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Abstract: Epilepsy is one of the most ordinary neuropathic illnesses, and electroencephalogram
(EEG) is the essential method for recording various brain rhythm activities due to its high temporal
resolution. The conditional entropy of ordinal patterns (CEOP) is known to be fast and easy to
implement, which can effectively measure the irregularity of the physiological signals. The present
work aims to apply the CEOP to analyze the complexity characteristics of the EEG signals and
recognize the epilepsy EEG signals. We discuss the parameter selection and the performance analysis
of the CEOP based on the neural mass model. The CEOP is applied to the real EEG database of Bonn
epilepsy for identification. The results show that the CEOP is an excellent metrics for the analysis
and recognition of epileptic EEG signals. The differences of the CEOP in normal and epileptic brain
states suggest that the CEOP could be a judgment tool for the diagnosis of the epileptic seizure.

Keywords: epileptic seizure; electroencephalogram (EEG); conditional entropy of ordinal patterns
(CEOP); neural mass model; recognition

1. Introduction

The diagnosis of neurological diseases has always been difficult and challenging problems in
the biomedical field. As we have known, epilepsy is one of the most ordinary neuropathic illnesses.
Epileptic seizure makes many serious consequences about the patients’ physiology and psychology in
their daily lives and disrupts the normal cognition, consciousness, sleep, emotion, etc. [1,2]. Abnormal
firing of neurons in different parts of the brain results in a variety of biological manifestations, and
epilepsy is caused by disordered excessive or hyper-synchronous neuronal activity, which is recurrent
and unprovoked seizures [3–5]. Thus, it is necessary to understand the pathogenesis mechanism
of various neurological and mental diseases. Computational models deliver a potential means for
offering an explanation for brain activities and disorders by mathematical modeling. It improves our
understanding of abnormal brain electrical activities [6]. After many years, the computational neural
model has derived a variety of variations and it has been well used in [7–9]. We employ the widely
used neural mass model with nonlinear lumped parameters that can simulate various physiological
signals in this work [10]. This mesoscopic model provides several interconnected neural masses that
are characterized by a handful of state variables to interpret plentiful complex physiological and
pathological phenomena.

EEG plays a crucial and significant role in the diagnosis of epilepsy [11,12]. However, long-term
visual examination is time-consuming and considerably laborious, and it may produce unnecessary
human empirical error. Thus, recognizing epileptic electroencephalogram (EEG) automatically and
effectively is urgent and vital research. Recent studies have shown various automatic seizure prediction
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and distinction methodologies. Polat and Günes performed the classification of epileptiform EEG
while using a hybrid system that was based on decision tree classifier and Fast Fourier Transform (FFT),
and it obtained great classification accuracy [13]. Vézard and Legrand used common spatial pattern
(CSP) combined with linear discriminant analysis (LDA) to establish a decision structure to predict
the subjects’ alertness [14]. Yuan and Zhou developed an approach to detect seizures employing
log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings [15]. Seo
and Tsuda proposed a new method that was based on the dynamic mode decomposition (DMD) in
order to find a distinctive contrast between the ictal and inter-ictal patterns [16]. When compared with
previous time-domain analysis, frequency-domain analysis, and time-frequency analysis [17,18], the
entropy based nonlinear analysis method has been applied to characterize brain activities to research
the pathophysiological mechanisms underlying the neurological conditions [19,20]. Entropy is a
metrics which is different from fractal dimension, and it is a kind of index to measure the probability
of new pattern in nonlinear time series. Using the entropy measure effectively and obtaining the
corresponding entropy index can help us better analyze and understand the complex and interesting
brain activities. Echegoyen and López-Sanz studied the differences between permutation entropy (PE)
and statistical complexity (SC) in broadband signals and the decomposition into frequency bands,
showing that SC does not necessarily decrease in Alzheimer’s Disease (AD) [21]. Harezlak and
Kasprowski used fuzzy entropy (FE) in order to reveal eye movement signal characteristics, and
this classification produced an improvement in the accuracy for saccadic latency and saccade [22].
Hussain and Wang put forward a new entropy index of permutation fuzzy entropy (PFEN), which
may delineate the epileptic seizure between ictal and inter-ictal state while using different machine
learning classifiers [23]. Nicolini and Forcellini used a novel information-theoretic approach based on
Von-Neumann entropy. They provided a measure of information encoded in the networks at different
scales and defined a measure of distance between networks [24]. Increasing research results show that
entropy measurement is successful and effective in the analysis and recognition of EEG signals, which
encourages us to focus on exploring more methods to be applied in practice and study more brain
function, so as to better serve society in health care.

In our previous works, we successfully applied the modified permutation entropy (MPE) and
approximate entropy (AE) to the analysis of EEG signals, not only provided a new method for epilepsy
detection and quantitative analysis [25], but also applied the entropy algorithm to the modulation
process of the abnormal brain rhythm [26]. Now, we concentrate on the conditional entropy of ordinal
patterns (CEOP) combined with the support vector machine (SVM) in order to analyze and recognize
the epileptic EEG signals. Unakafov and Keller first proposed the CEOP [27], and the ordinal pattern
based algorithm is easy and fast to implement. It can overcome the high computational cost [28]. In
the latest research, Unakafov and Keller introduced the statistic based on CEOP that characterized
the local up and down in the time series, and the proposed method did not detect pure level changes,
but rather changes in the intrinsic pattern structure of the time series [29]. Mougoufan and Fouda
creatively employed CEOP to the detection of abnormal ECG beats and achieved good results [30].
Rubega and Scarpa used the CEOP with other metrics in order to assess the complexity in Euglycemia
and Hypoglycemia, and gained the accurate classification of the glycemic state through EEG data [31].
In this work, we also successfully fulfill the analysis and recognition of the epilepsy EEG signals based
on the CEOP which provides a basis for us to study the mechanisms of the brain diseases.

The rest of the paper is organized, as follows: Section 2 presents an overview about the Bonn
epilepsy EEG database and the neural mass model. The Bonn epilepsy EEG database is commonly
used in recognition of the epilepsy EEG signals, and the neural mass model can simulate various EEG
signals by setting different parameters. Section 3 introduces the overall scheme and the methods used.
Section 4 is the main related results. We introduce the influence of various parameters on the CEOP
with the help of the neural mass model. In addition, the distinguishing ability of the CEOP under
different epileptic intensity and noise intensity is discussed. We also make a comparison between the
CEOP and some existing entropy algorithms, like PE and MPE. Subsequently, we employ the Bonn
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epilepsy EEG database in order to verify the proposed approach. Section 5 gives some discussions of
the proposed scheme, and the advantages and limitations of the proposed scheme are discussed in
combination with the experimental results. Finally, Section 6 gives some concluding remarks.

2. Materials

2.1. Bonn Epilepsy EEG Database

The Bonn epilepsy database is maintained by the Department of Epileptology, University of Bonn,
which includes five data sets, denoted by A-Z, B-O, C-N, D-F, and E-S. Each data set is composed
of 100 single-channel scalp or intracranial EEG with sampling frequency 173.61 Hz and 12-bit A-D
resolution. Table 1 summarizes details of the Bonn epilepsy database.

Table 1. Summary of the Bonn epilepsy electroencephalogram (EEG) database.

Category
Data Sets A-Z B-O C-N D-F E-S

Experimental subject Five healthy volunteers Five epilepsy patients
EEG type Scalp Scalp Intracranial Intracranial Intracranial

EEG EEG EEG EEG EEG
Subject status Awake, Awake, Inter-ictal Inter-ictal Ictal

eyes open eyes closed stage stage stage
Electrode placement International International Hippocampus Within Within

10-20 10-20 opposite to epileptogenic epileptogenic
system system hemisphere zone zone

Number of subsets 100 100 100 100 100
Sampling points 4097 4097 4097 4097 4097

Sampling frequency 173.61Hz 173.61Hz 173.61Hz 173.61Hz 173.61Hz

2.2. Neural Mass Model

We consider to adopt it in the analysis of the epileptic EEG signals based on the advantages of the
neural mass model to simulate brain activities. The single neural mass model presented in Figure 1 is
constitutive of the pyramidal cells and interneurons. The pyramidal cells receive excitatory feedback
he2(t) and inhibitory feedback hi(t) from the interneurons. The interneurons only receive the excitatory
inputs he1(t). The impulse response of the linear transfer function is given by:

hem(t) = ξ(t)Aate−at, m = 1, 2.
hi(t) = ξ(t)Bbte−bt (1)

where ξ(t) is the Heaviside function. Six first-order ordinary differential equations can describe the
single neural mass model:

ẋ1(t) = x2(t)
ẋ2(t) = AaS (x3(t)− x5(t))− 2ax2(t)− a2x1(t)
ẋ3(t) = x4(t)
ẋ4(t) = Aa[p(t) + C2S(C1x1(t))]− 2ax4(t)− a2x3(t)
ẋ5(t) = x6(t)
ẋ6(t) = BbC4S (C3x1(t))− 2bx6(t)− b2x5(t)

(2)

The variables x1(t), x3(t), and x5(t) are the outputs of different types of postsynaptic potential
blocks, while x2(t), x4(t), and x6(t) are the time derivatives of x1(t), x3(t), and x5(t), respectively.
The parameters A and B are average excitatory and inhibitory synaptic gains that determine the
maximal amplitude of the postsynaptic potentials. The parameter a is the membrane average time
constant, and b is the average distributed time delays in the dendritic tree. The constants C1, C2, C3,
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and C4 account for the intrinsic circuitry and average number of synaptic contacts, which summarize
the interactions between the pyramidal cells and the interneurons. The input p(t) is the afferent
influence from neighbouring or more distant populations. It is represented by a pulse density which
can be any arbitrary function including white noise [10,32,33]. The static nonlinear transfer function
S(v) has the sigmoid form:

S(v) =
2e0

1 + er(v0−v)
(3)

where 2e0 is the maximum firing rate, v0 is the postsynaptic potential corresponding to a firing rate e0,
and r is the steepness of the sigmoid. The output of the neural mass model is defined as:

y(t) = x3(t)− x5(t) (4)

All of the parameters are set on a physiological basis, and the setting of them was summarized
in [10,32,33]. The standard values are listed, as follows.

A = 3.25 mV, B = 22 mV, a = 100 s−1, b = 50 s−1,
C1 = 135, C2 = 108, C3 = 33.75, C4 = 33.75,

v0 = 6 mV, e0 = 2.5 s−1, r = 0.56 mV−1.
(5)

The model with the standard parameters can produce well-defined alpha rhythms in the EEG signals.
The alteration of some key parameters, like A, may result in the epileptiform spikes in the EEG signals.
Increasing A leads to the aberrant outputs that resemble the real EEG signals that are related to some
neuropsychiatric disorders [10]. The neural mass model produces the inter-ictal EEG signals when
A = 3.4 mV and the ictal EEG signals as A increases to more than 3.4 mV. We set the excitability gain
parameter A = 3.8 mV for the sake of research.
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Figure 1. The structure and block diagram of the neural mass model: (a) the simplified structure of the
neural mass model. (b) The block diagram of the neural mass model.

3. Scheme and Methods

3.1. Conditional Entropy of Ordinal Patterns

Ordinal pattern based algorithms are used to measure the complexity in time series broadly
and effectively, and the ordinal pattern is the basis of the conditional entropy. The CEOP takes
the order relation between samples of the time series into account instead of the values themselves.
It characterizes the diversity of successors of a given ordinal pattern, whereas other algorithms
always characterize the diversity of ordinal patterns themselves. Thus, it is obvious that the CEOP
characterizes the average diversity of the ordinal patterns. The CEOP can not only measure the
irregularity of the signals effectively, but it also has good anti-noise and anti-interference ability [27].
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Figure 2 illustrates the flow chart of the conditional entropy of ordinal patterns, and the process is
as follows.

(1) Given the time series:
(xi)

N
i=1 = (x1, x2, · · · , xi, · · · , xN) (6)

and determine the ordinal pattern order d and the time delay τ. The ordinal pattern order d may be 3,
4, 5, 6, and 7, as shown in [34–36]. The time delay τ between the successive points is selected as 1 s−1

empirically. We will discuss the effects of different ordinal pattern order d and time delay τ on the
CEOP that is based on the neural mass model in Section 4.

(2) Calculate the probability of pairs of ordinal patterns pj and qj,l , and the ordinal pattern l occurs
after the ordinal pattern j.

pj =
{i ∈ I | Λ has ordinal pattern j}

N − dτ − τ
(7)

qj,l =
{i ∈ I | Λ and Θ have ordinal pattern j and l}

{i ∈ I | Λ has ordinal pattern j} (8)

for
I = {dτ + 1, dτ + 2, · · · , N − τ} (9)

and
Λ = (xi, xi−τ , · · · , xi−dτ), Θ = (xi+τ , xi, · · · , xi−(d−1)τ) (10)

(3) Calculate the CEOP of ordinal pattern order d and time delay τ.

CEOP(d, τ, (xi)
N
i=1) = −

(d+1)!−1

∑
j=0

(d+1)!−1

∑
l=0

pjqj,l ln(pjqj,l) +
(d+1)!−1

∑
j=0

pj ln pj (11)

The negative log of the probability represents the amount of information that is carried by a possible
event. Multiply the amount of information possible by the probability that it is going to happen, then
sum them up. The formula (11) can be simplified, as follows.

CEOP(d, τ, (xi)
N
i=1) = −

(d+1)!−1

∑
j=0

(d+1)!−1

∑
l=0

pjqj,l ln qj,l (12)

The more complex the system is, the more different kinds of situations there are, and the higher
entropy. On the contrary, the simpler the system, the smaller the number of situations, and the lower
the entropy will be [27–29]. In the extreme cases, there is only one case where the entropy is zero.
Intuitively, extremely large entropy means that the system is infinitely complex and chaotic. Indeed,
the higher the diversity of ordinal patterns of order d in the time series, the larger the value of the
CEOP . According to [28], the range of values of the CEOP is as follows.

0 ≤ CEOP(d, τ, (xi)
N
i=1) ≤ ln(d + 1) (13)

In other words, the larger order d, the better estimation of complexity underlying the system by the
CEOP. However, excessively high d may lead to an underestimation of the complexity of the system.
In the finite length range of the time series, not all ordinal patterns that respresent the system can occur.
In [28], the relationship between N and d is given, as follows.

(d + 1)(d + 1)! < N (14)
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Figure 2. The flow chart of the conditional entropy of ordinal patterns.

3.2. Variation Coefficient

In order to be able to clearly see the difference of the CEOP between the normal state and epileptic
state, we define η in order to represent the difference, and the variation coefficient η can be defined as:

η =
|CEOPnormal −CEOPseizure|

CEOPnormal
(15)

where CEOPnormal is the entropy value of the normal state and CEOPseizure is the entropy value of
the epileptic state. We set the excitability gain parameter A to 3.25 mV and 3.8 mV for the normal
state and the epileptic state, as shown in Section 2.2. The η is affected by the algorithm parameters,
including ordinal pattern order d and time delay τ, and the model parameters including excitability
gain parameter A and input Gaussian white noise p(t). We will discuss the change law on the variation
coefficient η by setting different parameters in Section 4. The η is between 0 and 1; the larger its value,
the more obvious the difference between the normal state and epileptic state, and the better recognition
effect of the CEOP.

3.3. k-Fold Cross-Validation

The k-fold cross-validation is a statistical method for eliminating the training bias that is caused
by the sampling randomness. It can extract as much useful information as possible from the limited
data. Thus, we consider adopting it to evaluate the classification performance of training the SVM
classifier. The process of the k-fold cross-validation is summarized, as follows.

(1) The data set Φ is divided into k disjoint subsets of the same size. The corresponding subsets are
denoted as {Φ1, Φ2, · · · , Φk}. The number of samples in Φ is m. Each subset has m

k samples.
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(2) Select Φi as the testing set in the subsets, and {Φ1, · · · , Φi−1, Φi+1, · · · , Φk} are the training sets.
The experiment is carried out in order to obtain the corresponding accuracy of the classification.
(3) After a total of k experiments, the average accuracy of the classification is obtained. The higher the
average accuracy, the better the classification performance.

We choose 10-fold cross-validation in this work.

3.4. Evaluation Index

In a typical binary classification problem, suppose there are a set of test samples that fall into
only two categories: positive and negative. The predicted value is positive, which is P (Positive)
and the predicted value is negative, which is N (Negative). The predicted value is the same as the
true value, which is T (True) and the predicted value is contrary to the true value, which is F (False).
The representations are summarized in Table 2. The total number of true positive examples in the
sample is TP+FN, and the TPR is the true positive rate as TP/(TP+FN). Similarly, the total number
of true counterexample categories in the sample is TN+FP and the FPR is the false positive rate as
FP/(TN+FP). The Receiver Operating Characteristic (ROC) curve is the drawing of the corresponding
TPR and FPR that resulted in the two-dimensional coordinate system, where the horizontal axis is
represented by FPR. The AUC (Area Under ROC Curve) value is the area that is covered by the ROC
curve, and the larger the AUC, the better the classification effect. In addition, other evaluation indexes
are defined, as follows.

Sensitivity =
TP

TP + FN
(16)

Specificity =
TN

TP + FN
(17)

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Sensitivity is the number of true positives/the total number of ictal EEG epochs that are labeled by
the EEG specialists, and true positive represents the ictal EEG identified by algorithm and experts.
Specificity is the number of true negatives/the total number of inter-ictal EEG epochs that are labeled
by the EEG specialists, and true negative represents the inter-ictal EEG identified by algorithm and
experts. Accuracy is the number of correctly identified epochs/the total number of epochs.

Table 2. Some concepts between the true values and predicted values.

Category True Value Predicted Value

TP positive positive
FP negative positive
TN negative negative
FN positive negative

3.5. Overall Scheme

This part is mainly to give the overall research scheme, and the scheme of the recognition of the
Bonn epilepsy EEG database that is based on the CEOP is shown in Figure 3. The main idea is to
select the CEOP as the eigenvector in feature extraction, then feed it to the SVM classifier in order to
recognize the epileptic EEG signals. The optimal parameters of calculating the CEOP are obtained by
means of the analysis of the neural mass model and the variation coefficient. Grid search and 10-fold
cross-validation determine the optimal parameters of SVM , and then the optimal SVM classifier model
is obtained. Section 4 will provide the division of the data sets, the processes of the feature extraction
and classification, and the results of specific evaluation index.

Based on the unique advantages of the support vector machine (SVM) in solving the pattern
recognition with small sample and high dimension, we consider applying it to the classification of the
epilepsy EEG signals [37]. Penalty factor c is a key parameter in SVM and it plays a role in balancing
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the generalization ability and fitting ability of the model. The SVM classifier can address the linear or
nonlinear classification problems by setting different kernel functions. In this work, we use the radial
basis function (RBF) as the kernel function of the SVM classifier. g is the width parameter of the RBF,
and it mainly affects the complexity of the distribution of sample data in the high-dimensional feature
space [38]. The calibration of the penalty factor c, the width parameter of the RBF g, and the training
bias that is caused by the small sample are the difficulties in the practical application of SVM. In this
paper, the grid search is used in order to optimize the parameter pair (c, g) simultaneously, which
avoids the local optimization. The 10-fold cross-validation is used to evaluate the training performance
of the SVM classifier model. In the subsequent experiments, these are accomplished using the toolkit
libsvm on MATLAB 2015a. The optimization of the parameters of the SVM classifier based on 10-fold
cross-validation and grid search is concluded in Algorithm 1.
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Figure 3. The scheme of the recognition of the Bonn epilepsy EEG database based on the conditional
entropy of ordinal patterns (CEOP).



Entropy 2020, 22, 1092 9 of 20

Algorithm 1: Optimizing the parameters of the Support vector machine (SVM) classifier based
on 10-fold cross-validation and grid search.

Input: The limits of penalty factor c including cmin = −5 and cmax = 5, the limits of width
parameter g of the RBF including gmin = −5 and gmax = 5;

Output: The best penalty factor cb, the best width parameter of the RBF gb and the best
accuracy of cross-validation accb;

1 Initialize cb = 0, gb = 0 and accb = 0;
2 for c = 2cmin : c = 2cmax do
3 for g = 2gmin : g = 2gmax do
4 Start: Perform a 10-fold cross-validation;
5 Step1: The training set is divided into 10 parts on average;
6 Step2: One part of which is selected as the testing randomly, and the remaining 9

parts as the training are to obtain a classification accuracy;
7 Step3: The cycle is repeated to ensure that each part has been used as a testing,

and the average of all classification accuracies is taken and denoted as acc;
8 End: A 10-fold cross-validation is ended and the parameter pair (c,g) is obtained;
9 if acc > accb then

10 accb = acc, gb = g and cb = c;
11 end
12 end
13 end
14 Return cb, gb and accb;

4. Results

We use the CEOP combined with the neural mass model in order to discuss the different traits
from normal state, inter-ictal state to ictal state. The model is used to simulate the non-epileptic and
epileptic EEG signals by setting different excitability gain parameter A (A = 3.25 mV, A = 3.4 mV
and A = 3.8 mV) in this work. The mean and variance (corresponding to a rate of 30–150 pulses/s)
of the p(t) are adjusted so that the neural mass model can produce the signals that are similar to the
spontaneous EEG recorded from neocortical structure electrodes, thus p(t) is modeled by a Gaussian
white noise with mean value 101 and standard deviation 35 in this work [32,39]. The higher mean
value means greater noise intensity. We keep the rest of the parameters standard. The ordinary
differential equations (2) are solved by using the fourth-order Runge–Kutta method with time
step 0.005 for 30,000 time steps. In addition, our experiment on the CEOP is aided by the OPA
(ordinal-patterns-analysis) toolbox in MATLAB 2015a in this work, and the OPA toolbox is intended
for the nonlinear analysis of multivariate time series, such as the EEG signals. It becomes increasingly
widely used in ordinal-patterns-based measures, which is easily computed and visualized.

The results presented in Figure 4 give an intuition that the CEOP between the normal state
(A = 3.25 mV) and the inter-ictal state (A = 3.4 mV) is similar, both of which are relatively high,
especially when there is a decrease in sporadic spikes. The CEOP during the ictal state (A = 3.8 mV) is
lower, which can be used as a feature for distinguishing the epileptic EEG signals. We will discuss the
reasons for this phenomenon and give some reasonable explanations in the next parts.
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Figure 4. The output of the model by setting different excitability gain parameters A, and the
corresponding values of the CEOP: (a) The waveforms in three states. (b) The values of the CEOP in
three states.

4.1. Parameters Selection of the CEOP

4.1.1. Ordinal Pattern Order d

In this part, we mainly illustrate the effect of the ordinal pattern order d on the CEOP, and then
choose the doptimal . The constant before simulation is set as the time delay τ = 1 s−1, and others are
standard values. Figure 5 illustrates that the CEOP gradually decreases in the epileptic state with
the increase of d, but the CEOP is basically the same in the normal state, and the variation coefficient
η decreases. The change can be seen, but it is not very strong; this shows that the sensitivity of the
ordinal pattern order d on CEOP is small, and the change of d does not affect the accuracy of the
recognition strongly. Although d has little sensitivity and there is no strong impact on the accuracy,
the increase of d will increase the calculation cost and complicate the recognition processes. When
considering this layer, it is reasonable to choose doptimal = 3 and apply it to the subsequent recognition
experiment of the epileptic EEG signals.
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Figure 5. The effects of the ordinal pattern order d on the CEOP and the variation coefficient η: (a) The
error bars of the CEOP under different ordinal pattern order d. (b) The law of change in the variation
coefficient η.
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4.1.2. Time Delay τ

In this part, we mainly introduce the effect of the time delay τ on the CEOP, and then choose the
τoptimal . Previous studies have mostly chosen τ based on the experience, and we hope to illustrate the
influence of the selection of τ on the CEOP by means of the neural mass model. The constant before
simulation is set as the ordinal pattern order d = 3 and others are standard values. The τ describes
the time delay between the successive points in the symbol sequences. Figure 6 shows that, with the
increase of τ, the CEOP increases in the epileptic state and normal state, but, in the case of τ = 1 s−1,
the CEOP has the best discriminating ability in Figure 6b. Thus, τoptimal is set as 1 s−1, which is applied
to the subsequent recognition experiment of the epileptic EEG signals.
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Figure 6. The effects of the time delay τ on the CEOP and the variation coefficient η: (a) The error bars
of the CEOP under different time delay τ. (b) The law of change in the variation coefficient η.

To sum up, we examined two parameters that are important for the CEOP, and those are the
ordinal pattern order d and the time delay τ. Here, we did not consider the sample size N. The early
research [35] has emphasized that the length of the sequences are determined then the number of
possible permutation patterns are determined. In our work, both N and d follow formula (14), and
then we can only discuss one parameter, which is the ordinal pattern order d, which is more intuitive
and of research significance. Both [35,36] discussed the influence of the selection of the parameters on
the analysis and recognition of the EEG signals, including d and τ, and the ordinal pattern order d may
be 3, 4, 5, 6, and 7, which were with little difference. And the τ was supposed to be selected was 1 s−1.
We gain the conclusion about d and τ to be proved basically as the same as [35,36]. However, instead
of theoretical derivation and proof, they conducted a comprehensive survey of previous studies then
led to the conclusion. It is a little bit more persuasive to determine the parameters that are based on
the neural mass model with the help of variation coefficient η. In Figure 5b, the results show that the
effect is slightly better than the others when d = 3, and may reduce the corresponding calculation cost
and simplify the experimental procedures. Thus, we will employ doptimal = 3 and τoptimal = 1 s−1 to
do the following research.

4.2. Performances Analysis of the CEOP

We also design the comparison experiments and do a performance analysis about the PE, MPE,
and CEOP, in order to facilitate the analysis and understanding of the effectiveness of the CEOP. These
three algorithms are of the same type, and the results can effectively illustrate the advantages of
the CEOP.
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4.2.1. The Analysis Result of Signals under Different Excitability Gain Parameter A

In this part, we mainly illustrate the effects of the seizure intensity by means of the excitability
gain parameter A, and the constants before simulation are set as the ordinal pattern order doptimal = 3
and the time delay τoptimal = 1 s−1, and others are standard values.

Table 3 illustrates the mean and standard deviation of the entropy value under different excitability
gain parameters A. The three entropies are similar in the normal and epileptic state. All of the three
are relatively high in the normal state and low in the epileptic state. The entropy tends to be stable in
the epileptic state and it does not change with the increase of the seizure intensity. Due to the relatively
low amplitude and high oscillation frequency of the normal EEG signals the entropy is higher, which
indicates that the time series are the most complex. The continuous discharge during epileptic seizures
has relatively high amplitude and low oscillation frequency, and the entropy is lower, indicating that
there are the most regular time series. The complexity of the continuous discharge in the epileptic state
is significantly lower than the normal EEG signals and the sporadic spikes of the inter-ictal state, so it
is easy to distinguish the epilepsy EEG signals. The mean value of the CEOP is less than the PE and
MPE in Table 3, and the CEOP makes the best distinction performance in Figure 7a. With the increase
of the A, the seizures are becoming increasingly serious, and it is clear that the effect of the recognition
of the CEOP is always the best of the three.

Table 3. Statistical values of the permutation entropy (PE), modified permutation entropy (MPE), and
CEOP under different excitability gain parameter A.

Category A (mV)
Mean Std

PE MPE CEOP PE MPE CEOP

Normal 3.25 0.6124 0.6164 0.5590 0.0319 0.0230 0.0468

Seizure

3.6 0.2628 0.2686 0.1031 0.0302 0.0133 0.0205
3.8 0.2590 0.2604 0.0872 0.0135 0.0111 0.0098
4.0 0.2660 0.2675 0.0913 0.0064 0.0053 0.0062
4.2 0.2722 0.2741 0.0973 0.0132 0.0102 0.0093
4.4 0.2780 0.2804 0.1021 0.0164 0.0083 0.0114
4.6 0.2810 0.2836 0.1055 0.0172 0.0042 0.0120
4.8 0.2851 0.2879 0.1087 0.0167 0.0021 0.0120

4.2.2. The Analysis Result of Signals under Different Input Gaussian White Noise p(t)

In this part, we mainly introduce the effects of the noise intensity by means of the input Gaussian
white noise p(t), and the constants before simulation are set as the ordinal pattern order doptimal = 3,
and the time delay τoptimal = 1 s−1, and others are standard values.

Table 4 shows the mean and the standard deviation of the entropy value under different input
Gaussian white noise p(t) in the normal and epileptic state. The p(t), which is simulated by the
Gaussian white noise, represents excitatory effects from adjacent or distant clusters of the cells in the
neural mass model. The increase of the p(t) exacerbates this effect, which increases the excitability of
the neural population. With the increase of the noise intensity, all three entropy values decrease, but
finally tend to be stable, indicating that there is a continuous discharge in the epileptic state. Figure 7b
illustrates that the anti-noise capability of the CEOP is the best among the algorithms of the same
type, there is no denying that this ability will decrease slightly with the increase of the noise intensity.
In the process of measuring bioelectrical signals, many noises will be mixed in the results due to
the interference of instruments and human beings. The application of the CEOP can deal with these
problems well.
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Table 4. Statistical values of the PE, MPE, and CEOP under different input Gaussian white noise p(t).

Category pavg
Mean Std

PE MPE CEOP PE MPE CEOP

Normal (A = 3.25 mV)

81 0.6143 0.6184 0.5600 0.0336 0.0234 0.0510
91 0.6109 0.6150 0.5572 0.0297 0.0207 0.0432

101 0.6089 0.6128 0.5572 0.0327 0.0224 0.0508
111 0.6142 0.6187 0.5636 0.0356 0.0207 0.0514
121 0.3455 0.3505 0.1877 0.0396 0.0281 0.0468

Seizure (A = 3.8 mV)

81 0.4245 0.4301 0.3109 0.0565 0.0361 0.0705
91 0.2578 0.2626 0.0994 0.0305 0.0129 0.0200

101 0.2569 0.2585 0.0857 0.0146 0.0116 0.0102
111 0.2690 0.2703 0.0916 0.0053 0.0042 0.0052
121 0.2777 0.2793 0.0973 0.0120 0.0095 0.0088
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Figure 7. The law of change in the variation coefficient η under different seizure intensity and noise
intensity: (a) The effects of the excitability gain parameters A on the variation coefficient η. (b) The
effects of the input Gaussian white noise p(t) on the variation coefficient η.

4.3. Experimental Processes and Results

Table 1 summarizes details of the Bonn epilepsy EEG database. Each set contains 100
single-channel segments of 23.6 s duration from continuous EEG recordings, which are cut out after
visual selection for artifacts. All of the EEG signals are band-pass filtered at 0.53–40 Hz [40]. We select
all data sets to conduct the experiment to distinguish the epileptic and non-epileptic EEG signals. We
extract the CEOP of all data sets with ordinal pattern order doptimal = 3 and time delay τoptimal = 1 s−1.
For each set of the database, we randomly select a sample, whose wave and corresponding CEOP are
shown in Figure 8. We can clearly see that the CEOP between the normal state (A-Z, B-O) and the
inter-ictal state (C-N, D-F) are at a high level, which illustrates that there are low amplitude and high
oscillation frequency, and the states are more complex. The epileptic spikes during seizures (E-S) is
high amplitude and low oscillation frequency, thus its state is regular. To illustrate the difference of the
features distribution better, we set up the boxplots by selecting ten group samples randomly for each
set in Figure 9. The boxplots can visually judge the discrete distribution of the data and not be affected
by outliers. We can clearly see that the CEOP in the ictal state is completely different from those in the
other two states, which shows that it is meaningful to use the CEOP as a recognition metric.
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Figure 8. The original waveform and its corresponding values of the CEOP: (a) The waveform and
the CEOP of A-Z. (b) The waveform and the CEOP of B-O. (c) The waveform and the CEOP of C-N.
(d) The waveform and the CEOP of D-F. (e) The waveform and the CEOP of E-S.
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Figure 9. The boxplots of the distribution of the CEOP: (a) The CEOP of 10 groups of A-Z. (b) The
CEOP of 10 groups of B-O. (c) The CEOP of 10 groups of C-N. (d) The CEOP of 10 groups of D-F. (e) The
CEOP of 10 groups of E-S.

The above analysis illustrates that the CEOP can be used as the feature vector to be input into
the SVM classifier for recognition. Next, we identify the epileptic EEG signals that are based on the
SVM. The recognition of epileptic activity (E-S) is performed against normal activity (A-Z and B-O)
and inter-ictal activity (C-N and D-F), establishing four different binary classification problems. We
mark A-Z, B-O, C-N, and D-F as the positive class, respectively, and E-S as a negative class in each
experiment. We set the ratio of the training set to the testing set to be 8 : 2. In each binary classification
experiment, the capacity of randomly selected training samples is 160 including 80 positive samples
and 80 negative samples, and the capacity of testing samples is 40, including 20 positive samples and
20 negative samples.

Grid search and 10-fold cross-validation are combined to determine the best parameter pair (c, g)
in order to overcome the disadvantages of the over-learning and under-learning caused by parameters
selection randomly in the SVM classifier. The contour map of the parameter pair (c, g) optimized in
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the SVM classifier (3D view) is in Figure 10. The parameter pair (c, g) corresponding to the point with
the highest of the accuracy of the cross-validation acc is the best parameter pair. The best penalty factor
cb and the best width parameter of the RBF gb are in Table 5.
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Figure 10. The contour map of the parameters optimized in the SVM classifier (3D view): (a) parameters
optimized of SVM in the classification of A-Z and E-S. (b) Parameters optimized of SVM in the
classification of B-O and E-S. (c) Parameters optimized of SVM in the classification of C-N and E-S. (d)
Parameters optimized of SVM in the classification of D-F and E-S.

Table 5. The best parameters of the SVM classifier and the accuracy of cross-validation.

Category
Classification A-Z, E-S B-O, E-S C-N, E-S D-F, E-S

cb 1 1 1.4142 2
gb 0.0313 0.0313 0.0313 0.0313

accb (%) 96.25 81.25 90.63 88.75

The optimized SVM classifier model is used to test the testing set after determining the optimal
parameters of the SVM classifier. The sensitivity, specificity, accuracy and AUC are shown in Table 6.
As we all know, when the value of AUC is 1, it is a perfect classifier. The sensitivity refers to the
correct degree of the patient, that is, the percentage of the actual illness that is diagnosed correctly.
The sensitivity of A-Z and E-S is best. The specificity is the degree that a non-patient is correctly
identified, which is, the percentage of patients who are correctly diagnosed is being free of disease.
The specificity of C-N and E-S is best. The accuracy refers to the result of the classification of testing
set by optimized SVM classifier, and the recognition of A-Z and E-S has the best accuracy. Figure 11
shows the ROC curve. The curve is on the upper left of the diagonal, and the farther away it is, the
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better the classification is. The classification effect of A-Z and E-S is the best, followed by C-N and E-S,
D-F, and E-S, and B-O and E-S. We will introduce the interpretation in the next section.

Table 6. The performance of the recognition represented by four evaluation indexes.

Evaluation Index
Classification A-Z, E-S B-O, E-S C-N, E-S D-F, E-S

Sensitivity (%) 100 80.00 88.46 86.96
Specificity (%) 89.47 80.00 100 82.35
Accuracy (%) 95.00 80.00 92.50 85.00

AUC 1 0.8747 0.9923 0.9565
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Figure 11. The ROC curves in the recognition of the epilepsy EEG signals: (a) The ROC curve of A-Z
and E-S. (b) The ROC curve of B-O and E-S. (c) The ROC curve of C-N and E-S. (d) The ROC curve of
D-F and E-S.

5. Discussions

The CEOP exhibits specific changing features for different brain states. The characteristic is
consistent with the simulating brain rhythms (Figure 4) and the real EEG signals (Figure 8). The
recognition experiments show that the results of A-Z and E-S have the best sensitivity, AUC, and
accuracy, while the results of C-N and E-S have the best specificity. When considering all evaluation
indexes comprehensively, the effect of the identification of B-O and E-S is the least obvious. This result
is consistent with the result given in literature [36]. There are the largest overlaps of the CEOP of B-O
and E-S, since B-O has lower CEOP as compared to other non-seizure sets. There is the fact that the
EEG signals of B-O are obtained from five healthy awake volunteers with eyes closed, which causes
the brain activity with more regular rhythms.

The Bonn epilepsy EEG database has been widely applied to evaluate the seizure recognition
algorithms. The recognition problem of normal (A-Z) and ictal (E-S) EEG signals is most commonly
used to compare the performance of different classification algorithms. The comparison between the
CEOP combined with the SVM classifier that is proposed in the current work and other existing
methods are provided in Table 7. It is obvious by comparison that increasing the number of
extracted features will improve the recognition effect. In [17,18,41–43], all of them have achieved
good classification accuracies with a variety of features extracted, and some of them go as high as
100% of accuracy. However, the algorithm complexity and calculation cost will increase with the
increase of the number of features extracted. The whole process of feature extraction and classification
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will be redundant and complicated. In terms of selecting a single eigenvector, as compared with
93.55% of accuracy of the result given in literature [36], the accuracy of our approach is 95.00%. The
distinguishing performance of the CEOP is better than that of the PE, which is consistent with our
comparative performance analysis that is based on the neural mass model. This indicates that the
CEOP as the single feature vector combined with the SVM classifier can effectively distinguish the
epileptic EEG signals. As a kind of ordinal-patterns-based methods, the CEOP requires less prior
knowledge regarding the time series. The idea of ordinal pattern analysis considers the sequence of
ordinal patterns and the ordinal patterns distribution obtained instead of the original time series, thus
the CEOP can measure the complexity of the EEG signals effectively and easily.

The Bonn epilepsy EEG database is mixed with scalp (A-Z and B-O) and intracranial (C-N, D-F
and E-S) recordings. Thus, it might not be the perfect database to test various recognition algorithms
due to the amplitudes of intracranial recordings and different locations of electrodes. In this work, the
CEOP is as a single feature vector and it has achieved reliable results in the recognition of epilpesy EEG
signals. However, as compared with multiple feature vectors, the CEOP still has certain limitations.
The information extracted from a single feature is not as rich and detailed as the information extracted
from multiple features. In addition, whether based on the neural mass model or the Bonn epilepsy
EEG database, we only consider a one-dimensional time series. The application of the CEOP to the
multichannel EEG signals is worthy of consideration and research. Increasing amounts of extracted
features and classifiers are applied to the recognition of the epileptic EEG signals. We employ the
CEOP as a eigenvector and combine it with the SVM classifier, which belongs to the traditional
epileptic EEG signal classification strategy. The traditional epilepsy recognition method is to extract the
features and then send them into the classifier. Features extraction mainly rely on artificial selection,
which may lose some significant information of the original data. Some existing researches use sparse
representation and dictionary learning to classify and detect epileptic EEG signals and they have
achieved good classification results [15,44,45]. The classification of epileptic EEG signals based on
sparse representation and its variants avoids tedious features extraction, and the algorithm runs fast,
which is also worth studying in the future.

The comparison between the CEOP combined with the SVM classifier that is proposed in the
current work and other existing methods are provided in Table 7.

Table 7. The comparison on the recognition of epilepsy EEG signals of A-Z and E-S between
existing approaches.

Number of
Authors Method Extracted Accuracy

(Features Extraction & Classifier) Features (%)

Kannathal et al. [46] Entropy measures & 4 92.22
(2005) Adaptive neuro-fuzzy inference system (ANFIS)

Subasi [47] Discrete wavelet transform (DWT) & 16 94.50
(2007) Mixture of experts (ME)

Iscan et al. [41] Cross correlation (CC), power spectral density (PSD) & 2 100
(2011) Least squares support vector machine (LS-SVM)

Nicolaou et al. [36] Permutation entropy (PE) & 1 93.55
(2012) Support vector machine (SVM)

Fu et al. [17] Hilbert marginal spectrum analysis (HMS) & 8 99.85
(2015) Support vector machine (SVM)

Swami et al. [42] Dual-tree complex wavelet transform (DTCWT) & 6 100
(2016) General regression neural network (GRNN)

Deriche et al. [18] Singular value decomposition (SVD) & 2 99.30
(2019) Multilayer perceptron network (MLP)

Zhou et al. [43] Wave coefficients, entropy measures & 4 96.30
(2020) Improved convolution neural network (CNN)

This work Conditional entropy of ordinal patterns (CEOP) & 1 95.00
Support vector machine (SVM)
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6. Conclusions

The work mainly presents a novel recognition strategy for epilepsy EEG signals that is based on
the conditional entropy of ordinal patterns. We discuss that the optimal parameters for the CEOP,
including the ordinal pattern order doptimal = 3 and the time delay τoptimal = 1 s−1. The CEOP can
accurately extract the complexity information of the time series, and the EEG signals in non-seizures
and seizures are effectively distinguished. Subsequently, we apply the CEOP combined with SVM
classifier to the real Bonn epilepsy database, and the results verify that the CEOP has good recognition
performance. In terms of EEG classification using the CEOP as a single feature vector, its AUC is
almost 1. This shows that the method is feasible in the distinction of epileptic EEG signals, and it can
provide a strong basis for the judgment of clinical epileptic signals in each period. In the future, we
will try to combine the CEOP with other classification algorithms and nonlinear measurement indexes
to form a compound recognition strategy with multiple eigenvectors.
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