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We present a patient with a unique neurological phenotype with a progressive neurodegenerative. An 18-year
diagnostic odyssey for the patient endedwhen exome sequencing identified a homozygous PEX16mutation sug-
gesting an atypical peroxisomal biogenesis disorder (PBD). Interestingly, the patient's peroxisomal biochemical
abnormalities were subtle, such that plasma very-long-chain fatty acids initially failed to provide a diagnosis.
This case suggests that next-generation sequencing may be diagnostic in some atypical peroxisomal biogenesis
disorders.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Genomic sequencing is a successful strategy for the diagnosis of rare
inherited disorders [5,17,29]. In addition to gene discovery, sequencing
can identify mutations in known disease genes, particularly when the
phenotype is unusual or atypical compared to previously reported
cases. In the case ofmetabolic disorders, sequencing can reveal underly-
ing defects previously undetected by biochemical studies, such as
Argininemia [18] and mitochondrial DNA depletion disorders [12].

Peroxisomal biogenesis disorders (PBDs) are a group of disorderswith
global peroxisomal defects due tomutations in the PEX genes [25]. Perox-
isomes are ubiquitous organelles responsible for the oxidation of very-
long-chain fatty acids (VLCFAs) and branched chain fatty acids, synthesis
of plasmalogens, and detoxification of free-radicals and glyoxylate [25,
27]. PBDs have a spectrum of severity with Zellweger syndrome, the
most severe form, leading to early-onset seizures, polymicrogyria, hepatic
dysfunction, bone abnormalities, and early death. Milder phenotypic cat-
egories such as Neonatal Adrenoleukodystrophy (NALD) and Infantile
Refsum disease (IRD) have been associated with less severe biochemical
defects [4,8] but are generally still characterized by severe impairment
in infancy. Recently, atypical patientswith onset after infancy andprimary
ataxia mimicking spinocerebellar ataxia have been reported particularly
r and Human Genetics, BCM,
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in association with mutations in PEX2 [15,22], PEX10 [20] and PEX16 [3].
These patients have very mild abnormalities in very-long-chain fatty
acid metabolism and plasmalogen biosynthesis.

Here we clinically identify an individual with an ataxia phenotype,
which remained undiagnosed formany years. Our patientwas ultimately
diagnosed by whole exome sequencing (WES), which revealed
homozygous PEX16 mutations. This individual exhibits either barely
detectable or normal results in every peroxisomal biochemical assay.
These findings suggest a role for next-generation sequencing in the
diagnostic workup of atypical variant PBD.

2. Materials and methods

2.1. Ethics statement

Informed consent for the research and for publication was obtained
prior to participation for the subject who was recruited under an Insti-
tutional Review Board approved protocol at Baylor College of Medicine.

2.2. Peroxisomal biochemical studies

Plasma samples and culturedfibroblast froma skin biopsywere used
for peroxisomal biochemical analysis. Plasma pipecolic acid was
measured by electron capture negative ion mass fragmentography
[10]. Very-long-chain fatty acid levels and total lipid fatty acid profile
were measured as described [11,16]. The plasmalogen assay was
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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performed using C14 radioactivity incorporation and H3 counts tomea-
sure microsomal plasmalogen steps [21]. Fibroblast oxidation assays
were performed using radioactive substrates to assay enzyme activity
[19,26]. Measurement of C26:0-lyso-PC was performed as described
[7] and bile acid quantization was performed by tandem mass spec-
trometry [9]. Catalase distribution in cultured cells was performed and
quantified (% soluble catalase) [14,28].

2.3. Whole-exome capture, sequencing and data analysis

The patient underwentWES through theWhole Genome Laboratory
(https://www.bcm.edu/research/medical-genetics-labs/index.cfm?
PMID=21319) using methods described [13]. Produced sequence
Fig. 1. Summary of radiographic, molecular and biochemical analysis. (A) Normal Axial FLAIR se
leukodystrophy. (D) Sagittal MRI of a control patient showing a normal cerebellumwith norma
the cerebellar folia, indicating a cerebellar degeneration. (G) Schematic of the PEX16 protein sh
ciated with Zellweger syndrome (R176X) is shown in red. Purple mutations are those associ
(I) Plasma C26/C22 at age 23 years (Z-score 3.5). (K–L) Phytanic and Pristanic acid oxidation infi
a subtle defect most evident in the C26/C22 ratio (Z-score 5.0).
reads were aligned to the GRCh37 (hg19) human genome reference
assembly using the HGSC Mercury analysis pipeline (http://www.
tinyurl.com/HGSC-Mercury/). Variants were determined and called
using the Atlas2 [2] suite to produce a variant call file (VCF [1]).
High-quality variants were annotated using an in-house developed
suite of annotation tools [24].

3. Results

3.1. Case report: an unusual clinical presentation of ataxia

A 22 year old female presented at age 3 years with ataxia. An initial
MRI was normal. She underwent biochemical and genetic testing
quence in a teenage patient (B–C) Axial FLAIR images for the patient showing a progressive
l folia. (E–F) Sagittal MRI of the patient showing abnormal space (purple arrows) between
owing the location of important domains as well as reported mutations. A mutation asso-
ated with atypical variant PBD (H) Plasma C24/C22 ratio at age 22 years (Z score 3.75).
broblasts showing normal results for the patient. (M) Fibroblast VLCFA oxidation showing
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including very long chain fatty acids in plasma which initially showed
an amount of C26:0 (0.436 compared to 0.23±0.09 in normal controls)
that was slightly higher than normal, but not consistent with a peroxi-
somal biogenesis disorder (PBD samples: 3.93 ± 1.5 μg/ml) (Data in
Brief Table 1). However, the total lipid fatty acid profile was abnormal,
and a repeat sample at age 11 years was interpreted as normal. Indeed,
the patient's C24/C22 ratio at 11 years was 0.901 (0.84 ± 0.1 in normal
controls) and the C26/C22 was 0.02 (0.01 ± 0.004 in normal controls;
0.5 ± 0.16 in PBD samples). An electromyogram and nerve conduction
study (EMG/NCS) was performed and showed prolonged sensory
and motor latency with slow conduction velocity consistent with a
demyelinating neuropathy. Over the course of her teenage years, she
underwent a progressive functional decline eventually becoming
wheelchair bound at age 15 years (Data in Brief Fig. 1A). Specific DNA
diagnostic tests for neurodegenerative disorders were uninformative
including molecular testing for several forms of spinocerebellar ataxia
(SCA1, SCA2, SCA7, SCA10), Friedreich ataxia (FRDA), spastic paraplegia
(SPG3, SPG4, SPG8, SPG1), Pelizaeus–Merzbacher (PLP), pantothenate
kinase deficiency (PANK2), Dentatorubral-pallidoluysian atrophy
(DRPLA), cerebrotendinous xanthomatosis and several other leukodys-
trophies (GJA12, EIF2B5, EIF2B4, EIF2B2, EIF2B3, EID2B1) (Data in Brief
Fig. 1B).

Her MRI studies (age 10 years and 19 years shown) showed
evidence of diffuse T2 hyperintesity of her white matter (Fig. 1B versus
a control MRI in Fig. 1A), which worsened with age (Fig. 1C). She also
developed cerebellar volume loss, as evidenced by prominence of her
folia (purple arrows, Fig. 1E versus a control MRI in Fig. 1D) which
also worsened with age (Fig. 1F).

3.2. WES results

At age 21 years, whole exome sequencing was performed and it
revealed a homozygous, three-nucleotide in frame deletion mutation
in the PEX16 gene causing an F332del (Fig. 1G). Both parents were het-
erozygous for thismutation. This mutation is at the extreme C-terminus
of the PEX16 protein within a cytoplasmic domain[6,23], and deletes a
highly conserved phenylalanine (Additional variants in this case in
Data in Brief Table 2).

This variant was not found within the ExAC browser data, [Exome
Aggregation Consortium (ExAC), Cambridge, MA (URL: http://exac.
broadinstitute.org) accessed July 2015].

3.3. Peroxisomal biochemical analysis

At age 22 years plasma and fibroblast analysis of peroxisomal
function was undertaken. The level of C26:0 was normal (0.31 μg/ml,
Normal controls 0.23 ± 0.09), with a subtle increase in the ratio of
C24/C22 and C26/C22 (Z-scores 3.75 and 3.5 respectively, compared
to 12.3 and 122.5 for PBD samples) (Fig. 1H–I).

She had no evidence of defects in plasmalogen synthesis (Fig. 1J),
phytanic acid oxidation (Fig. 1K), nor pristanic acid oxidation (Fig. 1L).
Moreover, the plasma bile acids, catalase solubility and lyso phosphati-
dylcholines were also normal (Data in Brief Fig. 2A–C). There was a
higher C26/C22 ratio in fibroblasts (Z-score 5.0) suggesting a VLCFA
defect, although this was significantly milder than what has been
observed in patients with PBD (Z-score 38.0). (Fig. 1M).

4. Discussion

Our patient represented a diagnostic unknown prior to WES. She
underwent a progressive neurodegeneration, and screening of plasma
VLCFA's did not suggest PBD initially. Her diagnostic odyssey reflected
a patient with a previously undescribed ataxic leukodystrophy. It was
only after WES that a PBD could be identified. Our patient's clinical
phenotype was retrospectively similar to cases of an unusual variant
disorder with progressive paraparesis and ataxia due to PEX16
mutations recently reported including one patient with a mutation in
an adjacent amino acid to that of our patient (Fig. 1G)[3]. However, in
contrast to our patient, these individuals were identified based on plas-
ma VLCFA abnormalities. Indeed, our patient's plasma C26/C22 ratio in
three measurements was 0.022, 0.02 and 0.024 at 10, 11 and 22 years
respectively, while the 6 other cases of atypical disorders due to PEX16
mutations had slightly higher ratios (range 0.03–0.25)[3]. It remains
to be determined how common these atypical peroxisomal are, but
clearly in this case next-generation sequencing was necessary for
diagnosis because of mild plasma biochemical analytes.

5. Conclusion

This case points to the value of next-generation sequencing in ataxia
phenotypes, when biochemical measurements of peroxisomal
pathways are mild. Mutations in PEX16 and other PEX loci may underlie
similar undiagnosed ataxia phenotypes and further studies are needed
into these atypical cases.
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