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ABSTRACT: In this work, we illustrate the recently introduced concept of
the cavity Born−Oppenheimer approximation [Flick et al. PNAS 2017,
10.1073/pnas.1615509114] for correlated electron−nuclear-photon prob-
lems in detail. We demonstrate how an expansion in terms of conditional
electronic and photon-nuclear wave functions accurately describes
eigenstates of strongly correlated light-matter systems. For a GaAs quantum
ring model in resonance with a photon mode we highlight how the ground-
state electronic potential-energy surface changes the usual harmonic
potential of the free photon mode to a dressed mode with a double-well
structure. This change is accompanied by a splitting of the electronic
ground-state density. For a model where the photon mode is in resonance
with a vibrational transition, we observe in the excited-state electronic
potential-energy surface a splitting from a single minimum to a double
minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be
understood in terms of population transfer between potential energy surfaces. This work at the interface of quantum chemistry
and quantum optics paves the way for the full ab initio description of matter-photon systems.

1. INTRODUCTION

Recent experimental progress has made it possible to study
light-matter interactions in the regime of strong and ultrastrong
light-matter coupling. Experiments from exciton-polariton
condensates,2,3 near-field spectroscopy,4,5 plasmon-mediated
single-molecule strong coupling,6 superconducting qubit
circuits,7 quantum information,8 direct measurements of
vacuum fluctuations,9 and chemistry in optical cavities10−12

open now the path to shape the emerging correlated light-
matter interactions with the goal toward a new control of
material properties. In this new field that has been driven in
particular by experiment, traditional theoretical methods from
either quantum chemistry or quantum optics can lose their
applicability. On the one hand, traditional quantum chemistry
concepts such as the Born−Oppenheimer (BO) approxima-
tion13,14 or electronic structure methods such as Hartree−Fock
theory,15 coupled-cluster theory,16 or density-functional theory
(DFT)17 have been originally designed to treat approximately
correlated electron−nuclear problems but are not capable to
correctly account for the quantum nature of light. On the other
hand, concepts from quantum optics typically describe the
quantum nature of the light field in great detail but fail in
describing more complex dynamics of matter due to the often
employed simplification to a few levels.18,19 To fill this gap, in
this work, we generalize a well-established concept from
quantum chemistry, namely the Born−Oppenheimer approx-

imation, to the realm of correlated light-matter interactions for
systems in optical high-Q cavities.
First theoretical studies in similar direction, e.g. the

modification of the molecular structure under strong light-
matter coupling,20 the nonadiabatic dynamics of molecules in
optical cavities,21,22 or the cavity-controlled chemistry,23 have
already been conducted.
Since the complexity of an exact ab initio description of such

correlated many-body systems that contain electronic, nuclear,
and photonic (Fermionic and bosonic) degrees of freedom
scales exponentially with system size, approximate descriptions
have to be employed for any realistic system. Recently, the
concept of DFT has been generalized to electron-photon
problems and was termed quantum-electrodynamical density-
functional theory.24−27 This theory maps the complicated
many-body problem into a set of nonlinear equations for the
electronic and photonic degrees of the densities/currents that
facilitates the treatment of such complex systems, similarly as
standard DFT has done over the years to deal with correlated
electronic systems. Still for this theory to be applicable, accurate
functionals for combined light-matter systems have to be
developed to calculate approximate effective potentials and
observables. In this work, we use an alternative approach, the
cavity Born−Oppenheimer (CBO)1 approximation, that allows
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to construct approximate wave functions to the exact
eigenstates for such problems. The cavity Born−Oppenheimer
approximation has recently been introduced in ref 1, and in this
paper we derive the theory in a complete manner and give
explicit examples to highlight its applicability for general
electron−nuclear-photon systems. This work is structured into
three sections: (i) First, the theoretical framework is introduced
where we demonstrate how the concept of the Born−
Oppenheimer approximation can be generalized to matter-
photon coupled systems. (ii) We apply this theoretical
framework to study a prototypical electron-photon system,
where the photon couples resonantly to an electronic
transition. (iii) The last section is devoted to a model system
of an electron, a nuclei, and photons, where a photon mode
couples to a vibrational excitation.

2. THEORY

2.1. General Correlated Electron−Nuclear-Photon
Systems. In what follows and without loss of generality, we
describe the electron−nuclear-photon problem in Coulomb
gauge, dipole approximation, and the Power-Zienau-Woolley
frame.28,29 Our system of interest contains ne electrons, nn
nuclei, and np quantized photon modes, e.g. the matter is
located in an optical high-Q cavity. Strong light-matter coupling
is obtained, once the light-matter coupling is stronger than the
dissipation of the system due to e.g. cavity losses. For simplicity,
we neglect dissipative channels in the following. [Since in this
work dissipation is neglected, we find modifications of the
eigenstates of the matter-photon system with respect to the
bare matter eigenstates for all nonvanishing matter-photon
coupling strengths.] The original derivation of the Born−
Oppenheimer approximation is outlined e.g. in ref 14 for the
specific case of electrons and ions, and here we extend it to the
photon case. In general, the correlated electron−nuclear-
photon Hamiltonian1,18,25,30,31 can be written as follows
[Throughout this work, we assume SI units, unless stated
otherwise.]
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where T̂n and Ŵn are the nuclear kinetic energy and nuclear
interaction, respectively. The electron−nuclear interaction
Hamiltonian Ĥen is given by
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and the cavity photon Hamiltonian Ĥp with np quantized
photon modes of frequency ωα takes the form
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The displacement field operators ω̂ = ̂ + ̂ ℏα α α α
†q a a( )/ 2 /

consist of the usual photon creation and annihilation operators
and [qα̂, pα̂′ ] = iℏδα,α′. Furthermore, the qα̂ are directly
proportional to the electric displacement field operator of the
α-th photon mode30,31 at the charge-center of the system by the
connection D̂α = ϵ0ωαλαqα̂ and the p ̂α are proportional to the
magnetic field. In eq 5, the sum runs from 1 to 2np, to correctly
account for the two possible polarization directions of the
electromagnetic field. The last three terms in eq 1 describe the
light-matter interaction Hamiltonian. The first term is the
explicit electron-photon interaction in the dipole approximation
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with the total electronic dipole moment Xe = −∑i=1
ne eri and the

matter-photon coupling strength λα.
25,31 The second term gives

the explicit nuclear-photon interaction, again in the dipole
approximation
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with the total nuclear dipole moment Xn = ∑i=1
nn ZieRi, and the

last term describes the quadratic dipole-self-interaction term
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where X now describes the total dipole moment of the system,
i.e. X = Xe + Xn. We then introduce the following abbreviations
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Under this change of notation, we can rewrite eq 1 in the
following form
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In general, we are interested in calculating eigenstates Ψi(r, R,
q) and eigenvalues Ei of the particular problem. These states
then give us access to any observable of interest. To calculate
these quantities, we have to solve the full Schrödinger equation
of the correlated electron−nuclear-photon problem that is
given by

̂ Ψ ̲ ̲ ̲ = Ψ ̲ ̲ ̲H q E qr R r R( , , ) ( , , )i i i (10)

where the Hamiltonian Ĥ is given by eq 1. Obtaining general
solutions to the Schrödinger equation of eq 10 is an ungrateful
task. [We note that in free space eq 10 has no square-integrable
eigenstates in the charge neutral case due to its translational
invariance. Hence one either has to go into a comoving frame,
e.g., a center-of-mass frame, and consider the corresponding
reduced Hamiltonian, or one has to use a confining potential to
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localize the molecule.] In practice, the Schrödinger equation is
barely solved exactly but only approximately. One of such
approximate methods is the cavity Born−Oppenheimer
approximation1 that is capable to partially decouple the
electronic degrees of freedom from the nuclear and photonic
degrees of freedom. In electron−nuclear problems, such an
adiabatic decoupling procedure is commonly assumed14 and
well justified for low lying states, e.g. the ground state.
However, severe limitations are known that require going
beyond the adiabatic treatment by including nonadiabatic
electron−nuclear terms, e.g. at conical intersections.32

In this work we decouple the electronic degrees of freedom
from the nuclear and photon degrees of freedom. This allows
us, on the one hand, to simplify the problem much more than if
we decoupled the nuclear from the electronic and photonic
degrees of freedom, as has been done in refs 20 and 33, and the
additional photonic degree of freedom becomes formally
equivalent to a nuclear (phononic) degree of freedom. The
latter can be understood as follows: in eq 5, the photon degree
of freedom is written in terms of a quantum harmonic oscillator
that contains a kinetic energy term T̂p and a potential term Ŵp
that are both connected via the virial theorem.34 In this sense,
we can regard the description of the photon modes as formally
equivalent to the description of the nuclei. As a consequence,
we can apply traditional methods to solve the electron−nuclear
problem to the generalized electron−nuclear-photon problem.
One of these methods is the Born−Oppenheimer approach
that in the cavity accumulates an additional photonic degree of
freedom, reminiscent of the nuclear degree of freedom. Thus,
the same arguments for the validity of the usual Born−
Oppenheimer approximation that apply in the case of nuclear
motion also apply for any extended system, as they do not
depend on the details of the interactions that produce the
potential-energy surfaces. In practice, the main problem for the
standard Born−Oppenheimer approximation is to solve the
resulting electronic equation, while simple approximations to
the nuclear equation, such as harmonic approximations, are
often sufficient. On the other hand, a decoupling of the
electronic degrees of freedom provides most flexibility for the
applications that we consider, e.g. a single electron coupled to
one mode. From a physical perspective, however, this
decoupling scheme seems counterintuitive at a first glance.
The usual simplified argument for the decoupling of the nuclear
from the electronic degrees of freedom is that the nuclei move
“slowly” compared to the electrons, i.e., the kinetic-energy
contribution is negligible, and hence a classical approximation
seems reasonable. In the case of quantized photons, the term T̂p
in eq 5 is related to the square of the magnetic field operator,
thus pα̂ is proportional to the magnetic field. Therefore, the
magnetic field can be interpreted as an analogue to the nuclear
velocity in real-space, although the conjugate momentum

̂ = ∂α
ℏ

α
p

i q is defined in the qα-space of the harmonic oscillator.

The coordinate qα describes the displacement of the harmonic
oscillator of the photon mode with specific energy ωα. In this
sense, while the usual Born−Oppenheimer approximation is
justified by “slow” nuclei, we can justify the cavity Born−
Oppenheimer approximation, if the magnetic field in the
photon mode is “small”. This is in particular the case for all
eigenstates, due to ∂tqα = pα. Along these lines, we conclude
that the cavity Born−Oppenheimer approximation is appli-
cable, if pα remains small, thus the magnetic field remains
“small”. If this is the case, the time-derivative of qα remains

“small”, thus the electric displacement field changes only
“slowly” over time, and the electrons can adapt “quasi-
instantaneously” to these “slow” changes of the electric
displacement field. That this approach can indeed give highly
accurate results will be demonstrated in the following.

2.2. Cavity Born−Oppenheimer Approximation. In this
section, we derive the approximate cavity Born−Oppenheimer
states to eq 10. This goal is achieved in three successive steps.
First, we solve the electronic part of the eq 10, where we
consider explicitly all terms containing an explicit electronic
contribution. This electronic Schrödinger equation has only a
parametric (conditional) dependence on the nuclear and field
degrees of freedom, or alternatively nuclear and field
coordinates enter the electronic equation as c-numbers. In
principle, the electronic Schrödinger equation has to be solved
for every possible combined nuclear and photon-field
configuration, and the eigenvalues of the electronic Schrödinger
equation then enter the nuclear and photon-field Schrödinger
equation through the emerging potential-energy surfaces.
Having solved both equations, we can then construct the
approximate cavity Born−Oppenheimer states in a factorized
manner. To obtain the approximate cavity Born−Oppenheimer
states, as a first step, we solve the electronic Schrödinger
equation

ψ

ψ
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for each fixed set of nuclear coordinates R and photon
displacement coordinates q. For each fixed set of (R, q), the
electronic eigenfunctions of eq 11 {ψj(r, R, q)} form a
complete basis in the electron many-particle Hilbert space. In
the electronic Schrödinger equation of eq 11, (R, q) enter the
electronic cavity Born−Oppenheimer Hamiltonian as (classi-
cal) parameters, thus the eigenvalues ϵj also parametrically
depend on R, q. For each fixed set of (R, q), we can then
expand (also known as the Born-Huang expansion35) the exact
many-body wave function Ψi(r, R, q) that is a solution to the
full Schrödinger equation of eq 10 as

∑ χ ψΨ ̲ ̲ ̲ = ̲ ̲ ̲ ̲ ̲
=

∞

q q qr R R r R( , , ) ( , ) ( , , )i
j

ij j
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Here, the exact wave function is decomposed into sums of
product states consisting of an electronic wave function ψj(r, R,
q) and a nuclear-photon wave function χij(R, q). The latter is
obtained by solving the following equation

∫∑
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where T̂n(R) and T̂p(q) are given by eqs 3 and 5, respectively.
The eigenvalues Ei of eq 13 are the exact correlated eigenvalues
of eq 10. The term in the second line of eq 13 describes the
nonadiabatic coupling between cavity Born−Oppenheimer
potential energy surfaces (PES). The cavity Born−Oppen-
heimer approximation now neglects the offdiagonal elements in
the nonadiabatic coupling terms of eq 13. Then eq 13 can be
rewritten in a much simpler form
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χ χ̂ ̲ + ̂ ̲ + ̲ ̲ ̲ ̲ = ̲ ̲T T q V q q E qR R R R[ ( ) ( ) ( , )] ( , ) ( , )n p k ik i ik
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where the newly generalized cavity PES Vj(R, q) are given
explicitly by

∫ ψ ψ
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The first two terms are the nuclear and the photon potentials of
eqs 3 and 5, and all anharmonicity in the PES can be attributed
to the electron-photon, electron−nuclear, nuclear−nuclear, and
nuclear-photon interaction contained in eq 1. Furthermore, the
eigenvalues Ei of eq 14 are an approximation to the exact
correlated eigenvalues and provide by the variational principle
an upper bound. With this reformulation, we have the
advantage that we can solve the electronic Schrödinger
equation of eq 11 and the nuclear-photon Schrödinger eq 14
separately. The ground-state Ψ0 in the cavity Born−
Oppenheimer approximation then becomes

χ ψΨ ̲ ̲ ̲ = ̲ ̲ ̲ ̲ ̲q q qr R R r R( , , ) ( , ) ( , , )0,CBO 00 0 (16)

and accordingly for the excited states. In Born−Oppenheimer
calculations for systems that only contain electrons and nuclei
often the harmonic Born−Oppenheimer approximation is
carried out14 that can be realized by expanding Vj(R, q)
around its minimum value and in this way even simplifies the
problem further. In the harmonic approximation, we have to
solve eq 11 not for all possible values of (R, q), but only at the
minimum of ϵj(R, q). However, in this work, we do not apply
the harmonic approximation to correctly demonstrate the full
capacity of the cavity Born−Oppenheimer concept.
Before we introduce our examples, let us comment on the

expectable accuracy of the cavity Born−Oppenheimer states
when decoupling electronic from photonic and nuclear degrees
of freedom. Our simplified physical arguments for the
decoupling scheme so far have been that the nuclei are
“slow” and the magnetic-field contribution small, such that we
can neglect the corresponding kinetic terms in the equation for
the electronic subsystem. However, the decisive quantities that
indicate the quality of this approach are the nonadiabatic
coupling elements of eq 13 and the distance between the
potential-energy surfaces. If these elements are small and the
potential-energy surfaces are far apart, we can expect a good
quality of the approximate cavity Born−Oppenheimer states.
This argument is similar to standard Born−Oppenheimer
treatment that loses its validity at crossing of eigenvalues, i.e.
conical intersections.

3. DISCUSSION AND RESULTS
In the following, we now want to illustrate the concept of the
cavity Born−Oppenheimer approximation for two specific
setups. We numerically analyze first a model system consisting
of a single electron coupled resonantly to a photon mode. In
this example, the nuclei can be understood as frozen, leading to
an external potential acting on the electronic degrees of
freedom. This model will allow us to study the decoupling
mechanism introduced for the correlated electron-photon
interaction in detail. In the second example, we then analyze
a model system that contains electron−nuclear-field degrees of
freedom. Here, potential-energy surfaces emerge that have
nuclear-photon nature.

3.1. Light-Matter Coupling via Electronic Excitation.
In this section, we illustrate the concept of the cavity Born−
Oppenheimer approximation for a simple coupled electron-
photon model system. The system of interest is a model system
for a GaAs quantum ring36 that is located in an optical cavity
and thus coupled to a single photon mode.31 The model
features a single electron confined in two-dimensions in real-
space (r = rxex + ryey) interacting with the single photon mode
with frequency ℏωα = 1.41 meV and polarization direction eα=
(1,1). The polarization direction enters via the electron-photon
coupling strength, i.e. λα = λαeα and depends on the specific
experimental setup. The photon mode frequency is chosen to
be in resonance with the first electronic transition. We depict
the model schematically in Figure 1 (a). The bare electron

ground-state nλ=0(r) has a ringlike structure shown in Figure 1
(b) due to the Mexican-hat-like external potential that is given
by

ω= + −v m V er r( )
1
2ext

dr
0 0

2 2
0

/2 2

(17)

with parameters ℏω0 = 10 meV, V0 = 200 meV, d = 10 nm, and
m0 = 0.067me

36 and shown in Figure 1 (c). For the single
electron, we employ a two-dimensional grid of N = 127 grid
points in each direction with Δx = 0.7052 nm. In contrast, we
include the photons for the exact calculation in the photon
number eigenbasis, where we include up to 41 photons in the
photon mode.
For the cavity Born−Oppenheimer calculations, we calculate

the photons also on an uniform real-space grid (q-
representation) with N = 41 with Δq = 6.77 aJ fs2 and
construct the projector from the uniform real-space grid to the
photon number states basis explicitly. This projector can be
calculated by employing the eigenstates of the quantum
harmonic oscillator in real-space. For a more detailed discussion
of the model system, we refer the reader to refs 31 and 36.
Since this model can be solved by exact diagonalization in full
Fock space,37 all exact results shown in the following have been
calculated employing the full correlated electron-photon
Hamiltonian.1,25,30,31 For this model, the potential-energy
surfaces from eq 15 can be calculated explicitly as

∫ω ψ ψ= + ϵ + * ̂
α α α α α α αV q q q d q T q qr r r( )

1
2

( ) ( , ) ( ) ( , )j j j p j
2

(18)

Figure 1. (a) Model for the GaAs quantum ring in an optical cavity.
(b) Bare ground-state electron density nλ=0 in the external potential
that is shown in (c).
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In Figure 2 (a), we show the PES surfaces Vj({qα}) for the
weak-coupling regime of λα = 0.0034 meV1/2/nm. We find that

all PES have a strong harmonic nature, due to the dominant qα̂
2

term in eq 18. The eigenvalues ϵj and the integral in the last line
of eq 18 are the corrections to the harmonic potential. In this
case, both are rather small for all excited-state surfaces in the
weak-coupling regime, i.e. for the ground-state surface adiabatic
term in the last line of eq 18 is around 2 orders of magnitude
smaller than ϵ0. In general, a harmonic correction that can be
obtained by calculating the second derivative at the minimum
value will shift the frequency of the photon mode. We define as
harmonic approximation to eq 18

ω= ̃ −α α αV q q q( )
1
2

( )j j j,harm , ,0
2

(19)

where qj,0 is the minimum value of the j-th PES eq 18. In the
weak-coupling regime, we find ω̃α ≈ ωj,α. All corrections
beyond the second derivative of these terms are then called the
anharmonic corrections.
We find the lowest cavity PES that is the ground-state PES

shown in black, well separated from the first and second excited
cavity PES that are shown in solid red and dotted blue. The first
and second excited cavity PES are close to being degenerate.
This 2-fold degeneracy has its origin in the two-dimensional
external potential, similar to the s/p degeneracy in the hydrogen
atom. In Figure 2 (b), we show the cavity PES surfaces in the
strong-coupling regime with λα = 0.134 meV1/2/nm. [In this
work, the weak and strong coupling regimes are defined by the
relation of the Rabi splitting to the photon frequency ωα, thus
accordingly to the definitions in the Rabi model, see e.g. ref 38
and references therein.] While the second PES shown in blue
and the fourth potential energy surface shown in yellow keep
the harmonic shape, in the lowest cavity PES shown in black
and the third cavity PES shown in solid red, two new minima
with a double-well structure appear. [Note that if we would like
to express this electron-dressed photon system in terms of the
original creation and annihilation operators, we will need new
combinations of these operators, i.e., photon-interaction terms.
Physically these interaction terms describe the coupling
between photons mediated via the electron.] The minima of
the cavity PES are strongly shifted away from the equilibrium
position at the origin. This electron-dressed potential for the
photon modes induces a new vacuum state with two maxima.
Since the cavity PES is symmetric, the vacuum state still has a
displacement observable of ⟨qα⟩=0, i.e., we have a stable
vacuum with zero field. However, with respect to the bare

vacuum the other observables, e.g., the vacuum fluctuations, will
clearly change. Furthermore, we find for the harmonic
approximation in the ground-state cavity PES, ω̃0,α ≈ 0.8 ωα,
hence an effective softening of the photon mode in the ground-
state cavity PES with the strong displacement of q0,0 = 18.85

aJ fs2. A similar behavior has been observed before in the
context of polaron physics in the Holstein Hamiltonian.39,40 We
further analyze this transition in Figure 3. In Figure 3 (a), we

show how the ground-state PES depends on the electron-
photon coupling strength λα. We find that for absent and weak
coupling, the ground-state surface can be well described by a
single harmonic potential that has the minimum at qα = 0. If we
increase the electron-photon coupling to strong coupling, we
find around λα = 0.044 meV1/2/nm the splitting of the single-
well structure to a double-well structure. For strong coupling,
e.g. λα = 0.1342 meV1/2/nm this double-well structure becomes
strongly pronounced. In Figure 3 (b) and (c), we plot the
corresponding electron density nλ(r) = ∫ dqαΨ0,λ* (r,qα)
×Ψ0,λ(r,qα) of the exact correlated ground state Ψ0,λ(r,qα) for
different values of λ. In the weak-coupling regime, shown in
Figure 3 (b), we find that the electron is only slightly distorted
in comparison to the ringlike structure of the bare electron
ground state31 shown in Figure 1 (b). In contrast, in the strong
coupling regime, shown in Figure 3 (c), the electron density
becomes spatially separated and localized in direction of the
polarization direction of the quantized photon mode.
The consequences of the ground-state transition identified in

Figure 3 become also apparent if we study the difference of the
correlated and bare electron density. Let us define the bare
electron density. Here, we refer to the electron density that is
the ground-state of the external potential without coupling to
the photon mode or alternatively λα = 0, thus nλ=0(r). This
density is shown in Figure 1 (b). Then we define Δnλ(r) =
nλ(r) − nλ=0(r). In Figure 4, we plot Δnλ(r) as a function of the
electron-photon coupling strength λα. In the weak-coupling
limit, shown in Figure 4 (a) for λα = 0.0034 meV1/2/nm, we
find that the electron density is slightly distorted such that in
the correlated density more density is accumulated perpendic-
ular to the polarization direction of the photon mode compared
to the bare electron density. However, once the strong-coupling
regime is approached, we also identify a transition in Δnλ(r). In
the strong coupling regime, that is entered in Figure 4 (b)-(d),

Figure 2. Born−Oppenheimer potential energy surfaces Vj for a
correlated electron-photon problem in (a) weak coupling with λα =
0.0034 meV1/2/nm and (b) strong coupling λα = 0.1342 meV1/2/nm.

Figure 3. Left: (a) Ground-state cavity PES for different coupling
strengths show an emerging displacement of the photon states. Right:
electron density in (a) the weak coupling regime for λα = 0.0034
meV1/2/nm and (b) strong coupling for λα = 0.1342 meV1/2/nm. The
dashed lines in (b) indicate the polarization direction eα of the photon
mode, and the red color refers to high-density regions, while the blue
color refers to low-density regions.
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the ground-state electron density is reoriented until ultimately
in Figure 4 (e) the electron density is arranged in direction of
the polarization direction of the photon mode, up to higher
strong-coupling regions shown in Figure 4 (f).
The additional insights from the ground-state transition can

be obtained by evaluating the exact correlated electron-photon
eigenvalues. In Figure 5, we plot the exact eigenvalues from the

weak- to the strong-coupling regime. The ground-state energies
are plotted by the black line and are increasing for stronger
coupling.1 For the first excited state in the case of λα = 0
coupling, we find a 3-fold degeneracy that is split once the
electron-photon coupling is introduced. For strong coupling
the first-excited state (shown in blue) and the ground-state
become close leading to the splitting of the electron-density
shown in Figure 4. [We emphasize that this behavior is similar
to what is in molecular systems known as static correlation for
e.g. stretched molecules.41] Higher-lying states show energy
crossings that are typical for electron-photon problems and
have been previously observed e.g. in the Rabi model.38,42,43

We find not only allowed level crossings at λα ≈ 0.031, 0.067,
0.113 meV1/2/nm but also an avoided level crossing at λα ≈
0.055 meV1/2/nm between the fifth and sixth eigenvalue
surface. In the Rabi model, level crossings are used to define
transition from the weak, strong, ultrastrong,44 and deep-strong
coupling regime.45 Similarly to the Rabi model,42 we find in the
strong coupling regime a pairing of states in terms of the
energy. Two states each with different parity become close to

degeneracy. Since in the strong-coupling regime the interaction
terms in the Hamiltonian become dominant and we apply the
interaction in dipole coupling, the eigenstates of the full
Hamiltonian become close to the eigenstates of the dipole
operator that are the parity eigenstates. We can expect a
different behavior beyond the dipole coupling, e.g. if electric
quadrupole and magnetic dipole coupling, or higher multipolar
coupling terms are also considered. In contrast to the Rabi
model,42 we find an overall increase of the ground-state energy
for increasing coupling strength. This behavior is due to the
inclusion of the quadratic dipole self-interaction term of eq 8.
In Figure 5, we indicate by the dashed line, the ground-state
transition discussed before. In the coupling region indicated by
(I), we find a single minimum in the PES and Δn is located
perpendicular to the polarization direction, while in the
coupling regime (II), we find two minima and a double-well
structure in the PES and Δn are located along the direction of
the polarization of the photon mode. The quality of the cavity
Born−Oppenheimer approximation is shown in Table 1 in

terms of overlaps ⟨Ψj|Ψj,CBO⟩
2 between approximate and exact

states. If the eigenenergies shown in Figure 5 are well separated
as in the strong coupling regime for λα = 0.1342 meV1/2/nm,
then the cavity Born−Oppenheimer approximation is well
justified. For states that are close to degeneracy, as e.g. the
states #2 and #4 in the weak-coupling for λα = 0.0034 meV1/2/
nm, we find a lower quality. However, this low quality could be
improved by symmetry considerations. Overall, we find a very
high and sufficient quality of the approximate energies and
states in comparison to its corresponding exact values.
The remaining part of this section is concerned with the

time-dependent case. Here, we employ the full correlated

Figure 4. Difference of the correlated ground-state electron density to
the bare electron density (Δnλ = nλ − nλ=0) from the weak- to the
strong-coupling limit. The red color refers to surplus density regions,
while the blue color refers to regions with reduced density.

Figure 5. Exact eigenvalues of the correlated electron-photon
Hamiltonian as a function of the electron-photon coupling parameter
λα. The dashed line indicates the transition of Δnλ(r) as discussed in
the main text.

Table 1. Exact Correlated Energies Eexact (eV), Cavity BO
Energies ECBO (eV), and Overlap between Exact and Cavity
BO States Depending on the Electron-Photon Coupling
Strength λα Given in meV1/2/nma

state no. λα Eexact ECBO (e,n) overlap

1 0.0034 33.8782 33.8795 1,1 99.9539
2 0.0034 35.2293 35.2861 1,2 55.7957
3 0.0034 35.2898 35.2898 2,1 99.9992
4 0.0034 35.3521 35.2979 3,1 55.8438
5 0.0034 36.6153 36.6925 1,3 57.4860
1 0.0302 33.9902 34.0258 1,1 98.7922
2 0.0302 34.8957 35.0935 1,2 84.9288
3 0.0302 35.3734 35.3763 2,1 99.9475
4 0.0302 35.9902 35.8670 3,1 84.4187
5 0.0302 36.0575 36.2793 1,3 86.7428
1 0.0637 34.3433 34.3659 1,1 99.3180
2 0.0637 34.8006 34.9008 1,2 96.1220
3 0.0637 35.6546 35.6613 2,1 99.8841
4 0.0637 35.7142 35.8487 1,3 94.9875
5 0.0637 36.4857 36.7584 1,4 79.8066
1 0.1342 35.3072 35.3114 1,1 99.9413
2 0.1342 35.3307 35.3398 1,2 99.8537
3 0.1342 36.1782 36.1953 1,3 99.6475
4 0.1342 36.4492 36.4860 1,4 99.2544
5 0.1342 36.7302 36.7345 2,1 99.9373

aThe label (e,n) refers to the cavity BO quantum number of the state/
excitation (electronic state, photon state). Note that we do not employ
the harmonic approximation and that the cavity BO energies ECBO
provide an upper bound to the exact correlated energies Eexact.
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electron-photon Hamiltonian and choose as initial state a
factorized initial state that consists of the bare electronic ground
state and a bare photon field in a coherent state with ⟨a†̂a ̂⟩ = 4
where λα = 0.0034 meV1/2/nm. This example is also the first
time-dependent example studied in ref 31. To numerically
propagate the system, we use a Lanczos scheme and propagate
the initial state in 160000 time steps with Δt = 0.146 fs. In
Figure 6, we briefly analyze this setup by evaluating the dipole

moment ⟨x ̂ + y⟩̂ in Figure 6 (a), the purity γ = Tr(ρph
2 ) that

contains the reduced photon density matrix ρph and the Mandel
Q parameter46 that is defined as

=
⟨ ̂ ̂ ̂ ̂ ⟩ − ⟨ ̂ ̂ ⟩

⟨ ̂ ̂ ⟩
α α α α α α

α α

† † †

†Q
a a a a a a

a a

2

(20)

in Figure 6 (b) and the photon occupation ⟨a†̂a ̂⟩ in Figure 6
(c). In the case of the dipole moment of this example shown in
Figure 6 (a), we find first regular Rabi oscillations up to the
maximum at t = 5 ps and around t = 10 ps, and we find the
necklike feature47 typical for Rabi oscillations. In Figure 6 (b),
we show the purity γ in dashed black lines. The purity γ is a
measure for the separability of the many-body wave function
into a product of an electronic and a photon wave function. We
find that γ is close to 1 up to t = 5 ps, which means that the
many-body wave function is close to a factorizable state. After t
= 5 ps, γ deviates strongly from 1, and the system is not
factorizable anymore. This dynamical buildup of correlation has
also an effect on the nonclassicality of the light-field visible in
the Mandel Q-parameter shown in Figure 6 (b) in solid black
lines. While initially Q ≈ 0 that indicates the coherent statistics
of the photon mode, after t = 5 ps also this observable deviates
from 0 and nonclassicality shows up. From Figure 6 (c), where
we plot the photon number, we see that until t = 5 ps a photon
is absorbed that is later re-emitted, and, after t = 15 ps, we again
observe photon absorption processes. In the following, we
analyze this dynamics of the correlated electron-photon
problem in terms of population in the cavity Born−
Oppenheimer surfaces calculated in Figure 2 (a). In Figure 7,
we show the occupation of the photon number states in the
first cavity PES in (a) and the third cavity PES in (b). The
values (P1,P3) give the population of the first cavity PES and
the third cavity PES, respectively. All other cavity PES have
populations which are an order of magnitude smaller, since
P1+P3 is close to 1 for all times. In Figure 7 (a), we find that at
the initial time t = 0 ps, the first cavity PES is populated with a
photon state, which has a coherent distribution with ⟨a ̂α†aα̂⟩ = 4,

which is in agreement with our initial condition. During the
time propagation, we observe a transfer of population from the
first cavity PES to the third cavity PES. In the first cavity PES,
we see until t = 9.3 ps a depletion of population, while in the
third cavity PES (Figure 7 (b)), we observe an increase of the
population. After this time, the population is again transferred
back from the third cavity PES to the first cavity PES (Rabi
oscillation). However, not only the amplitude of the population
is changing but also the center of the wave packets. In principle,
if the same photon state would be populated in the two
different cavity PES, the system could still be factorizable. For
small times, up to t = 5 ps the center of the wave packet in the
first cavity PES remains close to its initial value. Later it changes
to smaller photon numbers, which indicates photon absorption.
We can conclude that the dynamics of the many-body system is
dominated by the population transfer from the first cavity PES
to the third cavity PES and vice versa. While for this example, a
good approximate description may be a two-surface approx-
imation reminiscent of the Rabi model,42 we expect a different
behavior for more complex cavity Born−Oppenheimer surfaces
e.g. in many-electron problems, multiphoton modes, or strong-
coupling situations.

3.2. Light-Matter Coupling via Vibrational Excitation.
The second system that we analyze is the Shin-Metiu
model48,49 coupled to cavity photons. Without coupling to
photon modes, this system exhibits a conical intersection
between Born−Oppenheimer surfaces and has been analyzed
heavily in the context of correlated electron−nuclear
dynamics,50 exact forces in nonadiabatic charge transfer,51 or
nonadiabatic effects in quantum reactive scattering,52 to
mention a few. In our case, we place the system, consisting
of three nuclei and a single electron into a optical cavity, where
it is coupled to a single mode that is in resonance with the first
vibrational excitation. The outer two nuclei are fixed, and the
free electron and the nuclei are restricted to one-dimension.
The model is schematically depicted in Figure 8. The
Hamiltonian of such a system is given by48,49

̂ = − ℏ ∂
∂

+ ̂ + ̂ + ̂ + ̂ + ̂H
M R

H H H H H
2 e p pe pn pen

2

2 (21)

where Ĥp, Ĥpe, Ĥpn, and Ĥpen are given by eqs 5, 6, 7, and 8,
respectively. The electronic Hamiltonian reads

̂ = − ℏ ∂
∂

+ +H
m r

V R V r R
2

( ) ( , )e
e

n e

2

2
(22)

where Vn(R) is the Coulomb interaction of the free nuclei with
the two fixed nuclei, r is the electronic coordinate, and R is the

Figure 6. Time-dependent calculation with a factorizable initial state
(a) dipole moment of the system, (b) Mandel Q parameter and purity
γ, and (c) the photon occupation ⟨a†̂a ̂⟩ evolving in time.

Figure 7. Photon population in the first and third PES for the case
discussed in Figure 6.
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nuclear coordinate. Ve is the sum of the electron interaction
with the three nuclei, i.e. three terms each of which is of the
following form49

=U x Ze x R x( ) erf( / )/eN c
2

(23)

where x is the electron−nuclear distance, and erf describes the
error-function. We fix the nuclear mass M to the mass of a
hydrogen atom, choose Z = 1, and set the length L = 10 Å.
Furthermore, we use the dipole operators Xe = −er and Xn = eR.
In the nuclear dipole moment operator Xn, the two outer nuclei
cancel each other due to their fixed positions at ±L/2. Further
Rc can be used to tune the energy difference Δ between the
ground-state and the first-excited state potential energy surface.
For the cavity Shin-Metiu model, we represent the electron on
a grid of dimension Nr = 140 with Δr = 0.4233 Å, and the
nuclear coordinate on a grid of dimension NR = 280 with ΔR =
0.0265 Å, while the photon wave function is expanded in the
photon number eigenbasis, where the mode can host up to 81
photons in the photon mode. To get first insights on how the
light-matter coupling is capable of changing the chemical
landscape of the system, in Figure 9, we calculate the ordinary
PES surfaces of eq 15 for the case of qα = 0. The solid red line
shows the ground-state energy surface, while the blue line
shows the excited state energy surface for Rc = 1.5 Å with ℏωα =
72.5 meV and Rc = 1.75 Å with ℏωα = 69.3 meV. In both
examples, the photon frequencies ωα correspond to the first

vibrational transition of the exact bare Hamiltonian. Next, we
tune the matter-photon coupling strength λα from the weak-
coupling regime to the strong-coupling regime. The corre-
sponding cavity PES are shown in gray in Figure 9. The inset in
the figures shows the energy gap Δ depending on the matter-
photon coupling strength λα. In the left figure, we choose the
value Rc = 1.5 Å, and, in the case of λα = 0, we find well
separated cavity Born−Oppenheimer surfaces. The matter-
photon coupling (chosen here from λα = 0 to λα = 82.55 eV1/2/
nm with a Rabi splitting ΩR = (E5−E3)/ℏωα = 43.81%) opens
the gap significantly, as shown in the inset. Additionally, for Rc
= 1.5 Å, we find that the double-well structure visible in the
first-excited state becomes more pronounced for stronger light-
matter coupling. The right figure shows the results for Rc = 1.75
Å, where in the field-free case a much narrower gap Δ is found.
Introducing the matter-photon coupling in the system from λα=
0 to λα= 84.48 eV1/2/nm with ΩR = 64.04% also opens the gap
significantly, and we find a similar qualitative behavior as in the
previous example with the notable difference, that we observe
in the present example a similar single-well to double-well
transition but now in the first-excited state. However, since we
restricted ourselves to a specific cut in the full two-dimensional
cavity Born−Oppenheimer surface by choosing qα = 0, Figure 9
does not show the full picture. Therefore, in Figure 10, we

show the full two-dimensional cavity PES for Rc = 1.75 Å. In the
figure, the x-axis shows the nuclear degree of freedom (R),
while the y-axis shows the photonic degree of freedom qα. In
the case of λα = 0, that is the upper panel in the figure, we find
that the photonic degree of freedom introduces harmonicity
into the surface. We also indicate the minima in the surfaces by
white crosses. In agreement with Figure 9, we find a double
minimum for the ground-state cavity PES and a single
minimum for the excited state cavity PES. In the case of
strong-coupling that is shown in the lower panel of the figure,
we observe new emerging normal modes. These new normal
modes are caused by the entanglement of the matter and
photon degrees of freedom and are manifest in the displace-
ment of the minima out of the equilibrium positions. In the
first-excited state surface in strong coupling, we also observe a
single-well to double-well transition, as observed in the
coupling to the electronic excitation and discussed in the first

Figure 8. Molecule in an optical cavity. The molecule is modeled by
the Shin-Metiu model48,49 that consists of three nuclei and a single
electron. Two of the nuclei are frozen at position L/2 and −L/2,
respectively.

Figure 9. Potential energy surfaces in the cavity Born−Oppenheimer
approximation for the Shin-Metiu model. Increasing matter-photon
coupling strength opens the gap Δ between the ground-state cavity
PES and the first-excited cavity PES. Both plots are using parameters
as in ref 48 and are evaluated at qα = 0.

Figure 10. Two-dimensional ground-state and first-excited state
potential energy surfaces in the cavity Born−Oppenheimer approx-
imation for the Shin-Metiu model in the case of λα = 0 (upper panel)
and strong-coupling λα = 79.20 eV1/2/nm (lower panel) with Rc = 1.75
Å. High-energy regions are plotted by the red color, while low-energy
regions are plotted by the blue color. The crosses denote the minima
of the surfaces.
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part of this work. Here, we find that now two minima appear in
the first-excited state surface. If we adopt an adiabatic picture
we can conclude that now two new reaction pathways are
possible from the first excited state surface to the ground-state
surface.
To conclude, we have seen how the photonic degrees of

freedom alter considerably chemical properties in a model
system containing electronic, nuclear, and photonic degrees of
freedom. We have identified the change of traditional Born−
Oppenheimer surfaces, gap opening, and transitions from
single-well structures to double-well structures in the first-
excited state surface from first principles. The gap opening can
be connected to recent experiments,53 where a reduction in
chemical activity has been observed for vibrational strong
coupling.

4. SUMMARY AND OUTLOOK
In this paper, we introduced the concept of the cavity Born−
Oppenheimer approximation for electron−nuclear-photon
systems. We used the cavity Born−Oppenheimer approxima-
tion to analyze the ground-state transition in the system that
emerges in the strong-coupling limit. During this transition the
ground-state electron density is split, and the ground-state
cavity PES obtains a double-well structure featuring finite
displacements of the photon coordinate. Furthermore, we
illustrated for a time-dependent situation with a factorizable
initial state how the complex correlated electron-photon
dynamics can be interpreted by an underlying back-and-forth
photon population transfer from the ground-state cavity PES to
an excited-state cavity PES. In the last section, we have
demonstrated how this transition can also appear in case of
strong-coupling and vibrational resonance. Here, we find that
the first-excited state surface can obtain a double-well structure
leading to new reaction pathways in an adiabatic picture. In
future studies toward a full ab initio description for cavity light-
matter systems, where solving the electronic Schrödinger
equation of eq 11 by exact diagonalization is not feasible, the
density-functional theory for electron-photon systems can be
used.25,26 The discussed methods can be still improved, e.g.
along the lines of a more accurate factorization method such as
the exact factorization54−56 known for electron−nuclear
problems, or trajectory based methods50,57 can be applied to
simulate such systems dynamically. This work has direct
implications on more complex correlated matter-photon
problems that can be approximately solved employing the
cavity Born−Oppenheimer approximation to better understand
complex correlated light-matter coupled systems.
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