of FG particles 1−4, 5−8, and 9−12,
respectively. The simulation of this system is carried out using
an in-house code written in c++. The temperature kBT is set to
1; diffusion constant to 0.5; time step to 0.005; and collision
rate to 2.0. The lengths of equilibrium MD, CG, and neMD
simulations are all 1000 steps. A flowchart of the simulation for
this system is shown in Figure 2. Each simulation is carried out
for 106 rounds.

(b). Solvated Peptide System. The algorithm was tested
on four different AA peptide systems with explicit solvent:
trialanine(Ala3), penta-alanine(Ala5), deca-alanine(Ala10), and
(AAQAA)3. (AAQAA)3 is a 15 residue peptide, with residues 3,
8, and 13 as glutamine and the rest as alanine. The polyalanines
have all α-helical initial structures. For (AAQAA)3, two
different initial structures were prepared, one β-sheet like and
another α-helix like, as shown in Figure 4. Ala3 and (AAQAA)3
have an acetylated N-terminus and an N-methylamide C-
terminus. Ala5 and Ala10 have unblocked, charged termini. The
potential energy of the solvated peptide systems is represented
by the CHARMM36 force field38 and TIP3 water potential.39

Ala3 is solvated in a 24 Å cubic box: Ala5, 30 Å; Ala10, 40 Å; and
(AAQAA)3, 60 Å. The solvent for the Ala5 and Ala10 systems is
a 1 M KCl aqueous solution. The CG systems for polyalanines
and (AAQAA)3 systems include only a single atom type for the
backbone α carbon (CGC). It has the atom mass of a normal
carbon, 12.01. Each α carbon in the AA system is associated
with one CGC atom. The total number of CGC atoms depends
on the length of the peptide. Unless mentioned otherwise, the
bond, angle and dihedral energy terms for CGC are empirically
set as Ebond = 100 (r − 3.83)2, Eangle = 94.84 (θ − 100.0)2, and
Edihedral = 0.1 (χ − 55.0)2, where r, θ, and χ are the bond length,
angle, and dihedral, respectively. There is no water and no
periodic boundary conditions (PBC) for the CG system.
The CHARMM program version c36b140 is used for MD

simulations for both the AA and CG system. In-house Python
scripts are used for the general control flow of the algorithm
(generating CHARMM input files, controlling MC acceptance,
etc.). Input files are generated at each attempted move with the
newest parameters and constraints. Unbiased brute-force MD

Figure 2. Flowchart of CG-guided hybrid neMD-MC for a 12 particle
model system. Big (small) spheres represent the particles in the CG
(FG) system. Springs represent bonds. Configuration of the CG (FG)
system is represented using R (x). Groups of particles are circled using
a blue box. The solid lines between the FG and CG system represent
the center-of-mass constraints applied on the FG system using the
position of the CG particles. The arrows between the FG and CG
system represent the mapping function M. (a) From the initial FG
structure x, the CG structure R is built. (b) Dynamical propagation is
performed on the CG model, generating a new configuration R′. (c)
Dynamical propagation is performed on the FG model, generating a
new configuration x′. During this propagation, the position of the CG
model is used to constrain the center-of-mass for the FG system. The
time-dependent constraints vary linearly in accord with eq 11.

Figure 3. Potential energy surface for the 12 particle model system.
The blue solid line presents the potential energy along the x axis. Its
analytic form is U = cos(2πx) −cos(10πx)/2. The potential energy is
periodic and extends to infinity. This figure only shows three wells.
The width of each well is 1. The dotted lines mark the boundaries of
each well.
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simulations were also performed with the same systems to
provide a comparison.
For the AA simulations with explicit solvent (MD and

neMD), the system is subjected to PBC. Particle-Mesh Ewald
(PME) summation41 is used to treat the electrostatic
interactions, with a real-space cutoff set to 14 Å and grid
spacing smaller than 0.5 Å. The Lennard-Jones (LJ)
interactions are smoothly truncated with a switching function
from 10 to 12 Å. The equations of motion are integrated with a
time-step of 2 fs, and SHAKE42 is used to constrain covalent
bonds involving hydrogen atoms. For MD, the peptide is kept
near the center of the PBC box with a weak global center-of-
mass restraint. The leapfrog varlet integrator is used with
constant temperature and pressure control (CPT) based on
Berendsen’s method. Temperature is controlled at 300 K and
pressure at 1 atm. For neMD, the leapfrog verlet integrator is
used without CPT. The position of carbon-α is harmonically
and strongly constrained. The constraint target positions vary
linearly during the switch. The initial constraint position is
mapped from the AA structure, and the final constraint position

is generated by CG simulations. Theoretically, there could be a
small “tracking” error between R and M[x] when harmonic
restraints are used instead of holonomic constraints, but the
tracking error is expected to be small with strong restraints, and
does not affect the accuracy or the foundation of the theory. To
propagate the CG system, a Langevin dynamics is used with a
temperature of 300 K. The overall rotation and transition are
removed from the CG configuration. In each cycle, the initial
velocities of the CG model were generated according to the
Maxwell distribution.
In the present implementation, the MD and neMD

trajectories have a fixed length while the propagation of the
CG coordinates is controlled by a “stopping criterion”.
Choosing carefully the stopping criterion to control the
magnitude of the displacement R → R′ can greatly increase
the efficiency of the method (see the Discussion section). Here,
two different stopping criteria were tested. The first criterion is
based on the root-mean-square-deviation (RMSD) of the set of
CG coordinates; the CG simulation is stopped when the
difference ∥R−R′∥ exceeds a preset maximum allowed value,
ΔRMSD. The second criterion is based on the deviation of angles
within the set of CG coordinates and works also with a preset
maximum allowed value, Δθ. Taking the (AAQAA)3 system as
an example, the CG system comprises 15 atoms and therefore
13 angles formed by adjacent atoms. The initial angles are
recorded, the absolute change in degrees (between −180 to
180) for each is monitored, and the CG simulation is stopped
when the average absolute change exceeds the preset maximum
allowed value. For Ala3, Ala5, Ala10, and (AAQAA)3, both were
tested. The difference of efficiency is examined in the
Discussion section. Lastly, to prevent sampling of the cis-
peptide bond conformation, all target configurations generated
by CG simulation with bond lengths shorter than 3.5 Å were
discarded.

IV. RESULTS AND DISCUSSION
The general validity of the CG-guided hybrid neMD-MC was
first ascertained using a simple model of a linear chain of linked
particles in a one-dimensional periodic potential (Figure 2). In
Figure 5, the distribution of each single particle, the center-of-
mass of each particle group, and of the entire linear chain are
plotted. For all degrees of freedom, the CG-guided hybrid
neMD-MC and the equilibrium MD generate the exact same
distributions. The global diffusion constant of the linked chain
is a good indicator of the overall sampling efficiency of the
simulation. For each scheme, 10 independent trajectories were
generated. The diffusion constant along the x axis is calculated
as ⟨∥xt − x0∥2⟩= Dt, where ⟨...⟩ denotes the average of 10
trajectories. The evolution of the center-of-mass for the entire
chain is shown in Figure 6. The diffusion constant is 0.53 per
1000 rounds for equilibrium MD and 43 for CG-guided hybrid
neMD-MC. According to this estimator, the CG-guided hybrid
neMD-MC gives a speedup of 80 times for this system. While
the CG-guided hybrid neMD-MC algorithm can rigorously
yield the proper Boltzmann equilibrium distributions, it is
absolutely critical to satisfy all conditions of microscopic
reversibility for a valid algorithm. For example, using a time-
dependent constraint that is not symmetric with respect to R
and R′ for the switching schedule fails to reproduce the correct
equilibrium distributions of each particle and particle group
(results not shown).
The overall performance of the CG-guided hybrid neMD-

MC algorithm was then examined for realistic atomic models of

Figure 4. Two initial structures of (AAQAA)3. The magenta one has
an all β-sheet configuration. The red one has an α-helix for the first 10
residues and β-sheet for the rest of the 5 residues.
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biomolecules with explicit solvent. Those include tri-, penta-,
and deca-alanine peptides solvated in water. To ascertain the
formal correctness of the method, the population of the various
conformations was calculated. The results of the simulation are
summarized in Table 1. According to this analysis, CG-guided
hybrid neMD-MC and equilibrium MD generate the same
distributions. For a valid comparison, however, it is important
that the equilibrium MD simulations be sufficiently long to
reach proper convergence. The accuracy of the method was
further examined for Ala3 using a set of simulation parameters
for the CG-guided hybrid neMD-MC simulations (τMD = 2ps,
τneMD = 4ps, and ΔRMSD = 1.5). The histogram of distances and
angles of adjacent carbon-α is shown in Figure 7. The PMF
along ϕ or ψ is shown in Figure 8, and the 2D-PMF along ϕ
and ψ angles is shown in Figure 9. According to this analysis,
the histograms and PMFs generated by CG-guided hybrid
neMD-MC are very similar to those obtained from long
equilibrium MD simulations. The similarity of the PMFs along
ϕ or ψ angles with previous results from Mu et al.43 provides
additional confirmation of the validity of the CG-guided hybrid
neMD-MC.
Transitions between the α, β, ppII, and L-α backbone

conformers are expected to be representative of the slowest
motions of polyalanine peptides in solvent. To quantify the
kinetic acceleration gained by the CG-guided hybrid neMD-
MC algorithm, we define the speedup factor, η, as the ratio of
the number of transition events from the CG-guided hybrid

Figure 5. Distribution along x for the linked chain model system. Black lines show the distribution simulated using equilibrium MD simulation; red
lines show the CG-guided hybrid neMD-MC. The subplot (1−12) presents the distribution for each atom; (13−15) for the center-of-mass of each
atom group; and (16) for the center-of-mass of the entire molecule. The molecule moves along the entire x axis. However, the potential energy
surface is periodic. This figure presents the relative position of the atom or center-of-mass inside each well, no matter which well it is residing in. The
boundary of the well is defined in Figure 3.

Figure 6. Evolution of the center-of-mass of the entire linked chain
molecule. The center-of-mass is sampled every 100 rounds. (a)
Equilibrium MD. Each round contains a MD of 2000 steps. (b) CG-
guided hybrid neMD-MC. Each round contains MD, CG simulation,
and neMD-MC, each for 1000 steps. The linear regression generates a
coefficient of determination R2 value above 0.99 for either scheme.
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neMD-MC simulation, relative to that from the equilibrium
MD simulation. For the sake of the comparison, the total

simulation length ascribed to the CG-guided hybrid neMD-MC
algorithm comprises the length of both the equilibrium MD
and all of the attempted neMD switches (whether they are

Table 1. Results of Multi-alanine and (AAQAA)3

peptide/source Δa nMD (ps) nneMD (ps) total (ns) αd % β % ppII % L-α % ηG
f ηL

Ala3
CG-guided hybrid neMD-MC 1.5 1 1 100 33 18 46 2 1.9 2.4

1.5 2 4 120 35 18 43 2 1.4 0.7
3 2 4 90 35 18 44 1 5.0 1.1

equilibrium 120 32 18 46 2
Ala5

CG-guided hybrid neMD-MC 10 2 4 160 24 18 50 6 5.0 0.7
7 2 4 160 19 20 56 2 1.5 0.7
15 2 8 160 31 17 41 9 6.9 0.4

equilibrium 120 13 22 62 1
refc 13 31 52

Ala10
CG-guided hybrid neMD-MC 5 2 2 20 e 5.7 2.3

5 2 4 20 6.7 2.6
10 2 2 20 10 2.0
10 2 4 20 15 1.3

equilibrium 20
(AAQAA)3

CG-guided hybrid neMD-MCb 15 4 8 120 30 20 41 8 8.7 9.8
15 4 8 120 32 20 34 12 21 5.9

equilibrium 100 82 4 12 2
refc 44 19 30

aUsing ΔRMSD for Ala3 and Δθ for others.
bThis simulation of (AAQAA)3 had an initial structure with an α-helix (Figure 4, right). The following row

presents result for CG-guided hybrid neMD-MC of (AAQAA)3 with an initial structure with a β-sheet (Figure 4, left). Equilibrium MD simulation
has initial structure with an α-helix. cPaper of Best et al.38 dα is defined as −160 < ϕ < −20, −120 < ψ < 50 (Figure 9b, blue box); β −180 < ϕ <
−90, 50 < ψ < 180, or −180 < ϕ < −90, −180 < ψ < −120, or 160 < ϕ < 180, 110 < ψ < 180 (Figure 9b, cyan box); ppII −90 < ϕ < −20, 50 < ψ <
180, or −90 < ϕ < −20, −180 < ψ < −120 (Figure 9b, magenta box); L-α 0 < ϕ < 120, −30 < ψ < 90 (Figure 9b, yellow box). For Ala3 and
(AAQAA)3, termini are blocked, and the averages of all residues are shown; for Ala5 and Ala10, averages of all but two terminal residues are shown.
eTrajectories are too short to generate useful statistics. fFor Ala3 and Ala5, only transitions of the middle residue are counted. For Ala10, the average of
transitions of residues 3−8 is counted. For (AAQAA)3, the average of transitions of residues 3−13 is counted.

Figure 7. Distribution of distances and angles of adjacent carbon-α for
Ala3. The black line presents the results from equilibrium MD; the red
line from CG-guided hybrid neMD-MC; and the green line the
theoretical distribution calculated from CG parameters. Three carbon-
α atoms are defined as CA1, CA2, and CA3. Subplot a presents a
histogram of the angle of CA1-CA2-CA3; b the distance between CA1
and CA2; and c the distance between CA2 and CA3.

Figure 8. PMF along ϕ and ψ angles for Ala3. The black line presents
the results from equilibrium MD and the red line from CG-guided
hybrid neMD-MC. Subplots a and d present PMF along the ϕ and ψ
angles of residue 1; b and e of residue 2; and c and f of residue 3. The
lowest value for each PMF is always set to 0.
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accepted or rejected). To facilitate the discussion, it is useful to
distinguish “global transitions”, corresponding to interconver-
sions between the α, L-α, β, and ppII conformers (not
including interconversions between β and ppII), and “local
transition”, corresponding to the interconversion between β
and ppII. In polyalanine, transitions from α to β are opposed by
a large energy barrier. However, the energy barrier for
transitions from ppII to β is relatively small. Accordingly, we
determined the global and local speedup factors, ηglobal and
ηlocal, from the simulation data. On the basis of this analysis, the
sampling efficiency appears to vary with the length of MD, τMD,
length of neMD, τneMD, and the maximum allowed displace-
ments Δθ or ΔRMSD. In almost all of the cases examined here,
CG-guided hybrid neMD-MC has higher efficiency than
straight equilibrium MD, going up to 15-fold acceleration.
According to eq 17, the accuracy of the underlying CG

model affects the overall efficiency of the CG-guided hybrid
neMD-MC algorithm. Specifically, optimal efficiency is
achieved if the effective energy surface of the CG model is a
reasonably good approximation to the exact PMF with respect
to those degrees of freedom. To illustrate this important point,
we examined the impact of an improved CG model on the
sampling efficiency of the Ala5 peptide. The energy terms of the
improved CG model were set to Ebond = 400 (r − 3.83)2, Eangle
= 30 (θ −115.0)2, and Edihedral = 0.1 (χ − 55.0)2, in order to
better match the distribution from unbiased MD simulation
(Figure 10). The other parameters were the same as that in the
first row for Ala5 in Table 1. Under these conditions, the
average acceptance ratio increases from 35% to 45%,
demonstrating the additional gain in sampling efficiency with
an improved CG model.

Finally, the accuracy and sampling efficiency of the CG-
guided hybrid neMD-MC algorithm was examined for the
solvated (AAQAA)3 peptide (Figure 4). All results are given in
Table 1. Compared with equilibrium MD, an estimated
speedup on the order of 21 times is achieved with the CG-
guided hybrid neMD-MC. The evolution of ϕ or ψ angles for
residues 1, 4, and 8 is shown in Figure 11. For residue 1, the
number of total transitions are comparable for equilibrium MD
simulation and CG-guided hybrid neMD-MC. For residues 4
and 8, no global or local transitions were observed using
equilibrium MD, while many were observed using CG-guided
hybrid neMD-MC. The reason is that the α-helix of the initial
structure did not unfold during equilibrium MD simulations
but unfolded and refolded with CG-guided hybrid neMD-MC.
The evolution of average population of α, β, ppII, L-α, and helix
is shown in Figure 12. The CG-guided hybrid neMD-MC
simulations starting from different conformations appear to
quickly converge toward unique results. In contrast, the
configurational exploration from equilibrium MD does not
converge.
One process observed in the CG-guided hybrid neMD-MC

simulations of the solvated peptides is the cis−trans isomer-
ization of the peptide linkages. This was somewhat unexpected
because this process, opposed by a high energy barrier, is
commonly never observed in equilibrium MD simulations at
room temperature. In retrospect, however, it is clear that the
occurrence of some cis configuration is entirely consistent with
the Boltzmann equilibrium distribution of the polypeptide
system. In this sense, long equilibrium MD simulations only
explore a fraction of all possible configurational space; they
generate the equilibrium distribution of a polypeptide that is
kinetically trapped in the trans state. In contrast, CG-guided

Figure 9. 2D PMF along ϕ and ψ angles for Ala3. The x axis is ϕ-angle
and the y axis ψ-angle. Subplots a−c present the PMF calculated from
the simulation results of equilibrium MD; d−f of CG-guided hybrid
neMD-MC. Subplots a and d present the PMF of residue 1; b and e of
residue 2; and c and f of residue 3. The color key is shown in a.
Definitions of α (blue box), β (cyan box), ppII (magenta box), and L-
α (yellow box) are shown in b.

Figure 10. Distribution of distance and angles for Ala5. The green
dotted line presents the distribution sampled from equilibrium MD.
The black solid line presents the distribution defined by Ebond = 100 (r
− 3.83)2, Eangle = 94.84 (θ − 100.0)2, and Edihedral = 0.1 (χ − 55.0)2.
The black dotted line presents the distribution defined by Ebond = 400
(r − 3.83)2, Eangle = 30 (θ − 115.0)2, and Edihedral = 0.1 (χ − 55.0)2.
Subplot a presents the angle between the carbon-α of residues 2, 3,
and 4. Subplot b presents the distance between carbon-α of residues 2
and 3. Subplot c presents the distance between carbon-α of residues 3
and 4.
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hybrid neMD-MC simulations aim at achieving a full
configurational sampling of the system and thus are not limited
by slow kinetic processes that are opposed by large energy
barriers. This observation illustrates vividly the power
unleashed by a simulation method that truly seeks to enhance
configurational sampling. However, there are certainly circum-

stances where one would realistically want to restrict the
conformational sampling to the subspace that is explored by
equilibrium MD. In particular, in the present simulations we
explicitly prevented cis−trans isomerization at the level of the
CG model. More generally, one could restrict the conforma-
tional sampling to the subspace accessible to equilibrium MD in
various ways, for example, by introducing confinement
potentials on different degrees of freedom.
The present set of simulations allows us to draw some

general principles regarding the main factors affecting the
performance of the CG-guided hybrid neMD-MC algorithm.
The magnitude of the displacement R → R′ that should be
taken from the CG model to generated proposed MC moves
for the AA system is one particularly important factor to
consider. Generally, one should avoid using a target
configuration R′ corresponding to an exceedingly large
conformational transition since the proposed move is unlikely
to be accepted during the Metropolis step. However, using a
target configuration R′ corresponding to a minuscule
conformational transition is clearly unproductive and should
also be avoided. The magnitude of the displacement can be
controlled by using a fixed propagation time of the CG model
(τCG) or by using a “stopping criterion” based on a maximum
allowed displacement. One of the stopping criteria used here
was based on a maximum allowed value for RMSD of the CG
coordinates, ΔRMSD. For all of the solvated peptide systems
examined here, the sampling performance was better with a
RMSD-based stopping criterion than with a fixed propagation
time (results not shown). The reason is that the change in
conformation can vary substantially for CG simulation
propagated by a fixed amount of time. However, RMSD-
based stopping criteria can also become suboptimal for long
peptides like Ala10 or (AAQAA)3 because global transitions for
residues near the middle of the chain are not well sampled. The
latter do not occur during the brief CG simulations as they
correspond to RMSD values that greatly exceed the stopping
criterion ΔRMSD. This observation led us to introduce an angle-
based stopping criterion with a maximum allowed change in the
angle, Δθ. The CG-guided hybrid neMD-MC simulations of
deca-alanine and (AAQAA)3 using the angle-dependent
stopping criterion outperformed the ones with RMSD-depend-
ent stopping criterion, by at least 2-fold (results not shown).
The angle-based stopping criterion succeeds in enhancing the
sampling of these transitions because it treats the conforma-
tional change within each residue more uniformly than a
RMSD-based stopping criterion. Consequently, a broad range
of motions is accelerated, including large conformational
change transition involving residues that are in the middle of
the chain. It might be possible to design alternative stopping
criterion to further accelerate global transition near the middle
of the chain.
Ultimately, the performance of the CG-guided hybrid neMD-

MC algorithm is sensitive to both the magnitude of the CG
displacement, R → R′, and the length of the neMD switching
trajectory, τneMD. A large τneMD is definitely required to obtain a
reasonably high acceptance probability for large proposed MC
moves. The simulations reported in Table 1 were designed so
that a large τneMD was always used when a large displacement is
allowed. In the final analysis, while the optimal combination of
τneMD and maximum allowed CG displacement is probably
system-dependent, it should be possible to adaptively refine the
value of these parameters depending on the type of
conformational change that needs to be enhanced. Never-

Figure 11. Evolution of ϕ and ψ angles for (AAQAA)3. The black line
presents the results from equilibrium MD and the red line from CG-
guided hybrid neMD-MC. Both simulations had an initial structure
with an α-helix (Figure 4, right). Subplots a and d present the
evolution of ϕ and ψ angles of residues 1; b and e of residue 4; and c
and f of residue 8.

Figure 12. Evolution of the percentage of different conformations.
The solid lines present the results from a CG-guided hybrid neMD-
MC; the dashed lines are from equilibrium MD. The black solid line
presents the reference percentage from Best et al.38 The red and blue
lines present simulations where the initial structure has an α-helix
(Figure 4, right); magenta β sheet (Figure 4, left). Subplots a−d
present the percentage of α, β, ppII, and L-α. The average percentage
of residues 6−10 is shown. Subplot e presents the percentage of the α-
helix. The structure contains an α-helix secondary structure when
three successive residues are in α conformation.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00372
J. Chem. Theory Comput. 2015, 11, 3572−3583

3581

http://dx.doi.org/10.1021/acs.jctc.5b00372


theless, in trying to optimize the performance of the method, it
is crucial to make sure that the microscopic reversibility of the
CG simulation imposed by eq 8 is rigorously maintained.

V. CONCLUSIONS

A typical AA model of a complex bimolecular system often
contains a very large number of degrees of freedom. Straight
unbiased MD simulations progress very slowly in this high
dimensional space and are often inefficient to adequately
sample all of the meaningful configurations. The CG-guided
hybrid neMD-MC simulation described here offers a promising
departure from equilibrium MD. It aims to increase the
sampling efficiency by using the evolution of the simpler CG
model as a guide to drive any chosen motions with the AA
system that are thought to be intrinsically slow.
The CG-guided hybrid neMD-MC method produces a

Boltzmann equilibrium sampling that is rigorously valid, for any
reasonable choice of effective energy surface for the CG model.
Technically, the CG model is used only as a guide to generate
proposed MC moves that are then accepted or rejected via a
Metropolis probability eq 15. Thus, a key feature of the CG-
guided hybrid neMD-MC method is that the imperfections and
inaccuracies of the CG model do not formally affect the
ultimate outcome of the simulation. For example, the
parameters of the CG model of polyalanine were not
optimized, and the latter is clearly imperfect and inaccurate,
as shown from the differences between the distributions with
respect to the CG coordinates (Figure 7). Notwithstanding
these imperfections of the CG model, the CG-guided hybrid
neMD-MC nonetheless yields the correct distributions,
identical to those obtained from equilibrium MD of the AA
model. Of particular importance, the CG-guided hybrid neMD-
MC method does not rely on a multicopy replica-exchange
framework, which can become very costly from a computational
point of view.24,31

A wide range of avenues could be explored to build on the
present CG-guided hybrid neMD-MC framework. Of para-
mount importance is the choice of CG degrees of freedom and
how they relate to slow motions within the AA system. To
investigate a novel AA system with unknown properties, a
sound strategy would be to first try to detect the relevant slow
modes from the limited information from AA simulation data in
order to construct a meaningful CG model, which could then
be progressively refined. Another practical aspect that also
affects the efficiency of the algorithm is the magnitude of the
motion from the CG simulation that is utilized to generate
proposed MC moves. Clearly, no substantial gain in sampling
efficiency can be expected if the CG model is used only to
generate very small displacements. However, being overly
ambitious has also some drawbacks; the acceptance probability
may become vanishingly small if very large displacements of the
CG coordinates are used to drive the AA system with neMD
simulations. To resolve this issue, one may conceive of an
adaptive procedure aimed at maximizing the acceptance
probability and the sampling efficacy of the CG-guided hybrid
neMD-MC. In practice, the motion of the CG variables may be
controlled either via the length of the CG trajectory or be
determined on the basis of some maximum displacement
criterion. For the solvated Ala5, Ala10, and (AAQAA)3 systems,
the best results were obtained with an angle dependent
criterion; the CG simulations were stopped when the average
difference of the angle was larger than a certain cutoff. This was

chosen such that all residues were treated equivalently in terms
of transition size.
Ultimately, while the CG-guided hybrid neMD-MC is

rigorously valid for any CG model, the overall efficiency will
be better if the effective energy surface of the CG model is
reasonably accurate. For example, the average acceptance ratio
in Figure 10 and Table 1 shows the additional gains in sampling
efficiency with an improved CG model. However, if the CG
model always generates proposed moves that are energetically
forbidden for the AA model then most will be rejected, and the
method becomes very inefficient. Our formal analysis based on
eq 17 shows that the optimal choice is formally achieved when
the effective energy surface of the CG model corresponds to
the exact many-body PMF computed with respect to the CG
degrees of freedom within the AA system. While the exact PMF
with respect to the CG degrees of freedom is generally
unknown, this analysis offers a direct route to improve
efficiency by progressively constructing a reasonable approx-
imation that captures the dominant effects. To achieve
maximum sampling efficiency with the CG-guided hybrid
neMD-MC algorithm, one could adopt an adaptive procedure
in which the information accumulated from the AA simulation
would serve to progressively improve the parameters of the CG
model. For example, one could adjust the function Wexact(R)
“on-the-fly” during the simulation using a force-matching
algorithm.22,23 Future work will explore this avenue in more
detail.
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