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A variational principle for microtubules subject to a buckling load is derived by semi-inverse method.The microtubule is modeled
as an orthotropic shell with the constitutive equations based on nonlocal elastic theory and the effect of filament network taken into
account as an elastic surrounding. Microtubules can carry large compressive forces by virtue of the mechanical coupling between
the microtubules and the surrounding elastic filament network.The equations governing the buckling of the microtubule are given
by a system of three partial differential equations.The problem studied in the present work involves the derivation of the variational
formulation for microtubule buckling. The Rayleigh quotient for the buckling load as well as the natural and geometric boundary
conditions of the problem is obtained from this variational formulation. It is observed that the boundary conditions are coupled
as a result of nonlocal formulation. It is noted that the analytic solution of the buckling problem for microtubules is usually a
difficult task. The variational formulation of the problem provides the basis for a number of approximate and numerical methods
of solutions and furthermore variational principles can provide physical insight into the problem.

1. Introduction

Understanding the buckling characteristics of microtubules
is of practical and theoretical importance since they perform
a number of essential functions in living cells as discussed
in [1–4]. In particular, they are the stiffest components of
cytoskeleton and are instrumental in maintaining the shape
of cells [1, 5].This is basically due to the fact thatmicrotubules
are able to support relatively large compressive loads as a
result of coupling to the surrounding matrix. Since this
function is of importance for cellmechanics and transmission
of forces, the study of the buckling behavior of microtubules
provides useful information on their biological functions.
Consequently the buckling of microtubules has been studied
employing increasinglymore complicated continuummodels
which are often used to simulate their mechanical behavior
and provide an effective tool to determine their load carrying
capacity under compressive loads. The present study facili-
tates this investigation of the microtubule buckling problem
by providing a variational setting which is the basis of a
number of numerical and approximate solution methods.

Buckling of microtubules occurs for a number of rea-
sons such as cell contraction or constrained microtubule
polymerization at the cell periphery. To better understand
this phenomenon, an effective approach is to use continuum
models to represent a microtubule. These models include
Euler-Bernoulli beambyCivalek andDemir [6], Timoshenko
beam by Shi et al. [7], and cylindrical shells by Wang et
al. [8] and Gu et al. [9]. The present study provides a
variational formulation of the buckling ofmicrotubules using
an orthotropic shell model to represent their mechanical
behavior. Variational principles form the basis of a number
of computational and approximate methods of solution
such as finite elements, Rayleigh-Ritz and Kantorovich. In
particular Rayleigh quotient provides a useful expression to
approximate the buckling load directly. As such the results
presented can be used to obtain the approximate solutions
for the buckling of microtubules as well as the variationally
correct boundary conditions which are derived using the
variational formulation of the problem.

Continuummodeling approach has been used effectively
in other branches of biology and medicine [10], and their
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accuracy can be improved by implementing nonlocal con-
stitutive relations for micro- and nanoscale phenomenon
instead of classical local ones which relate the stress at a
given point to the strain at the same point. As such local
theories are of limited accuracy at the micro- and nanoscale
since they neglect the small scale effects which can be
substantial due to the atomic scale of the phenomenon.
Recent examples of microtubule models based on the local
elastic theory include [11–18] where Euler-Bernoulli and
higher order shear deformable beams and cylindrical shells
represented the microtubules. A review of the mechanical
modeling of microtubules was given by Hawkins et al. [19]
and a perspective on cell biomechanics by Ji and Bao [20].

In the present study the formulation is based on the
nonlocal theory which accounts for the small scale effects and
improves the accuracy.The nonlocal theory was developed in
the early seventies by Eringen [21, 22] and recently applied
to micro- and nanoscale structures. Nonlocal continuum
models have been used in a number of studies to investigate
the bending and vibration behavior of microtubules using
nonlocal Euler-Bernoulli [6, 23] andTimoshenko beams [24].
There have been few studies on the buckling of microtubules
based on a nonlocal theory. Nonlocal Timoshenko beam
model was employed in [25–27] and nonlocal shell model
in [1]. In a series of studies, Shen [28–30] used nonlocal
shear deformable shell theory to study the buckling and
postbuckling behavior of microtubules. Nonlocal problems
also arise in other subject areas and have been studied
using fractional calculus in a number studies [31, 32]. The
models based on beam or isotropic shell theories neglect the
directional dependence of the microtubule properties. The
accuracy of a continuum model can be improved further by
employing an orthotropic shell theory to take this directional
dependence into account as discussed in [12, 33–35].

The objective of the present study is to derive a variational
principle and Rayleigh quotient for the buckling load as well
as the applicable natural and geometric boundary conditions
for a microtubule subject to a compressive load. The partic-
ular model used in the study is a nonlocal orthotropic shell
under a compressive load with the effect of filament network
taken into account as an elastic surrounding. Moreover the
pressure force on the microtubule exerted by the viscous
cytosol is calculated using the Stokes flow theory [1]. The
inclusion of these effects in the governing equations is
important to model the phenomenon accurately since it is
known that the microtubules can carry large compressive
forces by virtue of the mechanical coupling between the
microtubules and the surrounding elastic filament network
as observed by Brangwynne et al. [36] and Das et al. [37].
Moreover, the microtubules are surrounded by the viscous
cytosol in addition to the soft elastic filament network and the
buckling causes the viscous flowof the cytosol [38].These two
processes result in an external stress field which improves the
buckling characteristics of microtubules.

Variational formulations were employed in a number
of studies involving microtubules. In particular, small scale
formulations for the linear vibrations of microtubules were
derived using the energy expression in [39, 40] and for
nonlinear vibrations in [41]. Previous studies on variational

principles involving nanoscale structures includemultiwalled
carbon nanotubes. In particular, variational principles were
derived for nanotubes under buckling loads [42], for nan-
otubes undergoing linear vibrations [43], and for nanotubes
undergoing nonlinear vibrations [44] using the nonlocal
Euler-Bernoulli beam theories. Variational principles were
also derived for nanotubes undergoing transverse vibrations
using a nonlocal Timoshenko beam model in [45] and a
strain-gradient cylindrical shell model in [46]. Apart from
providing an insight into a physical problem, the variational
formulations are often employed in the approximate and
numerical solutions of the problems, in particular, in the
presence of complicated boundary conditions [47].Moreover
natural boundary conditions can be easily derived from the
variational formulation of the problem. In the present study
variational formulation of a problem is derived by the semi-
inverse method developed by He [48–51] which was applied
to several problems of mathematical physics to obtain the
variational formulations for problems formulated in terms
of differential equations [52–55]. Recently the semi-inverse
method was applied to the heat conduction equation in [56]
to obtain a constrained variational principle.The equivalence
of this formulation to the one obtained by He and Lee [57]
has been shown in [58, 59]. A recent application of the
semi-inverse method involves the derivation of variational
principles for partial differential equations modeling water
transport in porous media [60].

2. Equations Based on Nonlocal Elastic Theory

In the present study the microtubule is modeled as an
orthotropic cylindrical shell of length 𝐿, radius 𝑅, and
wall thickness ℎ and surrounded by a viscoelastic medium
(cytoplasm). It is subject to an axial compressive load 𝑁 as
shown in Figure 1.

The microtubule has the Young’s moduli 𝐸
1
and 𝐸

2
along

the axial and circumferential directions, shearmodulus𝐺 and
Poisson’s ratios 𝜇

1
and 𝜇

2
along the circumferential and axial

directions. Dimensionless longitudinal direction is denoted
by 𝑥 = 𝑋/𝑅 and the circumferential direction by 𝜃 as in
Figure 1. For an orthotropic shell, the constitutive relations
based on nonlocal elasticity theory are given by (see [1])
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are the normal and shear strains. In (1), 𝑒𝑎
0
is the small

scale parameter reflecting the nanoscale of the phenomenon
and has to be experimentally determined. The differential
equations governing the buckling of the microtubules are
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Figure 1: Microtubule under a compressive load and its surround-
ing.

given in [1] based on the nonlocal constitutive relation (1).The
differential equation formulation of the problem is expressed
as a system of partial differential equations given by
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where 𝑢(𝑥, 𝜃), V(𝑥, 𝜃), and 𝑤(𝑥, 𝜃) are the displacement com-
ponents in the axial, circumferential, and radial directions,
respectively, as shown in Figure 1. The differential operators
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where the differential operator L(⋅) is defined as L(⋅) =
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2
∇
2
−1, the subscripts𝑥, 𝜃denote differentiationwith respect

to that variable, and the dimensionless small scale parameter
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0
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where ℎ
0
is the effective thickness for bending. The symbol

𝜍 appearing in (7) is the elastic constraint from the filaments
network and is given by 𝜍 = 2.7 𝐸

𝑐
where 𝐸

𝑐
is the elastic

modulus of the surrounding viscoelastic medium.The radial
pressure 𝑃

𝑌𝑌
exerted by the motion of cytosol in (7) is

computed from the dynamic equations of cytosol given in [1].

3. Variational Formulation

Following the semi-inverse method, we construct a varia-
tional trial-functional 𝑉(𝑢, V, 𝑤) as follows:
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In (10), 𝐹(𝑢, V, 𝑤) is an unknown function to be determined
such that the Euler-Lagrange equations of the variational
functional (10) correspond to the differential equation (2).
This establishes the direct relation between the variational
formulation and the governing equations in the sense that
differential equation (2) can be obtained from the derived
variational principle using the Euler-Lagrange equations. It
is noted that the choice of the trial functionals defined by
(10)-(11) is not unique. The review article by He [61] provides
a systematic treatment on the use of semi-inverse method
for the derivation of variational principles and the selection
of trial functionals as well as on variational methods for the
solution of linear and nonlinear problems.

It is noted that the Euler-Lagrange equations of the
variational functional 𝑉(𝑢, V, 𝑤) are
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Comparing (12) with (2), we observe that the following
equations have to be satisfied for Euler-Lagrange equations
of𝑉(𝑢, V, 𝑤) to represent the governing equation (2), namely,
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The function 𝐹(𝑢, V, 𝑤) has to be determined such that
(14)–(16) are satisfied. For this purpose we first determine
𝐹(𝑢, V, 𝑤) satisfying (14) to obtain
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where Φ(V, 𝑤) is an unknown function of V and 𝑤. Next we
compute 𝛿𝐹/𝛿V from (17), namely,
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Finally we note that 𝜕𝐹/𝜕𝑤 satisfies (16). Thus the function
𝐹(𝑢, V, 𝑤) given by (21) satisfies the Euler-Lagrange equations
(14)–(16) as required. Now the variational functional can be
expressed as

𝑉 (𝑢, V, 𝑤) = 𝑉
1
(𝑢) + 𝑉

2
(V) + 𝑉

3
(𝑤) + 𝑉

4
(𝑢, V, 𝑤) , (22)

where
𝑉
4
(𝑢, V, 𝑤)

= ∫

2𝜋

0

∫

𝑙

0

𝐹 (𝑢, V, 𝑤) 𝑑𝑥 𝑑𝜃

= ∫

2𝜋

0

∫

𝑙

0

(− (𝑘
2
+ 𝜇
1
) V
𝑥
𝑢
𝜃
+ 𝜇
1
𝑤
𝑥
𝑢 + 𝑐
2
𝑤
𝑥𝑥
𝑢
𝑥

+ 𝑐
2
𝑘
2
𝑤
𝑥
𝑢
𝜃𝜃
− 𝑘
1
𝑤V
𝜃

+𝑐
2
(3𝑘
2
+ 𝜇
1
) 𝑤
𝑥𝑥
V
𝜃
) 𝑑𝑥 𝑑𝜃

(23)

and 𝑉
1
(𝑢), 𝑉

2
(V), and 𝑉

3
(𝑤) are given by (11). To verify

the validity of the variational formulation (22), one has to
show that the Euler-Lagrange equations of 𝑉(𝑢, V, 𝑤) yield
the governing (2). The fact that this is indeed the case can be
shown easily.
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4. Rayleigh Quotient

The Raleigh quotient is obtained for the buckling load 𝑁 by
noting that

𝑉
1
(𝑢) = −𝑅

1
(𝑢) + 𝑁𝑆 (𝑢) ,

𝑉
2
(V) = −𝑅

2
(V) + 𝑁𝑆 (V) ,

𝑉
3
(𝑤) = −𝑅

3
(𝑤) + 𝑁𝑆 (𝑤) ,

(24)

where

𝑅
1
(𝑢) =

1

2
∫

2𝜋

0

∫

𝑙

0

(𝑘
2
(1 + 𝑐

2
) 𝑢
2

𝜃
+ 𝑢
2

𝑥
) 𝑑𝑥 𝑑𝜃,

𝑅
2
(V) =

1

2
∫

2𝜋

0

∫

𝑙

0

(𝑘
2
(1 + 3𝑐

2
) V2
𝑥
+ 𝑘
1
V2
𝜃
) 𝑑𝑥 𝑑𝜃,

𝑅
3
(𝑤)

=
1

2
∫

2𝜋

0

∫

𝑙

0

((1 + 𝑐
2
) 𝑘
1
𝑤
2
− 2𝑐
2
𝑘
1
𝑤
2

𝜃

+ 𝑐
2
(𝑤
2

𝑥𝑥
+ 𝑘
1
𝑤
2

𝜃𝜃
)

+ (4𝑘
2
+ 2𝜇
1
) 𝑤
2

𝑥𝜃
) 𝑑𝑥 𝑑𝜃 ⋅ ⋅ ⋅

+
1

2
∫

2𝜋

0

∫

𝑙

0

(
𝜍𝑅

𝐾
(𝜂
2
(𝑤
2

𝑥
+ 𝑤
2

𝜃
) + 𝑤
2
)

−
2𝑅

𝐾
L (𝑃
𝑌𝑌
) 𝑤) 𝑑𝑥 𝑑𝜃,

𝑆 (𝑦) =
1

2𝐾
∫

2𝜋

0

∫

𝑙

0

(𝜂
2
(𝑦
2

𝑥𝑥
+ 𝑦
2

𝑥𝜃
) + 𝑦
2

𝑥
) 𝑑𝑥 𝑑𝜃.

(25)

Thus from (22) and (24), it follows that

𝑉 (𝑢, V, 𝑤) = − (𝑅
1
(𝑢) + 𝑅

2
(V) + 𝑅

3
(𝑢))

+ 𝑉
4
(𝑢, V, 𝑤)

+ 𝑁 (𝑆 (𝑢) + 𝑆 (V) + 𝑆 (𝑤))

(26)

and the Rayleigh quotient can be expressed as

𝑁 = min
𝑢,V,𝑤

𝑅
1
(𝑢) + 𝑅

2
(V) + 𝑅

3
(𝑤) − 𝑉

4
(𝑢, V, 𝑤)

𝑆 (𝑢) + 𝑆 (V) + 𝑆 (𝑤)
. (27)

5. Natural and Geometric
Boundary Conditions

It is noted that the displacements are equal at the end points
𝜃 = 0 and 𝜃 = 2𝜋; that is,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 2𝜋) ,

V (𝑥, 0) = V (𝑥, 2𝜋) ,

𝑤 (𝑥, 0) = 𝑤 (𝑥, 2𝜋)

for 𝑥 ∈ [0, 𝑙] .

(28)

The first variations of 𝑉(𝑢, V, 𝑤) with respect to 𝛿𝑢, 𝛿V, and
𝛿𝑤, denoted by 𝛿

𝑢
𝑉, 𝛿V𝑉, and 𝛿

𝑤
𝑉, respectively, can be

obtained by integration by parts and using (28). We first
obtain the variations of 𝑉

1
(𝑢) and 𝑉

4
(𝑢, V, 𝑤) with respect to

𝛿𝑢 which are given by

𝛿
𝑢
𝑉
1
(𝑢)

= ∫

2𝜋

0

∫

𝑙

0

𝐿
1
(𝑢) 𝛿𝑢 𝑑𝑥 𝑑𝜃 + 𝐵

1
(𝑢, 𝛿𝑢, 𝛿𝑢

𝑥
) ,

𝛿
𝑢
𝑉
4
(𝑢, V, 𝑤)

= ∫

2𝜋

0

∫

𝑙

0

𝑀
1
(V, 𝑤) 𝛿𝑢 𝑑𝑥 𝑑𝜃 + 𝐵

2
(𝑤, 𝛿𝑢) ,

(29)

where

𝐵
1
(𝑢, 𝛿𝑢, 𝛿𝑢

𝑥
)

= ∫

2𝜋

0

[(−𝑢
𝑥
−
𝑁

𝐾
(𝜂
2
(𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝜃𝜃
) − 𝑢
𝑥
)) 𝛿𝑢

+
𝑁

𝐾
𝜂
2
𝑢
𝑥𝑥
𝛿𝑢
𝑥
]

𝑥=𝑙

𝑥=0

𝑑𝜃,

𝐵
2
(𝑤, 𝛿𝑢) = ∫

2𝜋

0

[𝑐
2
𝑤
𝑥𝑥
𝛿𝑢]
𝑥=𝑙

𝑥=0
𝑑𝜃.

(30)

Similarly

𝛿V𝑉2 (V) = ∫
2𝜋

0

∫

𝑙

0

𝐿
2
(V) 𝛿V 𝑑𝑥 𝑑𝜃 + 𝐵

3
(V, 𝛿V, 𝛿V

𝑥
) ,

𝛿V𝑉4 (𝑢, V, 𝑤) = ∫
2𝜋

0

∫

𝑙

0

𝑀
2
(𝑢, 𝑤) 𝛿V 𝑑𝑥 𝑑𝜃

+ 𝐵
4
(𝑢, 𝛿V) ,

(31)

where

𝐵
3
(V, 𝛿V, 𝛿V

𝑥
)

= ∫

2𝜋

0

[(−𝑘
2
(1 + 3𝑐

2
) V
𝑥
−
𝑁

𝐾
(𝜂
2
(V
𝑥𝑥𝑥

+ V
𝑥𝜃𝜃
) − V
𝑥
)) 𝛿V

+
𝑁

𝐾
𝜂
2V
𝑥𝑥
𝛿V
𝑥
]

𝑥=𝑙

𝑥=0

𝑑𝜃,

𝐵
4
(𝑢, 𝛿V) = ∫

2𝜋

0

[− (𝑘
2
+ 𝜇
1
) 𝑢
𝜃
]
𝑥=𝑙

𝑥=0
𝛿V 𝑑𝜃.

(32)

Finally we obtain 𝛿
𝑤
𝑉
3
(𝑤) and 𝛿

𝑤
𝑉
4
(𝑢, V, 𝑤), namely,

𝛿
𝑤
𝑉
3
(𝑤)

= ∫

2𝜋

0

∫

𝑙

0

𝐿
3
(𝑤) 𝛿𝑤𝑑𝑥𝑑𝜃 + 𝐵

5
(𝑤, 𝛿𝑤, 𝛿𝑤

𝑥
)

+ 𝐵
6
(𝑤, 𝛿𝑤, 𝛿𝑤

𝑥
) ,
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𝛿
𝑤
𝑉
4
(𝑢, V, 𝑤)

= ∫

2𝜋

0

∫

𝑙

0

𝑀
3
(𝑢, V) 𝛿𝑤𝑑𝑥𝑑𝜃 + 𝐵

7
(𝑢, V, 𝛿𝑤, 𝛿𝑤

𝑥
)

+ 𝐵
7
(𝑢, V, 𝛿𝑤, 𝛿𝑤

𝑥
) ,

(33)

where

𝐵
5
(𝑤, 𝛿𝑤, 𝛿𝑤

𝑥
)

= ∫

2𝜋

0

[𝑐
2
(𝑤
𝑥𝑥𝑥

+ (4𝑘
2
+ 2𝜇
1
) 𝑤
𝑥𝜃𝜃
) 𝛿𝑤

−𝑐
2
𝑤
𝑥𝑥
𝛿𝑤
𝑥
]
𝑥=𝑙

𝑥=0
𝑑𝜃,

𝐵
6
(𝑤, 𝛿𝑤, 𝛿𝑤

𝑥
)

= ∫

2𝜋

0

[(−
𝜍𝑅

𝐾
𝜂
2
𝑤
𝑥
−
𝑁

𝐾
(𝜂
2
(𝑤
𝑥𝑥𝑥

+ 𝑤
𝑥𝜃𝜃
) − 𝑤
𝑥
)) 𝛿𝑤

+
𝑁

𝐾
𝜂
2
𝑤
𝑥𝑥
𝛿𝑤
𝑥
]

𝑥=𝑙

𝑥=0

𝑑𝜃,

𝐵
7
(𝑢, V, 𝛿𝑤, 𝛿𝑤

𝑥
)

= ∫

2𝜋

0

[(𝜇
1
𝑢 + 𝑐
2
(𝑘
2
𝑢
𝜃𝜃
− 𝑢
𝑥𝑥
) − 𝑐
2
(3𝑘
2
+ 𝜇
1
) V
𝑥𝜃
) 𝛿𝑤

+ (𝑐
2
(3𝑘
2
+ 𝜇
1
) V
𝜃
+ 𝑐
2
𝑢
𝑥
) 𝛿𝑤
𝑥
]
𝑥=𝑙

𝑥=0
𝑑𝜃.

(34)

Since the first variations of the functional 𝑉(𝑢, V, 𝑤) are zero,
that is,

𝛿
𝑢
𝑉 (𝑢, V, 𝑤) = 𝛿V𝑉 (𝑢, V, 𝑤) = 𝛿𝑤𝑉 (𝑢, V, 𝑤) = 0 (35)

by the fundamental lemma of the calculus of variations, we
have

𝐵
1
(𝑢, 𝛿𝑢, 𝛿𝑢

𝑥
) + 𝐵
2
(𝑤, 𝛿𝑢) + 𝐵

3
(V, 𝛿V, 𝛿V

𝑥
)

+ 𝐵
4
(𝑢, 𝛿V) + 𝐵

5
(𝑤, 𝛿𝑤, 𝛿𝑤

𝑥
)

+ 𝐵
6
(𝑤, 𝛿𝑤, 𝛿𝑤

𝑥
) + 𝐵
7
(𝑢, V, 𝛿𝑤, 𝛿𝑤

𝑥
) = 0

(36)

which yields the boundary conditions. We first note that (36)
can be written as

5

∑

𝑖=1

𝑏
𝑖
= 0, (37)

where

𝑏
1
(𝑢, 𝑤, 𝛿𝑢, 𝛿𝑢

𝑥
)

= ∫

2𝜋

0

[(−𝑢
𝑥
−
𝑁

𝐾
(𝜂
2
(𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝜃𝜃
) − 𝑢
𝑥
) + 𝑐
2
𝑤
𝑥𝑥
) 𝛿𝑢

+
𝑁

𝐾
𝜂
2
𝑢
𝑥𝑥
𝛿𝑢
𝑥
]

𝑥=𝑙

𝑥=0

𝑑𝜃,

𝑏
2
(𝑢, V, 𝑤, 𝛿V, 𝛿V

𝑥
)

= ∫

2𝜋

0

[( − (𝑘
2
+ 𝜇
1
) 𝑢
𝜃
− 𝑘
2
(1 + 3𝑐

2
) V
𝑥

−
𝑁

𝐾
(𝜂
2
(V
𝑥𝑥𝑥

+ V
𝑥𝜃𝜃
) − V
𝑥
)

−𝑐
2
(3𝑘
2
+ 𝜇
1
) 𝑤
𝑥𝜃
) 𝛿V]
𝑥=𝑙

𝑥=0

𝑑𝜃

+ ∫

2𝜋

0

[
𝑁

𝐾
𝜂
2V
𝑥𝑥
𝛿V
𝑥
]

𝑥=𝑙

𝑥=0

𝑑𝜃,

𝑏
3
(𝑤, 𝛿𝑤)

= ∫

2𝜋

0

[(𝑐
2
(𝑤
𝑥𝑥𝑥

+ (4𝑘
2
+ 2𝜇
1
) 𝑤
𝑥𝜃𝜃
) −

𝜍𝑅

𝐾
𝜂
2
𝑤
𝑥

−
𝑁

𝐾
(𝜂
2
(𝑤
𝑥𝑥𝑥

+ 𝑤
𝑥𝜃𝜃
) − 𝑤
𝑥
)) 𝛿𝑤]

𝑥=𝑙

𝑥=0

𝑑𝜃,

𝑏
4
(𝑢, V, 𝛿𝑤)

= ∫

2𝜋

0

[(𝜇
1
𝑢 + 𝑐
2
(𝑘
2
𝑢
𝜃𝜃
− 𝑢
𝑥𝑥
)

−𝑐
2
(3𝑘
2
+ 𝜇
1
) V
𝑥𝜃
) 𝛿𝑤]

𝑥=𝑙

𝑥=0
𝑑𝜃,

𝑏
5
(𝑢, V, 𝑤, 𝛿𝑤

𝑥
)

= ∫

2𝜋

0

[(−𝑐
2
𝑤
𝑥𝑥
+
𝑁

𝐾
𝜂
2
𝑤
𝑥𝑥
+ 𝑐
2
(3𝑘
2
+ 𝜇
1
) V
𝜃

+𝑐
2
𝑢
𝑥
) 𝛿𝑤
𝑥
]

𝑥=𝑙

𝑥=0

𝑑𝜃.

(38)

From (37)-(38), the natural and geometric boundary condi-
tions are obtained at 𝑥 = 0 and 𝑥 = 𝑙 as

𝑢
𝑥
+
𝑁

𝐾
(𝜂
2
(𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝜃𝜃
) − 𝑢
𝑥
) − 𝑐
2
𝑤
𝑥𝑥
= 0 or 𝑢 = 0,

𝑢
𝑥𝑥
= 0 or 𝑢

𝑥
= 0,

(𝑘
2
+ 𝜇
1
) 𝑢
𝜃
+ 𝑘
2
(1 + 3𝑐

2
) V
𝑥

+
𝑁

𝐾
(𝜂
2
(V
𝑥𝑥𝑥

+ V
𝑥𝜃𝜃
) − V
𝑥
)

+ 𝑐
2
(3𝑘
2
+ 𝜇
1
) 𝑤
𝑥𝜃
= 0 or V = 0,

V
𝑥𝑥
= 0 or V

𝑥
= 0,

𝑐
2
(𝑤
𝑥𝑥𝑥

+ (4𝑘
2
+ 2𝜇
1
) 𝑤
𝑥𝜃𝜃
) −

𝜍𝑅

𝐾
𝜂
2
𝑤
𝑥

−
𝑁

𝐾
(𝜂
2
(𝑤
𝑥𝑥𝑥

+ 𝑤
𝑥𝜃𝜃
) − 𝑤
𝑥
) ⋅ ⋅ ⋅ + 𝜇

1
𝑢

+ 𝑐
2
(𝑘
2
𝑢
𝜃𝜃
− 𝑢
𝑥𝑥
)

− 𝑐
2
(3𝑘
2
+ 𝜇
1
) V
𝑥𝜃
= 0 or 𝑤 = 0,

− 𝑐
2
𝑤
𝑥𝑥
+
𝑁

𝐾
𝜂
2
𝑤
𝑥𝑥
+ 𝑐
2
(3𝑘
2
+ 𝜇
1
) V
𝜃

+ 𝑐
2
𝑢
𝑥
= 0 or 𝑤

𝑥
= 0.

(39)
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6. Conclusions

The variational formulation for the buckling of a microtubule
was given using a nonlocal continuum theory whereby
the microtubule was modeled as an orthotropic shell. The
continuum model of the microtubule takes the effects of
the surrounding filament network and the viscous cytosol
into account as well as its orthotropic properties. Methods
of calculus of variations were employed in the derivation
of the variational formulation and in particular the semi-
inverse approach was used to identify suitable variational
integrals. The buckling load was expressed in the form of
a Rayleigh quotient which confirms that small scale effects
lower the buckling load as has been observed in a number
of studies [1, 26, 28]. The natural and geometric boundary
conditions were derived using the formulations developed.
The variational principles presented here form the basis
of several approximate and numerical methods of solution
and facilitate the implementation of complicated boundary
conditions, in particular, the natural boundary conditions.
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