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Abstract

Hypertension is a well-recognized risk factor for the development of cardiovascular disease, and the early detection of
cardiac changes from hypertension can allow reversing these. Hypertensive heart diseases (HHD) refer to the complex
and diverse change of the cardiac structure and function secondary to hypertension. Although conventional
echocardiography is the most common imaging modality in detecting HHD, it cannot detect subtle changes of cardiac
structure in subclinical states. Because strain echocardiography is another echocardiographic modality can detect
subclinical myocardial dysfunction by measuring intrinsic myocardial deformation, it became more and more popular
in clinical and research fields. In this review article, we described the basic concept of strain echocardiography and
summarized several clinical studies showing its clinical utilities in the detection of HHD.
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Background
Hypertension is the most important cardiovascular risk
factor with an increased risk of heart failure (HF), myocar-
dial infarction, stroke, and cardiovascular death [1–4].
Hypertensive heart diseases (HHD, Fig. 1) include cardiac
conditions caused by chronically elevated blood pressure,
and these include HF, ischemic heart diseases, altered
left ventricular (LV) geometry, and LV hypertrophy
(LVH) [5–7].
Traditionally, conventional echocardiography is the

most common imaging modality in detecting HHD by
providing useful structural and hemodynamic findings.
The presence of abnormal conventional echocardio-
graphic findings, including abnormal LV geometry and
LVH, dilatation of left atrium (LA), and LV systolic and
diastolic dysfunction, is associated with poor prognosis
associated with hypertension. Speckle-tracking echocar-
diography (STE) is a non-invasive echocardiographic
modality providing myocardial deformation, which helps

detect early ischemic changes and myocardial dysfunc-
tion, even before symptom onset, undetected by the
conventional echocardiographic examination.
In this review article, we described the basic concept

of STE and summarized the clinical utility of STE in the
evaluation of patients with hypertension.

Structural and functional changes of the heart in
hypertension
Because the target organ damage like HHD from arterial
hypertension can be associated with a poor prognosis,
identification of these HHD can improve clinical out-
comes of these patients. In terms of biochemical alter-
ations, myocardial fibrosis is one of the factors responsible
for deterioration of myocardial function in hypertension
[8, 9]. Myocardial fibrosis is a major determinant of LVH
with the stiff myocardium in HHD, potentially leading to
pump failure [10, 11]. Increased myocardial fibrosis and
decreased elasticity are characterized by the accumulation
of extracellular matrix proteins in the myocardium and
surrounding microvasculatures [12]. Cardiac fibrosis alters
the myocardial structures, resulting in hypertrophy, cham-
ber stiffness, dilatation of cardiac chambers, conduction
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abnormalities and arrhythmogenicity, and systolic and dia-
stolic dysfunction of the ventricles and aria [13].
LVH and abnormal LV geometry are common forms

of HHD and important independent predictors of
adverse long-term prognosis in many cardiovascular
diseases. Chronic systolic and diastolic arterial hyperten-
sion can cause myocyte hypertrophy. And, hypertension
can produce perivascular and myocardial fibrosis, and
medial thickening of the intramyocardial coronary arter-
ies [2]. Consequently, hypertension induces global modi-
fications in the cardiac structure and function and is a
well-recognized risk factor for developing HF and car-
diovascular diseases [14–16]. Because the early detection
of LV systolic dysfunction, even in patients without overt
symptoms, can give opportunities to reverse their struc-
tural changes from hypertension, it is an important issue
in hypertensive patients.
LA structural and functional changes can be observed

in HHD [17]. Although LA remodeling is closely related
to LV structural and functional alterations, it can occur
independently from LV remodeling [17, 18]. Also, right
ventricular (RV) remodeling can occur due to increased
pulmonary arterial pressure. Arterial remodeling is also
a common finding in HHD, and hypertension can cause
increased stiffening of artery and aortic dilatation, which
were associated with an increased risk of cardiovascular
diseases [13, 19, 20].
Without prompt antihypertensive treatment, HF and

arrhythmias can occur in patients with LVH and abnor-
mal LV geometry. HF with reduced ejection fraction and
HF with preserved ejection fraction can be observed in
patients with HHD. Ischemic events, including myocar-
dial ischemia and stroke, can also accompany.

What is myocardial strain and speckle-tracking
echocardiography?
Myocardial fibers are a 3-dimensional structure including
circumferential fibers in the mid-wall layer and longitudinal
fibers in the endocardial and epicardial layers. Myofiber can
stretch, shorten and thicken, and these movements in
different myocardial layers change myofiber orientation
continuously from right-handed helix in subendocardium
to left-handed helix in subepicardium [21]. Thus, myocar-
dial contraction occurs clockwise rotation in the midpor-
tion and counterclockwise rotation in the apical portion of
the LV [22].
Left ventricular ejection fraction (LVEF) as conventional

echocardiographic index does not represent intrinsic myo-
cardial property. However, strain echocardiography, a
newer echocardiographic modality, can measure myocardial
deformation representing the intrinsic myocardial property.

Myocardial strain and strain rate
Myocardial strain is a dimensionless index that can
represent myocardial performance. It can be calculated
as the change from the original muscle length to the
final muscle length after myocardial contraction and
presented as a percentage (Fig. 2). During systole,
myocardial fibers shorten, and strain value assessing
fiber shortening has a negative value while lengthening
of fibers during systole, often observed in the segment
with dyskinesis, is represented by a positive strain value.
Strain rate considers the time to the strain and refers

as a deformation per time unit. The unit of strain rate is
s− 1 and has the same direction as the strain value, nega-
tive value during shortening and positive value during
elongation of the myocardium (Fig. 2).

Fig. 1 Overview of the structural and functional alterations present in hypertensive heart disease. LA, left atrium; LV, left ventricular; RA, right
atrium; RV, right ventricular
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Speckle-tracking echocardiography
The myocardial strain and strain rate assessment is a
good marker of myocardial function representing intrin-
sic myocardial performance [23–27]. Myocardial strain
can be usually measured by 2-dimensional STE. It tracks
ultrasonic speckles, small myocardial footprints in
routine 2-dimensional echocardiographic images (Fig. 3).
Myocardial speckles are tracked frame-by-frame in one
cardiac cycle, and the strain was automatically calculated
by measuring the distances between speckles [28].
Among myocardial deformation with three directions,
including longitudinal strain (LS), circumferential strain
(CS), and radial strain (RS), LS is the most frequently
used deformation component from averaging values of 3
apical views in an easy way (Fig. 4).
There are several factors that can affect left ventricular

LS (LVLS) include hemodynamic factors, chamber
geometry, myocardial tissue characteristics, and syn-
chrony of myocardial contraction.
The increase in LV afterload or increasing heart rate

can lead decrease in LVLS [29]. Also, the change of

preload can be related to the change of LVLS [30].
Ventricular geometry can affect strain values. The in-
crease of LV wall thickness and dilatation of LV cavity
can be associated with the decrease in LS [31, 32].
Regional LS can be reduced in the areas of infiltrative or
myocardial storage diseases [33]. Also, fibrotic myocar-
dial areas, usually observed in the myocardial infarction,
are associated with a decrease in regional LS. Inhomo-
geneous myocardial activation, usually associated with
the left bundle branch block, is associated with the dif-
ference in sequence of myocardial contraction of the
ventricular septum and the LV lateral wall. Other factors
affecting LS include gender and age [34]. Usually, fe-
males have better LVLS values than males, and younger
adults have better LS values than older adults.
STE can measure LA strain (Fig. 5A) and RV strain

(Fig. 5B). Thus, STE has become a major echocardio-
graphic modality measuring strain and strain rate in the
clinical fields (Fig. 6).
Although echocardiographic strain assessment has rela-

tively high inter-observer and intra-observer variability, as

Fig. 2 Myocardial strain and strain rate. Simple diagram showing the principle of strain and strain rate. Strain is expressed as a fractional length
change, where shortening is a negative value and lengthening a positive value. Strain is calculated as the difference (ΔL) of the initial (L0) and the
final distance (L) between two points divided by the initial distance. Strain rate is the deformation per unit time (Δt), and derives from the ratio
between the velocity variation and the initial distance between two points
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well as inter-vendor variability [35], it should be empha-
sized that tracking myocardial deformation in systole and
diastole provides an additional quantitative measure of
myocardial function. Several studies showed that LV glo-
bal LS represented a better predictor of cardiovascular
morbidity and mortality than LVEF in the general popula-
tion, as well as in HF or various cardiovascular diseases
[36–39]. LV multidirectional strain is also associated with

LV diastolic function indices (E/e’ and E/A ratios), which
means information about LV filling pressure [40, 41]. In
addition, strain by STE has grown in importance in
both the diagnostic and prognostic evaluation across
the cardiac disease spectrum including coronary artery
diseases, valvular heart diseases, cardiomyopathies, and
RV dysfunction.

Fig. 4 Demonstration of a 2-dimensional strain analysis with GE EchoPAC PC software. After tracing of the endocardial border, the software
provides global and regional myocardial strain values automatically in apical 4 chamber (A), apical 2 chamber (B), and apical 3 chamber views (C).
The GE EchoPAC algorithm can provide bull’s eye maps of regional longitudinal strain values (D)

Fig. 3 Demonstration of a longitudinal strain and strain rate analysis in the left ventricle using 2-dimensional speckle-tracking echocardiography.
Example of a strain curve (A) and a strain rate curve (B) for one heart cycle
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Clinical applications of speckle-tracking echocardiography
in patients with hypertension
There are several clinical utilities of STE in patients with
arterial hypertension (Fig. 6 and Table 1).

Hypertension patients with normal left ventricular geometry
It is well known that a preclinical LV systolic dysfunc-
tion occurs in hypertensive patients with LVH [44]. Even
before LVH occurs, hypertension leads to early changes
of LV mechanics. However, the conventional transtho-
racic echocardiography is usually unable to detect early
subtle abnormalities in LV systolic function caused by

arterial hypertension, prior to manifestation of LVH.
The STE can identify subtle adaptive changes of LV
systolic mechanics in hypertensive patients without
symptoms or signs of HF and with normal contractile
function. Patients with hypertension without LVH show
impaired systolic LS compared with healthy control par-
ticipants (− 18.0% ± 1.9% vs. –20.4% ± 2.5%, P = 0.02). In
contrast, Doppler tissue imaging (DTI) was able to de-
tect an LV systolic dysfunction only in the patients with
LVH (P < 0.001) [42]. Moreover, in patients with LVH,
STE showed lower LS (− 15.9% ± 3.3% vs. –20.4 ± 2.5%,
P < 0.001) and RS (40% ± 20% vs. 54.5% ± 16%, P = 0.02),

Fig. 5 Demonstration of LA and RV strain analysis using 2-dimensional speckle-tracking echocardiography (A). LA strain and illustration of the 3
phases of LA function with an R-R gating analysis. RV longitudinal strain calculated as the average of the six-segment model (B). ECG,
electrocardiography; LA, left atrium; PACS, peak atrial contraction strain; PALS, peak atrial longitudinal strain; RV, right ventricular

Fig. 6 Schematic illustration showing clinical indications of the speckle-tracking echocardiography. Speckle-tracking strain is an increasingly used
echocardiographic technology that can provide additional clinical utility. LA, left atrium; LV, left ventricular; RV, right ventricular
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Table 1 Summary of clinical studies on STE in patients with hypertension

Reference Study subject Method Parameter Main findings

Patients with normal geometry

Imbalzano
et al. [42]
(2011)

51 patients with hypertension (mean age
56.5 ± 14 years, 65% males) and 51 controls

2D-STE LV longitudinal,
circumferential, radial
strain and twist

LV systolic longitudinal strain was impaired in
hypertension patients, including those without
LVH. In the patients with LVH, radial strain was
reduced, and circumferential strain and twist
were increased

Kang et al.
[43] (2008)

56 patients with hypertension (mean age 48 ±
11 years, 61% males) and 20 age-matched
controls

2D-STE LV longitudinal,
circumferential, radial
strain and strain rate, and
basal-to-apical torsion

Longitudinal strain was significantly decreased,
and basal-to-apical torsion was increased in
patient with hypertension and normal EF.
Longitudinal and basal-to-apical torsion inde-
pendently correlated with the serum TIMP-1
level

Patients with LVH

Mizuguchi
et al. [44]
(2010)

98 patients with hypertension (25% concentric
LVH, 43% eccentric LVH) and 22 age-matched
controls

2D-STE LV longitudinal,
circumferential, radial
strain and strain rate

The systolic LV myocardial deformation was
impaired in all the longitudinal,
circumferential, and radial directions in
patients with hypertension and concentric
LVH.
The mean peak systolic circumferential strain
was an independent predictor related to LVEF

Saito et al.
[39] (2016)

388 patients with hypertension and abnormal
LV geometry (31% concentric LVH, 22%
eccentric LVH, 47% concentric remodeling)

2D-STE LVGLS and GCS GLS and its deterioration (> 16%) are related
with MACE in asymptomatic hypertensive
heart disease, and was very useful for
predicting risk of MACE

Lee et al.
[45] (2016)

95 patients with hypertension (mean age
65.5 ± 12.0 years, 60% males)

2D-STE LVGLS of subendocardium,
subepicardium

Longitudinal strain of the subepicardial
myocardium (> 17.6%) was the only
independent prognostic factor in regularly
treated hypertensive patients

Left ventricular diastolic dysfunction

Mu et.al
[46]. (2010)

75 patients with hypertension and normal LV
geometry (mean age 48 ± 11 years, 61%
males) and 50 controls

2D-STE LV longitudinal,
circumferential, radial
strain rate, and torsion rate

Reduced longitudinal, circumferential, radial
strain rate, increased rotation rate, and
extension of untwisting half-time are the sen-
sitive indicators to diagnosis hypertensive pa-
tients with early LV diastolic dysfunction

Soufi Taleb
Bendiab
et al. [40]
(2017)

200 patients with hypertension and normal
LVEF (mean age 61.7 ± 9.7 years, 68% LVH)

2D-STE LVGLS Reduced GLS (> − 17.6%) is associated with
long-lasting, uncontrolled hypertension, over-
weight, diabetes, related metabolic changes,
and is more pronounced in patients with LVH

Mizuguchi
et al. [47]
(2008)

70 patients with normal EF and cardiovascular
risk factors and 30 age-matched controls

2D-STE LV longitudinal,
circumferential, radial
strain and strain rate, and
torsion

The mean peak systolic and early diastolic
longitudinal strain and strain rate were lower
in the E/A < 1 group. LV myocardial
contraction and relaxation were first impaired
in the longitudinal direction

Left atrial function

Salas
Pacheco
et al. [48]
(2019)

50 patients with hypertension and 80 healthy
volunteers

2D-STE LA reservoir, contraction,
conduit strain, and LVGLS

LA strain of pump and reservoir phases, and
LA independent strain were lower in
hypertensive patients. LA independent strain
only correlated with minimum LA volume,
and can identify atrial myocyte contractile
dysfunction

Right ventricular function

Pedrinelli
et al. [49]
(2010)

89 patients with office BP varying from the
optimal to mildly hypertensive range

2D-STE RV longitudinal peak strain
and strain rate

RV peak systolic strain and early diastolic strain
rate reduced in the mid-tertile of BP distribu-
tion. RV systolic and diastolic strain indices
correlated inversely with increasing septal
thickness.

Tumuklu
et al. [50]
(2007)

35 patients with hypertension and 30 age-and
sex-matched controls

2D-STE RV longitudinal peak strain
and strain rate

RV peak systolic strain was significantly lower
in hypertension patients with and without
LVH in comparison with normotensive
controls
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higher CS (− 22% ± 4% vs. –20% ± 2.8%, P = 0.05), and
twist (23.8° ± 5.2° vs. 12.5° ± 4.8°, P < 0.001) than controls.
Although basal LS by DTI was not evaluated, velocity
measures were normal in hypertensive patients without
LVH. This finding demonstrates the advantages of 2-
dimensional strain over DTI in the early detection of LV
systolic dysfunction. Early impairment of myocardial
contractility may be secondary to hemodynamic or bio-
chemical changes. The increased end-systolic wall stress
plays a crucial role in leading to longitudinal dysfunction
in HHD. Chronic increase in end-systolic wall stress
promotes the subendocardial synthesis of collagen, redu-
cing longitudinal deformation.
Kang et al. [43] revealed that impaired LS and in-

creased LV torsion are associated with higher serum
levels of tissue inhibitor of the metalloproteinase-1
matrix, which controls myocardial collagen turnover,
in patients with hypertension and normal LVEF. They
demonstrated that excessive accumulation of fibrillar
collagen could progress to myocardial fibrosis and
contribute to early LV contractile dysfunction.
Because arterial hypertension has impact on all myo-
cardial layers, endocardial, midcardial and epicardial
LS were lower than controls, and epicardial LS was
important predictor for cardiovascular events includ-
ing cardiovascular mortality and rehospitalization in
hypertensive population [45]. On the other hand, RS
and CS, as well as twist, were preserved in hyperten-
sive patients without structural LV changes in this
study. These findings fit the novel criteria of HF
classification, stating that only transmural damage was
associated with reduction of LVEF, CS and twist,
whereas subendocardial dysfunction results in isolated
LS impairment [52].

Hypertensive patients with LVH
LVH is a common response to chronically elevated after-
load, enabling normalization of LV wall stress and pres-
ervation of LV mechanical function [53]. LVH is an
independent predictor of cardiovascular morbidity and
mortality in hypertensive patients [54, 55]. This struc-
tural remodeling is associated with various alterations
including myocardial stiffness, impaired vasomotor

reactivity of coronary artery, depressed LV wall mechan-
ics, and abnormal LV diastolic filling pattern [56–60].
A previous study indicated that longitudinal LV con-

tractility was decreased in healthy elderly people, and in
patients with hypertension, diabetes, hypertrophic car-
diomyopathy, or diastolic HF [61–64]. The aging process
promotes fibrosis of the subendocardial myocardium in
normal subjects, and the connective tissue content in-
creases in hypertensive patients with LVH [65, 66]. Myo-
cardial fibrosis related to pressure overload is frequent
in the subendocardial layer, and it is well known that
there is a close association between abnormal longitu-
dinal function and content of interstitial fibrosis [67].
Therefore, LV longitudinal function is deteriorated in
healthy elderly people and in hypertension patients with
or without LVH. In general, radial myocardial thickening
is closely related to LV systolic function, and even if lon-
gitudinal LV function is deteriorated, radial function is
still maintained. A previous study using 2-dimentional
strain imaging reported that LV diastolic and systolic
function were first impaired in the longitudinal direction
in asymptomatic patients with cardiovascular risk factors
and preserved LV pump function. In systole, radial
thickening is preserved, and as the longitudinal shorten-
ing decreases, the circumferential shortening increases
for maintenance of LVEF [47]. In addition, Mizuguchi
et al. [44] indicated that concentric LVH caused systolic
LV myocardial deformation in all 3 directions including
longitudinal, circumferential, and radial in hypertensive
patients. However, LV pump function were compensated
by increasing circumferential shortening at ventricular
systole. Thus, increase in circumferential shortening
might be major compensatory mechanisms for maintain-
ing LV pump function even when the longitudinal short-
ening is decreased.

Diastolic dysfunction in HHD
Age-related changes in LV relaxation have recently facil-
itated the detection of impaired LV diastolic function as
reflected by E/A < 1 and a prolonged deceleration time
of early diastolic transmitral flow with the widespread
use of pulsed Doppler echocardiography. Several studies
reported that diastolic LV dysfunction precedes systolic

Table 1 Summary of clinical studies on STE in patients with hypertension (Continued)

Reference Study subject Method Parameter Main findings

Tadic et al.
[51] (2014)

59 untreated hypertension patients, 62 well-
controlled hypertension, 58 treated but un-
controlled hypertension patients, and 55 age-
and sex-matched controls

2D-STE RVGLS and strain rate RVGLS was significantly decreased in
untreated and uncontrolled hypertension
patients comparing with controls and well
controlled participants. RVGLS and 3D RV
stroke volume were independently associated
with peak oxygen uptake.

BP blood pressure, EF ejection fraction, GCS global circumferential strain, GLS Global longitudinal strain, LA left atrium, LV left ventricle, LVH left ventricular
hypertrophy, MACE major adverse cardiac events, RV right ventricle, RVGLS right ventricle global longitudinal strain, STE Speckle-tracking echocardiography
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LV dysfunction especially in patients with cardiovascular
risk factors such as hyperlipidemia, diabetes, hyperten-
sion, obesity, and smoking habits [68–72]. LV multidir-
ectional strain is associated with LV diastolic function
indices such as E/e’ and E/A ratios that enables
information regarding LV filling pressure [40, 41, 73]. In
addition, strain rates (early and late diastolic and sys-
tolic) represent strain equivalent for tissue Doppler-
derived parameters and correspond well with indices of
LV diastolic function. In diastole, the mean peak early
diastolic longitudinal strain rate decreased in longitu-
dinal and radial directions, particularly in the former
direction. There was a positive correlation between the
longitudinal early diastolic strain rate and E/A. In
addition, the peak LV longitudinal strain rate during
atrial systole was an independent predictor related to E/
A in all patients [46, 47]. However, there was no signifi-
cant increase in pressure at the end of the LV diastole
because sufficient LV filling was achieved by effective
atrial contraction. Therefore, longitudinal LV myocardial
deformation is an important marker to detect subclinical
changes in LV contraction and relaxation. Because LA
structure and function are directly influenced by the LV
filling pressure, LA assessment is an essential step in the
diagnosis of diastolic dysfunction. LA strain derived
from STE can help assess LA function objectively
through the 3 distinct phasic motions of the LA cycle,
which are significantly influenced by the LV diastolic
strain rates and LV global LS.
Previous study demonstrated that hypertension is dir-

ectly associated with LA volume change, and it has been
demonstrated that despite normal LA volume, there is
abnormal LALS in hypertension [74]. This shows that
the earliest abnormality in hypertension appear as a de-
crease in LA strain, followed by LA dilatation, subclinical
LV dysfunction, and finally HF with normal or reduced
LVEF [2]. Salas Pacheco et al. [48] found that in patients
with HHD, the indexed LA volume was greater than in
the control group (34 ± 7.8 mL/m2 vs. 24 ± 4.9 mL/m2);
strain of pump (− 5.7% ± 2.4% vs. − 17% ± 3.5%) and res-
ervoir phases (34% ± 9% vs. 48% ± 10%) were worst. The
minimum LA volume was higher (26 ± 10mL vs. 15 ± 8
mL) and LA independent strain was lower in hypertensive
patients (4.0% vs. 6.5%, P = 0.001). The LA independent
strain quantifies LA reservoir phase deformation during
isovolumetric relaxation. These findings suggest that in
the early stages of HHD, the LA experiences a remodeling
with dilation and reduction of LS in the pump and reser-
voir phase while sustains normal LVEF and global LS. LA
strain represents a new tool in the evaluation of atrial
function. STE is more sensitive method to initial changes
in myocardial function and independent of the insonation
angle, but since the absolute value is affected by the
hemodynamic loading condition, the evaluation of LA

strain during isovolumic relaxation may reflects a
condition independent of the hemodynamic loading and
traction by the atrioventricular plain [75]. In addition, the
lower value of independent strain in hypertensive patients
shows that there is intrinsic atrial myocyte damage with
significant dysfunction in the early stages [48].

RV function in HHD
Arterial hypertension can impact pulmonary circulation
and change pulmonary arterial structure. Sequentially,
these can provoke RV remodeling. Common pathophysi-
ologic mechanisms include common pathways of arterial
hypertension and impaired LV diastolic function as re-
sults of increased LV afterload. Overstimulation of the
sympathetic system and the renin—angiotensin—aldos-
terone system can alter pulmonary vascular structure
and increase pulmonary vascular resistance. Increased
pulmonary vascular resistance impairs RV function and
causes RV hypertrophy, subsequently [76]. Arterial
hypertension induces LV hypertrophy and cause LV
diastolic dysfunction. In patients with LV diastolic
dysfunction, increased LA pressure can be delivered to
pulmonary capillary and pulmonary artery. Prolonged
increased LA pressure can induce pulmonary hyperten-
sion as results. Increased RV filling pressure, RV hyper-
trophy and ventricular interdependency can cause RV
systolic and diastolic dysfunction in patients with arterial
hypertension.
Conventional echocardiographic study is insufficient in

the demonstration of RV dysfunction in patients with ar-
terial hypertension in several studies [50, 77–79]. How-
ever, strain echocardiography can show subtle changes
of RV. In the early stage of RV remodeling, RV longitu-
dinal function is progressively decreased, but transversal
function is preserved and even increased due to circum-
ferential fibers of the subepicardial layer. Therefore,
compared to the fractional area change remaining within
the normal range for a long time and deteriorates last in
the cascade, RV LS can be a sensitive parameter of RV
function capable of detecting subtle changes at subclin-
ical levels in patients with arterial hypertension. In the
first study using speckle-tracking imaging in young
hypertensive patients, RV strain and strain rates were
deteriorated particularly in apical and mid segments of
RV free wall than in the basal RV segment [49].
Tumuklu et al. [50] reported that free wall RV peak sys-
tolic strain was significantly lower in both groups of
hypertensive patients with and without LVH than in the
normotensive controls. The study results of patients with
prehypertension revealed that RV global LS was
gradually decreased from the subjects with optimal
blood pressure, across the prehypertensive subjects to
the hypertensive individuals [80]. Tadic et al. [51]
showed that untreated hypertensive patients have
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significantly lower RV global LS compared to well-
regulated hypertensive patients and controls, which was
similar to poorly controlled hypertensive patients. Fur-
thermore, functional capacity estimated by peak oxygen
consumption correlated with RV free wall LS, 3-
dimensional RV end-diastolic volume, RV stroke vol-
ume, RV ejection fraction, and right atrial LS. However,
only RV free wall strain and 3-dimensional RV stroke
volume were independently associated with peak oxygen
uptake in the study population.

Conclusion
Hypertension is a well-recognized risk factor for the de-
velopment of cardiovascular disease. Preclinical LV sys-
tolic dysfunction occurs in hypertensive patients and
LVH, but even before LVH occurs, hypertension causes
early changes in LV dynamics. Therefore, the accurate
assessment of their influence on LV systolic and diastolic
function in a subclinical state is clinically important for
preventing the development of overt cardiovascular dis-
eases. STE can detect subtle changes in myocardial dys-
function that cannot be detected with conventional
echocardiography before the overt manifestation of LVH
appear.
Both longitudinal LV diastolic and systolic function

can be impaired early even in asymptomatic patients
with cardiovascular risk factors and preserved LV sys-
tolic function. In systolic phase, longitudinal shortening
decreases and radial thickening was preserved, but the
circumferential shortening increases to maintain the
LVEF. In the diastolic phase, the early diastolic strain
rate decreased, especially in the longitudinal direction,
even if the LV filling pressure did not increase signifi-
cantly. In this regard, strain appears to be more sensitive
than both conventional echocardiography and DTI in
identifying a decrease of intrinsic myocardial contractil-
ity in hypertensive patients even long before LVH oc-
curs. Thus, the assessment of myocardial contractility by
the STE will be useful in the early detection of subclin-
ical systolic dysfunction and change of LV mechanics.
Echocardiographic strain provides more insight into sub-
tle changes in LV function in terms of identifying pa-
tients at higher risk for HF and clarifying its clinical
impact on the prognosis of HHD.
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