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Abstract

Background: Proposed payment reforms in the US healthcare system would hold providers accountable for the care
delivered to an assigned patient population. Annual hemoglobin A1c (HbA1c) tests are recommended for all diabetics, but
some patient populations may face barriers to high quality healthcare that are beyond providers’ control. The magnitude of
fine-grained variations in care for diabetic Medicare beneficiaries, and their associations with local population
characteristics, are unknown.

Methods: HbA1c tests were recorded for 480,745 diabetic Medicare beneficiaries. Spatial analysis was used to create ZIP
code-level estimated testing rates. Associations of testing rates with local population characteristics that are outside the
control of providers – population density, the percent African American, with less than a high school education, or living in
poverty – were assessed.

Results: In 2009, 83.3% of diabetic Medicare beneficiaries received HbA1c tests. Estimated ZIP code-level rates ranged from
71.0% in the lowest decile to 93.1% in the highest. With each 10% increase in the percent of the population that was African
American, associated HbA1c testing rates were 0.24% lower (95% CI 20.32–20.17); for identical increases in the percent
with less than a high school education or the percent living in poverty, testing rates were 0.70% lower (20.95–20.46) and
1.6% lower (21.8–21.4), respectively. Testing rates were lowest in the least and most densely populated ZIP codes.
Population characteristics explained 5% of testing rate variations.

Conclusions: HbA1c testing rates are associated with population characteristics, but these characteristics fail to explain the
vast majority of variations. Consequently, even complete risk-adjustment may have little impact on some process of care
quality measures; much of the ZIP code-related variations in testing rates likely result from provider-based differences and
idiosyncratic local factors not related to poverty, education, or race.

Citation: Yasaitis LC, Bubolz T, Skinner JS, Chandra A (2014) Local Population Characteristics and Hemoglobin A1c Testing Rates among Diabetic Medicare
Beneficiaries. PLoS ONE 9(10): e111119. doi:10.1371/journal.pone.0111119

Editor: C. Mary Schooling, CUNY, United States of America

Received May 1, 2014; Accepted September 4, 2014; Published October 31, 2014

Copyright: � 2014 Yasaitis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. A nearly complete data file
is included with the manuscript as a supplemental data file. We have included both a comma-separated .txt file with the data, as well as a codebook describing
each of the variables included. In this file we have included the spatially smoothed estimates of HbA1c testing for all ZIP codes that were included in our study,
demographic data for all of these ZIP codes, and the raw rates of HbA1c testing for ZIP codes with at least 25 Medicare beneficiaries. Due to ethical considerations
regarding the reporting of potentially identifiable patient data, as well as our data use agreement with Centers for Medicare and Medicaid Services, we are unable
to upload raw data for ZIP codes with fewer than 25 beneficiaries. Researchers who would like to study individual-level Medicare claims data would need to
contact CMS regarding use of those data.

Funding: The work of all authors (LCY TB JSS AC) on this study was funded by a grant from the National Institute of Aging (http://www.nia.nih.gov), PO1
AG19783-11. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: yasaitis@hsph.harvard.edu

Introduction

New payment models, including Accountable Care Organiza-

tions (ACOs), create incentives for providers to deliver high quality

care to all patients attributed to them. Yet, some patient

populations may face barriers to high quality care beyond the

control of healthcare providers. Transportation costs, and time or

financial constraints, may differ across demographic subpopula-

tions, perhaps explaining part of measured care disparities among

vulnerable populations. Additionally, the local environment in

which a person lives may have a strong effect on his or her ability

to seek care [1,2]. If such effects are present, payment mechanisms

may need to take them into account to prevent ACOs from

avoiding such patients, or from being penalized with lower

reimbursements [3,4], thus potentially worsening current dispar-

ities. In fact, recent draft recommendations from the National

Quality Forum suggest adjusting for sociodemographic factors in

some quality measures used in pay-for-performance contracts, due

to these concerns [5].
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Current studies of healthcare quality and disparities have

focused mainly on providers or large geographical areas [6–11].

Traditional approaches of aggregating population data to large

areas – whether states, counties, or Hospital Referral Regions

(HRRs) – likely obscure any potential local effects on residents’

care. Healthcare providers, especially emerging ACOs, and the

payers working with them, are affected by granular variations in

healthcare quality that may vary from one ZIP code to the

adjacent one. If characteristics of the local area are strongly related

to adherence and testing measures, payment mechanisms may

need to be adjusted to appropriately reward care for identifiable

vulnerable populations. Alternatively, if living in a specific region

has an independent effect on residents’ healthcare experiences,

beyond that expected by the composition of the local population,

providers should be aware of local barriers to care and seek ways

to minimize them.

To date, there have been no fine-grained measures available to

study the contribution of these sociodemographic factors to

variations in healthcare quality in the US. In this paper, we

develop ZIP code-level measures of HbA1c testing rates during

2008–2010 among diabetic Medicare beneficiaries. We then

compare these rates to local population demographics from the

US Census (2010) and American Community Survey (2006–2010),

and assess the proportion of variation in testing rates that can be

explained by local population characteristics.

Methods

Data Sources
We examined Medicare claims from a 20% national sample of

the Denominator, Medpar, Carrier, and Outpatient files for the

years 2008, 2009, and 2010. Claims were linked to the ZIP code of

residence provided for each beneficiary. Population statistics at the

level of the ZIP code tabulation area (ZCTA) came from 2010

Census data and from census tract-level American Community

Survey data (pooled across 2006–2010) that had been aggregated

to the ZIP code-level. ZIP code-level population measures

included total population, overall population density, and the

percent African American (all from Census 2010), as well as the

percent living below 100% of the federal poverty level (FPL) and

the percent with less than a high school education (all from the

American Community Survey).

HbA1c Testing Rate Data
Healthcare Effectiveness Data and Information Set (HEDIS)

definitions were applied to Medicare claims to select diabetic

beneficiaries for two separate cohorts; the first defined for the years

2008–2009, and the second for the years 2009–2010. Two

separate cohorts were created so that we could estimate spatially

smoothed rates using one year’s data, and validate the estimates

with data from a different sample. To be included, a beneficiary

had at least one acute inpatient or emergency department

encounter, or two ambulatory or non-acute inpatient encounters,

accompanied by a diabetes diagnosis, over the two-year period

[12]. The outcome, receipt of an HbA1c test, was determined by

at least one valid claim indicating such a test (CPT codes 83036 or

83037) in the second year of the cohort period (2009 or 2010).

Current diabetes care guidelines suggest that patients receive

HbA1c tests at least annually to help guide treatment decisions

[13].

Age at the beginning of the observation period, gender, and self-

reported race were recorded from the Denominator files. Each

cohort was limited to beneficiaries covered under fee-for-service

Medicare and aged 65 to 75, as those under 65 are likely to be

systematically different from older beneficiaries, and current

HEDIS specifications recommend these measures only up to age

75 [12]. We also excluded beneficiaries with any visits to Federally

Qualified Health Centers or Rural Health Centers during the two-

year observation period, as such visits are reimbursed with a single

flat fee; specific services such as HbA1c tests are less likely to be

recorded.

Longitudinal ZIP Code Files
To match Medicare beneficiaries to physical locations, an

assignment file mapped every recorded ZIP code since 1990 to the

physical location of a 2010 ZIP code. (Older ZIPs may be required

if a Medicare enrollee had not updated his or her mailing address.)

In some cases for the earlier years, there was no exact numerical

match to a 2010 ZIP code, so the older ZIP was assigned to its

nearest physical neighbor in 2010, resulting in a final dataset in

which all available ZIP codes from 1990 to present were assigned a

physical location.

Spatial Analysis
Analysis of geographic healthcare data often relies on aggrega-

tion to areas such as counties, states, metropolitan statistical areas,

Hospital Service Areas (HSAs) or Hospital Referral Regions

(HRRs) [7,14–17]. Aggregation implicitly assumes that all the

area’s residents can be represented by the same estimate.

Additionally, changes in the shape and size of the regions can

affect the estimates recorded for those regions [18]. These

concerns led us to pursue a spatial smoothing technique to

explore fine-grained variations in HbA1c testing rates. ZIP codes

were used because they were the finest grained geographical area

available in Medicare claims.

Spatial smoothing approaches have been used previously to

develop regional estimates of infrequent disease or health events

[15,19–21]. These methods take advantage of spatial autocorre-

lation – closer regions are more alike than those further away [22]

– by borrowing information from a point’s neighbors to adjust the

estimate of a value for which there may be uncertainty. In this

study, we used a disc smoother with an adaptive radius; the radius

expands and contracts as necessary to ensure each estimate is

based on a population above a minimum threshold [20]. We

selected a population threshold of 50 beneficiaries for each rate

estimate.

This spatial smoothing approach was applied to the 2008–2009

cohort of diabetic Medicare beneficiaries. The smoothing process

was carried out iteratively. If a ZIP had greater than 50 diabetic

beneficiaries, that population’s unadjusted rate was assigned to the

ZIP. If it had fewer, the next nearest ZIP was included, until the

total population was at least 50; the population-weighted average

across the entire set of ZIPs was then assigned to the central point.

Testing Rate Estimate Validation
The estimates created using the 2008–2009 cohort were

validated using the 2009–2010 cohort; a different cohort was

used simply to allow for out-of-sample validation, rather than re-

using the same data from which the estimates were created. All the

ZIP codes with data from both periods were sorted into

beneficiary-weighted deciles based on the HbA1c testing rate

estimates from 2009. We then assessed the mean and interquartile

range of the raw (unsmoothed) testing rates observed in 2010 for

each decile of ZIP codes. As the raw rates from 2010 were based

on as few as a single beneficiary, they were quite variable. Yet, this

comparison allowed us to assess whether the spatial smoothing

process retained much of the same overall information present in

the raw rates.

Population Characteristics and HbA1c Testing Rates
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Statistical Analyses
HbA1c testing rate estimates were matched to population data

from the US Census and ACS. ZIP codes that had both testing

rate and population data were sorted into beneficiary-weighted

deciles of the spatially smoothed estimated HbA1c testing rates.

To compare the general population characteristics in high- and

low-rate ZIP codes, we determined the average percent across

deciles that was African American, had less than a high school

education, or was living below 100% FPL. Deciles were used

because they allow for comparison across several meaningful cut-

points (e.g. lowest or highest 10%, median), yet maintain a

manageable number of groupings for presentation and interpre-

tation.

Table 1. Characteristics of diabetic Medicare beneficiary cohort and their ZIP codes of residence.

Beneficiary characteristics

Total 480745 (100%)

African American 63986 (13.3%)

Non-African American 416759 (86.7%)

Mean Age 70.3

% Female 50.6%

% Received A1c 83.3%

Distribution of ZIP code-level A1c testing rate estimates

Mean 83.3%

5th percentile 71.7%

25th percentile 79.6%

Median 84.1%

75th percentile 88.1%

95th percentile 92.9%

Distribution of number of diabetic Medicare beneficiaries per ZIP

Total (N) 29438

1 beneficiary only 4818 (16.4%)

ZIPs with. = 5 beneficiaries 17417 (59.2%)

ZIPs with.25 beneficiaries 6729 (22.8%)

Source: Authors’ calculations from Medicare claims data, 2008–2009.
doi:10.1371/journal.pone.0111119.t001

Figure 1. Mean and Interquartile Range of Raw HbA1c Testing Rates in 2010, by Decile of Estimated Rates in 2009.
doi:10.1371/journal.pone.0111119.g001
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To assess the proportion of variance in ZIP code testing rates

explained by demographic characteristics, we performed a ZIP

code-level regression of raw testing rates on local population

characteristics: population density, the percent African American,

the percent with less than a high school education, and the percent

living below 100% FPL. For the regression analyses only, we used

raw testing rates due to concerns that our spatial smoothing

process may have introduced excessive spatial autocorrelation into

our dependent variable. If there were excessive spatial autocor-

relation in the dependent variable, then it may be possible to

detect spurious relationships between that variable and indepen-

dent variables that also display spatial autocorrelation; standard

errors would likely be artificially small as well. Population density

was represented with decile indicators to capture potential non-

linear effects (exploratory analyses using the other covariates did

not suggest strong non-linear relationships). We weighted this

regression by the number of diabetic Medicare beneficiaries in

each ZIP in order to address concerns of statistical noise when the

outcome was based on small populations.

We examined geographic variation in testing rate estimates by

creating maps at the national and regional levels. Four sets of

regional maps were created using geographic ZIP boundaries

downloaded from ArcGIS. These maps depict ZIP code popula-

tion characteristics and estimated HbA1c testing rates for Los

Angeles, Houston, and Chicago.

Sensitivity Analysis
We used raw testing rates in our regression analysis due to

concern that excessive spatial autocorrelation introduced into our

dependent variable in the smoothing process would result in

spuriously small standard errors [23]. Yet, raw rates may be

unstable; we therefore repeated this analysis among just those ZIP

codes whose rates were derived from a minimum number of

Medicare beneficiaries (5, 10, or 25), as well as with the smoothed

estimates as the dependent variable.

ArcGIS 10 software was used to create geographic data files

from latitude and longitude information for all ZIP codes, as well

as representative maps of the final estimates. GeoDa software was

used to define the nearest 100 neighbors for each ZIP. A custom

program written in STATA 11 was used to complete the iterative

smoothing process by combining the nearest neighbor files with

initial ZIP code-level data derived from Medicare claims.

Role of the Funding Source
This work was funded by the National Institute on Aging. The

funding source had no role in the study design, conduct, and

analysis or in the decision to submit the manuscript for

publication.

Human Subjects Protection
The work on this study was approved by the Dartmouth College

Committee for the Protection of Human Subjects. Consent for the

use of beneficiaries’ claims in this study was waived, as the work

consisted of secondary analysis of existing data, and all data were

anonymized before any analysis was performed.

Results

Table 1 displays general summary statistics from the Medicare

beneficiary cohort and their distribution across ZIP codes of

residence. Of 480,745 beneficiaries identified during the period of

2008–2009, 13.3% were African American, and about half

(50.6%) were female. The beneficiaries resided across 29,438

different ZIP codes; of these, 4,818 (16.4%) had only a single
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beneficiary, while 6,729 (22.8%) had at least 25 beneficiaries, a

common minimum population for public reporting [24]. The

overall HbA1c testing rate among all beneficiaries was 83.3%. Of

the 480,745 beneficiaries, 469,115 (97.6%) were successfully

merged to ZIP-level population data from 25,190 residential US

ZIP codes, in which resided about 98.7% of the general US

population in 2010.

We first validated the spatially smoothed ZIP-level estimates by

comparing them to the raw rates for the following year. The ZIP

codes with rates from both years were divided into deciles based

on the 2009 smoothed rates. As the raw rates can be based on as

few as 1 beneficiary, the minimum and maximum in each decile

ranged from 0–100%. In Figure 1, we present the beneficiary-

weighted mean and interquartile range of raw 2010 rates for each

decile of 2009 rate estimates. The mean of the 2010 raw rates was

75.1% in the lowest decile, and rose steadily to 88.2% in the

highest decile.

To compare local testing rates and associated population

demographics, we divided the ZIP codes with both estimated

rates and population data into deciles of 2009 estimated HbA1c

testing rates. In Table 2, we present population-weighted

summary statistics from the 2010 Census or 2006–2010 American

Community Survey for each of these deciles. The mean estimated

HbA1c testing rate was 71.0% in the lowest decile, and increased

to 93.1% in the highest decile. The percent of the general

population that was African American decreased from 19.9% in

the lowest quality decile to 8.5% in the highest. The percent of the

general population with less than a high school education, as well

as the percent living below 100% FPL, also decreased as quality

scores increased, from 11.7% to 5.1% and from 19.0% to 11.4%,

respectively.

We created several maps to visually explore national and

regional testing rate variations and local population characteristics.

Figure 2 presents the national map of ZIP code-level HbA1c

testing rate estimates from 2009. For presentation purposes, the

data are stylized as an elevation map; similar values are blended

together, and transitions between ‘‘valleys’’ and ‘‘peaks’’ demar-

cated by gradations in color from red (lowest rates) to blue (highest

rates). In Figure 3, we explore local variations within three major

metropolitan regions: Chicago, Los Angeles, and Houston. In

these maps, we have highlighted the ZIP codes that are located

within regions commonly used for healthcare research: either

HRRs (Chicago and Houston) or the smaller HSA (Los Angeles).

Within each region, there are ZIP codes with very low and very

high estimated HbA1c testing rates, as well as a wide range of

population characteristics. The poorest ZIP codes, or those with

the highest proportion of African-Americans, are not necessarily

the ZIP codes with the lowest rates of HbA1c testing.

To make this comparison of sociodemographic factors and

quality measures more formally, we performed a multiple linear

regression at the ZIP code-level. Figure 4 presents the results. We

regressed the raw rate from each ZIP code on the percent of the

local population that was African American, the percent with less

than a high school education, and the percent living below 100%

FPL, as well as indicators for the decile of population density (with

the least populated decile as reference). Each 10% increase in the

percent of a ZIP’s population that was African American was

associated with a 0.24% decrease (95% CI 20.32–20.17) in

HbA1c testing rates. The corresponding values for 10% increases

in the percent of the population that had less than a high school

education or were living below 100% FPL were a 0.7% (95% CI

20.95–20.46) decrease and a 1.6% decrease (95% CI 21.84–2

1.42), respectively. The least densely populated ZIP codes had the

lowest testing rates. Rates increased noticeably in the 2nd and 3rd

most populated deciles, by 1.63% (95% CI 1.14–2.12) and 2.58%

(95% CI 2.09–3.08), each relative to the first decile, and then

Figure 2. National Map of Estimated HbA1c Testing Rates Among Medicare Beneficiaries, 2009.
doi:10.1371/journal.pone.0111119.g002
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decreased again with increasing population density. Testing rates

in the 10th (most densely populated) decile of ZIP codes were not

significantly different from those in the 1st. The total r-squared

from the regression was 0.048. In sensitivity analyses, our main

findings were consistent when we used spatially smoothed HbA1c

rates rather than raw rates, or when we restricted the sample to

ZIP codes whose raw rates were based on larger populations (the r-

squared did increase with these alternative approaches, particu-

larly using the smoothed outcome variable, but was never higher

than 0.09).

Discussion

We document extensive fine-grained variations in HbA1c

testing rates among Medicare beneficiaries. Local sociodemo-

graphic characteristics are related to testing rates, as the

populations of ZIP codes with lower testing rates tend to be

comprised of a greater proportion of residents living in poverty,

with less than a high school education, or who are African

American. Patients from extremely rural or urban ZIP codes may

face additional barriers to care, perhaps due to the difficulty of

accessing an adequate provider. Yet, all of these population

characteristics explain less than 5% of the variation in testing rates,

which can vary quite widely within relatively small geographical

areas.

Our results have several implications for providers, and

emerging ACOs in particular. First, the fact that demographic

differences explain so little of the variation across ZIP codes is

somewhat promising for the potential of ACOs – or any health

system-based initiative – to improve healthcare quality, as it

suggests that some providers are able to provide high quality care

to vulnerable populations. This finding is also consistent with

previous work showing relatively moderate disparities in health-

care quality among Medicare beneficiaries across ethnic and

socioeconomic lines [25]. It should be difficult for providers to

claim that they were unable to deliver high quality care due solely

to the composition of their patient population.

Yet, place of residence does matter; in each of the regions we

examined closely, there was at least one ZIP code whose testing

Figure 3. Regional Maps of ZIP Code-level Estimated Hemoglobin A1c Testing Rates Among Diabetic Medicare Beneficiaries, and
General Population Demographic and Economic Characteristics.
doi:10.1371/journal.pone.0111119.g003
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rate was substantially lower than its neighbors’. Such hotspots

cannot be explained entirely by identifiable population character-

istics; they may also reflect idiosyncratic characteristics of place

that affect residents’ experience and result in barriers to care.

Previous studies of healthcare quality and disparities have focused

mainly on providers, and have demonstrated that minority

patients are often concentrated among lower quality providers

[8,26]. To the extent that residents of a ZIP code are served by the

same provider, our findings could reflect similar patient sorting.

Yet it is likely that ZIP code-level measures reflect local social,

cultural, or economic effects as well as the influence of the

dominant healthcare system.

These ZIP code-based measures can be useful for rewarding

high quality care. Penalizing providers for seemingly poor quality

care that is beyond their control is unfair, and may exacerbate

disparities if these providers are subsequently unable to expend

resources on improving care [2,5]. At the same time, excessively

generous risk adjustment may only maintain disparities by giving

providers a free pass to continue providing inadequate care simply

because their patients have historically received lower quality care.

Rather, incorporating some measure of improvement – that is,

changes over time in quality measures for an assigned patient

population – may help reconcile this dilemma [27]. An alternative

option would be to offer extra incentives for providers to take on

patients from hotspot ZIP codes and ensure that they receive

adequate care.

Awareness of local fine-grained variations may also help serve as

a surveillance system, helping providers track an important risk

factor for barriers to care that may be overlooked in the clinical

setting. Rather than retrospectively reviewing the care processes

for patients who didn’t receive HbA1c tests, providers could reach

out to patients from regions with historically low testing rates and

inquire about local barriers to care. For example, inadequate

public transportation from specific areas could impede patients’

access to testing sites during operating hours, but physicians are

unlikely to discuss such barriers in a routine clinical exam. Another

possible result of these inquiries is that providers may consider

reaching out to local community groups in specific areas to

develop innovative ways to improve care.

The spatial analysis approach we pursued in this paper allowed

us to explore fine-grained variation within the regions (whether

states, HRRs or HSAs) that are typically used for measuring

healthcare services; we created a separate estimate for each ZIP

code. We validated these estimates by comparing them to the raw

rates observed in the 2010 data, and found very clear associations

between the first year’s spatially smoothed rates and the following

year’s raw data. If we had reported only the raw rates for the ZIP

codes with at least 25 observations – a minimum often used for

public reporting of quality data [24] – we would have been limited

to reporting statistics for less than 20% of the ZIP codes in our

original sample. Alternatively, aggregating data to larger areas,

such as those highlighted in Figure 3, would have obscured

substantial local variations.

Limitations to our findings include our reliance on Medicare

claims data, which are a byproduct of the billing process. In some

cases, payment mechanisms may mask evidence of clinical

services. For example, beneficiaries who receive services through

Federally Qualified Health Centers or Rural Health Centers

(clinics intended to serve rural and/or indigent populations [28])

could have had their HbA1c tests ordered in these clinics. Yet,

these clinics use a bundled payment mechanism; specific tests are

not billed. For this reason, we excluded any beneficiary with a visit

to one of these clinics, which may have biased our cohorts towards

more wealthy, non-rural beneficiaries. If anything, this would

likely bias our estimates upwards, especially in areas whose

populations tend to rely on care from such providers.

A separate concern arises from the spatial analysis methods we

used to create our ZIP code-level estimates. We chose a relatively

straightforward approach, yet the literature suggests that our

approach is well suited for geographic data representing popula-

tions of varying density [20]. Additionally, sensitivity analyses in

which we performed regressions under a range of different

assumptions confirmed our main findings. Finally, we used the ZIP

code as our spatial unit because it is the smallest available area to

which Medicare beneficiaries can readily be assigned. Providers

Figure 4. Multiple Regression Results: Hemglobin A1c Testing Rate Differences Associated With Population Characteristics. ZIP
code-level HbA1c testing rates regressed on local population characteristics. Bars represent the 95% CI around the estimated association between
each covariate and local HbA1c testing rates.
doi:10.1371/journal.pone.0111119.g004
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can not be held responsible for a ZIP code, but this approach

allowed us to gain insight into local factors that may affect patients’

care.

Conclusions

Local population characteristics are associated with HbA1c

testing rates among resident Medicare diabetics, but demographic

differences explain very little of the variation in testing rates. This

result suggests that some providers are able to deliver high quality

care to vulnerable populations. At the same time, residents from

some ZIP codes appear to face greater access challenges than their

neighbors, independent of the demographics of the local

populations. Payers may want to consider rewarding providers

for improving the care of patients from such areas, while ACOs

should consider incorporating fine-grained geographic measures

into their quality monitoring and improvement efforts.
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