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Abstract: The third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-
TKIs), osimertinib, aumolertinib, and furmonertinib represent a new treatment option for patients
with EGFR p.Thr790 Met (T790 M)-mutated non-small cell lung cancer (NSCLC). Currently, there are
no studies reporting the simultaneous quantification of these three drugs. A simple ultra-performance
liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method was developed and
validated for the simultaneous quantitative determination of osimertinib, aumolertinib, and fur-
monertinib concentrations in human plasma, and it was applied for therapeutic drug monitoring
(TDM). Plasma samples were processed using the protein precipitation method (acetonitrile). A
positive ion monitoring mode was used for detecting analytes. D3-Sorafenib was utilized as the
internal standard (IS), and the mobile phases were acetonitrile (containing 0.1% formic acid) and
water with gradient elution on an XSelect HSS XP column (2.1 mm × 100.0 mm, 2.5 µm, Waters,
Milford, MA, USA) at a flow rate of 0.5 mL·min−1. The method’s selectivity, precision (coefficient
of variation of intra-day and inter-day ≤ 6.1%), accuracy (95.8–105.2%), matrix effect (92.3–106.0%),
extraction recovery, and stability results were acceptable according to the guidelines. The linear
ranges were 5–500 ng·mL−1, 2–500 ng·mL−1, and 0.5–200 ng·mL−1 for osimertinib, aumolertinib,
and furmonertinib, respectively. The results show that the method was sensitive, reliable, and simple
and that it could be successfully applied to simultaneously determine the osimertinib, aumolertinib,
and furmonertinib blood concentrations in patients. These findings support using the method for
TDM, potentially reducing the incidence of dosing blindness and adverse effects due to empirical
dosing and inter-patient differences.

Keywords: UPLC-MS/MS; osimertinib; aumolertinib; furmonertinib; therapeutic drug monitoring

1. Introduction

Lung cancer, which is classified broadly as non-small cell lung cancer (NSCLC) or
small cell lung cancer (SCLC), is the primary cause of cancer death worldwide and remains
a major challenge [1]. NSCLC is the most common type of lung cancer, accounting for
85% of cases [2]. Therapeutic options for NSCLC have improved with the discovery
of driver mutations over the past decade. Currently, molecular-targeted therapy plays
a vital role in NSCLC therapies. Epidermal growth factor receptor (EGFR) mutations
are the most common driver mutations in patients with advanced NSCLC, especially in
Asians [3]. Molecular targeting using epidermal growth factor receptor tyrosine kinase
inhibitors (EGFR-TKIs) is the first-line treatment for EGFR-mutated NSCLC [4]. However,
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most patients treated with first- or second-generation TKIs ultimately progress due to the
emergence of the EGFR p.Thr790 Met (T790 M) point mutation. Therefore, third-generation
EGFR-TKIs, including osimertinib, aumolertinib, and furmonertinib, were developed to
overcome this frequently acquired mutation [5].

Osimertinib (Figure 1), is a standard first-line treatment option for patients with
advanced EGFR T790 M-mutated NSCLC, effectively extending survival and improving
patients’ life quality [6,7]. Subsequently, aumolertinib and furmonertinib (Figure 1) were
approved in China for treating advanced EGFR T790 M-mutated NSCLC. Aumolertinib can
effectively control metastatic brain lesions, with a confirmed survival benefit for patients
with brain metastases [8–10]. As the third third-generation EGFR-TKI to be marketed in
China, furmonertinib’s unique molecular structure gives it the clinical advantages of “dual
activity, high selectivity, strong tumor shrinkage, and good safety,” as well as the ability
to penetrate the blood–brain barrier. Furthermore, furmonertinib is gradually showing
great potential for treating NSCLC [11–13]. However, adverse events (AEs) and EGFR-TKI
resistance can emerge, leading to dose reductions or treatment discontinuation [4,14,15].
Plasma drug concentrations are closely associated with drug efficacy and side effects. A
correlation between the plasma concentration of some TKIs and the occurrence of drug-
related AEs and resistance to therapy was described by Yu et al. [16]. Plasma concentrations
of osimertinib, aumolertinib, and furmonertinib can be affected by various factors such as
pathophysiology, genetic polymorphisms, patient adherence to therapy, and interacting
medications [17–20], leading to large inter-patient variability in efficacy and AEs. Therefore,
it is necessary to monitor disease response and plasma drug concentrations to improve
patient outcomes [21].
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Therapeutic drug monitoring (TDM) is an important technique for formulating dosing
regimens for drugs with strong toxic effects, and great individual differences measured
by drug concentrations in biological samples can identify inter-patient differences and
improve the therapeutic effects of drugs while reducing AEs [22–24]. Several studies
have also shown that TDM can improve the therapeutic efficacy of TKIs, supporting
rational clinical use [25–28]. The ultra-performance liquid chromatography–tandem mass
spectrometry (UPLC-MS/MS) method is a standard analytical tool for TDM and is widely
used in clinical practice for precise treatment with targeted oral drugs. Although several LC-
MS/MS methods have been developed for osimertinib quantification in human plasma, few
methods [29,30] have been designed for determining the blood levels of aumolertinib and
furmonertinib. Furthermore, there are currently no available methods for the simultaneous
quantification of osimertinib, aumolertinib, and furmonertinib in human plasma.

We developed a rapid, sensitive, and efficient UPLC-MS/MS method to simultane-
ously determine osimertinib, aumolertinib, and furmonertinib concentrations in human
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plasma. A protein precipitation method was used for sample pretreatment, and gradient
elution was used to separate the analytes, which effectively reduced the measurement
time and improved the detection efficiency for the target drugs. A quantitative analysis of
patient plasma samples was performed to provide a basis for rational clinical drug use.

2. Results and Discussion
2.1. Method Development and Optimization

A UPLC-MS/MS method was developed for the simultaneous quantification of osimer-
tinib, aumolertinib, and furmonertinib concentrations. The MS/MS parameters, mobile
phase, and gradient elution steps used in this study were optimized to meet the require-
ments for the simultaneous detection of three drugs in human plasma. The runtime was
4.1 min under gradient elution, where acetonitrile was used as the organic phase. Formic
acid (0.1%) was added to the organic phase to obtain distinct symmetric peaks and mini-
mal background noise, and the final choice was acetonitrile (containing 0.1% formic acid)
and water. The optimization of the mass spectrometry conditions revealed a higher re-
sponse for the analytes in the positive ion mode. [M + H]+ was used as the parent ion
for analytes because it had the best response. The target ion transitions obtained after the
screening of osimertinib, aumolertinib, furmonertinib, and IS were as follows: 500.1→72.2,
526.1→72.2, 569.1→72.1, and 468.2→255.4 (Figure 2). Other MS conditions, including the
declustering potential (DP), collision energy (CE), and ion source temperature (TEM), were
also optimized.
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Isotope-labeled internal standards are most commonly used in tandem mass spectrom-
etry to eliminate errors due to matrix interference and differential ionization properties
of the analytes. In previous studies [29,30], the IS used to detect aumolertinib and fur-
monertinib was a deuterated internal standard. However, deuterated aumolertinib and
furmonertinib were not readily available, and d3-sorafenib was selected as the internal
standard (IS) in this study. No significant matrix effects were observed at the retention
times of the analytes. Compared to liquid–liquid extraction and solid-phase extraction, the
protein precipitation method has the advantages of simplicity, speed, low cost, and reduced
environmental pollution and is more suitable for TDM. Therefore, acetonitrile was selected
as the protein precipitant in this study.

2.2. Analytical Method Validation
2.2.1. Selectivity

The retention times for osimertinib, aumolertinib, furmonertinib, and IS were 1.29 min,
1.72 min, 1.80 min, and 2.34 min, respectively. At the retention times of the analytes and
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the IS, endogenous substances in the plasma did not interfere with the detection of each
analyte, demonstrating the good selectivity and specificity of the method (Figure 3).
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2.2.2. Calibration Curve and LLOQ

The concentration ranges tested for osimertinib, aumolertinib, and furmonertinib were
as follows: 5–500 ng·mL−1, 2–500 ng·mL−1, and 0.5–200 ng·mL−1, respectively. The corre-
sponding calibration curve equations for the three analytes were: y = 0.0454 x − 0.00374
(r = 0.9995), y = 0.0935 x − 0.00211 (r = 0.9978), and y = 0.0868 x + 0.0129 (r = 0.9994), respec-
tively. Each calibration curve showed good linearity over its respective concentration range.
The lower limit of quantitation (LLOQ) concentrations for osimertinib, aumolertinib, and
furmonertinib were 5 ng·mL−1, 2 ng·mL−1, and 0.5 ng·mL−1, respectively. Six consecutive
LLOQ samples for each analyte were analyzed with the required precision and accuracy.

2.2.3. Precision and Accuracy

The intra-day precision, inter-day precision, and accuracy of the quality control (QC)
samples and LLOQ samples for all analytes met the requirements, and the results are within
acceptable limits, as shown in Table 1.
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Table 1. Precision and accuracy data of osimertinib, aumolertinib, and furmonertinib in human
plasma (n = 6).

Analyte Spiked Conc.
(ng/mL)

Intra-Day (n = 6) Inter-Day (n = 18)

Mean ± SD
(ng/mL)

Precision
(RSD%)

Accuracy
(RE%)

Mean ± SD
(ng/mL)

Precision
(RSD%)

Accuracy
(RE%)

Osimertinib

5.0 4.84 ± 0.25 5.3 96.9 4.78 ± 0.05 1.0 95.8
15.0 14.47 ± 0.42 2.9 96.4 14.49 ± 0.24 1.7 96.6

150.0 145.0 ± 4.20 2.9 96.6 151.72 ± 5.92 3.9 101.1
375.0 369.2 ± 20.58 5.6 98.3 382.39 ± 13.87 3.6 101.9

Aumolertinib

2.0 2.14 ± 0.06 3.0 95.8 2.06 ± 0.13 6.1 103.3
6.0 6.31 ± 0.30 4.8 105.1 6.23 ± 0.34 5.4 103.8

150.0 157.8 ± 6.01 3.8 105.2 156.2 ± 5.18 3.3 104.1
375.0 376.3 ± 17.60 4.7 100.4 380.8 ± 13.70 3.6 101.6

Furmonertinib

0.5 0.52 ± 0.03 5.6 104.1 0.51 ± 0.03 5.6 102.6
1.5 1.47 ± 0.08 5.2 97.8 1.42 ± 0.06 4.2 94.7
50.0 52.1 ± 2.10 4.0 104.2 49.9 ± 1.97 4.0 99.9

150.0 154.3 ± 4.80 3.1 102.9 151.8 ± 5.16 3.4 101.2

2.2.4. Matrix Effect and Extraction Recovery

The validation results for the matrix effect and extraction recovery for each compound
are shown in Table 2. The results indicate that the endogenous substances did not interfere
with the analyte detection.

Table 2. Matrix effect and extraction recovery of analytes in human plasma (n = 6).

Analyte Spiked Conc.
(ng/mL)

Extraction Recovery Matrix Effect

Mean ± SD (%) RSD (%) Mean ± SD (%) RSD (%)

Osimertinib
15.0 98.78 ± 4.87 4.9 106.00 ± 4.89 4.6

150.0 102.81 ± 4.95 4.8 / /
375.0 101.67 ± 5.23 5.2 97.30 ± 4.93 5.1

6.0 103.05 ± 9.14 8.9 103.33 ± 8.33 8.1
Aumolertinib 150.0 102.41 ± 5.87 5.7 / /

375.0 102.32 ± 5.68 5.6 96.28 ± 1.88 2.0

1.5 100.49 ± 5.62 5.6 92.34 ± 0.06 5.28
Furmonertinib 50.0 99.71 ± 4.50 4.5 / /

150.0 99.56 ± 3.07 3.1 102.95 ± 0.05 5.25

2.2.5. Stability

The stability of each analyte was examined under various storage conditions using
QC plasma samples for osimertinib, aumolertinib, and furmonertinib. The results indicate
the acceptable stability of the QC samples for all analytes under the storage conditions
tested (Table 3).

Table 3. Stability of analytes in human plasma under various storage conditions (mean ± SD,
n = 6, %).

Analyte Spiked Conc.
(ng/mL)

Room Temperature
for 8 h

in Human Plasma

−20 ◦C for 7 d
in Human Plasma

4 ◦C for 24 h
in a Refrigerator

Placed in an
Automatic Sampler

at 4 ◦C for 24 h

3 Freeze-Thaw
Cycles, −20 ◦C to

Room Temperature

Osimertinib
15.0 96.42 ± 4.61 98.43 ± 4.68 98.37 ± 4.06 96.05 ± 3.54 100.18 ± 5.57
150.0 102.53 ± 2.96 101.53 ± 2.68 105.17 ± 4.67 100.97 ± 2.32 103.73 ± 2.75
375.0 100.25 ± 4.38 101.23 ± 4.53 104.60 ± 4.51 102.03 ± 5.73 106.22 ± 4.16

Aumolertinib
6.0 98.05 ± 4.69 105.50 ± 3.51 101.11 ± 7.26 101.17 ± 5.34 101.38 ± 3.78

150.0 100.01 ± 3.36 105.00 ± 2.19 104.48 ± 4.58 97.70 ± 1.77 104.00 ± 3.69
375.0 101.27 ± 5.06 103.18 ± 2.53 104.53 ± 7.20 98.48 ± 7.49 101.58 ± 3.90
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Table 3. Cont.

Analyte Spiked Conc.
(ng/mL)

Room Temperature
for 8 h

in Human Plasma

−20 ◦C for 7 d
in Human Plasma

4 ◦C for 24 h
in a Refrigerator

Placed in an
Automatic Sampler

at 4 ◦C for 24 h

3 Freeze-Thaw
Cycles, −20 ◦C to

Room Temperature

Furmonertinib
1.5 96.60 ± 2.27 96.20 ± 3.74 100.00 ± 6.45 92.78 ± 5.16 101.93 ± 4.88

50.0 104.20 ± 5.10 99.98 ± 1.56 93.95 ± 2.18 105.58 ± 4.25 99.27 ± 4.40
150.0 99.18 ± 2.83 97.35 ± 3.19 93.55 ± 1.44 102.17 ± 1.60 97.82 ± 2.22

2.2.6. Carry-Over

The carry-over effect was assessed by analyzing a blank matrix sample after an upper
limit of quantification (ULOQ) sample had been injected. At the retention time of the
analyte, the peak areas of interfering peaks in the blank matrix sample were less than 20%
of that of the LLOQ sample. Furthermore, there were no significant interfering peaks at the
retention time of the IS, indicating that the high concentration sample had no carry-over
effect on the determination of the low concentration sample.

2.3. Clinical Application

The validated method was successfully used in our laboratory to measure the plasma
drug concentration at steady states of osimertinib (n = 10) and aumolertinib (n = 2) in
patients with NSCLC (Table 4 and Figure 4).

Table 4. Steady-state trough concentrations of analytes in patient plasma.

Analyte Dosage Mean Plasma Concentration (ng/mL) Concentration Range (ng/mL)

Osimertinib 80 mg, qd 139.98 (n = 10) 6.19–380
Aumolertinib 110 mg, qd 155.5 (n = 2) 131–180
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Figure 4. Chromatogram of plasma samples from patients treated with (A) osimertinib and
(B) aumolertinib.

Consistent with previous publications [28,31], the minimum drug concentrations
(Cmin) of osimertinib at a steady state were highly variable (6.19–380 ng/mL), and the mean
Cmin was 139.98 ng/mL at the steady state. Compared to the methods previously reported,
our newly developed method was more simple and convenient.

There are limited data on the Cmin of aumolertinib and furmonertinib in patients with
NSCLC. Phase I clinical trial data show that steady-state Cmin is 193 ng/mL after the
administration of 110 mg of aumolertinib, and 29.1 ng/mL after the administration of
80 mg of furmonertinib [9,11]. In our study, plasma concentrations at a steady state for two
patients (two samples) treated with 110 mg aumolertinib once daily were analyzed. Plasma
samples from patients treated with furmonertinib were not available. The mean Cmin of
aumolertinib was 155.5 ng/mL, which is consistent with the published clinical trial data.

Brown et al. [32] did not identify a relationship between osimertinib exposure and
efficacy, but a correlation between exposure and safety endpoints was observed. Due to the
small number of clinical plasma samples, the relationships between the plasma concentra-
tions of the three drugs and their efficacy and side effects were not established in our study.



Molecules 2022, 27, 4474 7 of 11

The collection of clinical samples from patients treated with osimertinib, aumolertinib, and
furmonertinib is ongoing. There are some active metabolites of osimertinib, aumolertinib,
and furmonertinib present in plasma. However, due to their low concentration [33] and
difficulty in obtaining reference standards, they were not analyzed in this study, which is
also a limitation of our study. The method developed in this study could be used to monitor
drug plasma concentrations and the associated disease response to achieve appropriate
therapeutic strategies.

3. Materials and Methods
3.1. Chemicals and Reagents

Standard reference samples of osimertinib (lot: ZC-49638, purity: 99.9%), aumoler-
tinib (lot: ZZS-21-X043-M2, purity: 99.8%), furmonertinib (lot: ZC-47228, purity: 99.9%)
were purchased from Shanghai Zhenzhun Biotechnology Co., Ltd. (Shanghai, China). IS,
d3-Sorafenib (lot: ZZS-20-X261-A1, purity: 99.9%), was also purchased from Shanghai
Zhenzhun Biotechnology Co., Ltd. (Shanghai, China). HPLC-grade acetonitrile and formic
acid were obtained from Fisher Scientific (Pittsburgh, PA, USA). Ultrapure water was
acquired from Wahaha Group Co., Ltd. (Hangzhou, China).

3.2. Chromatographic and Mass Spectrometric Determination Conditions

Chromatographic separation was performed using an ultra-high performance liq-
uid chromatography system (LC-30 A, Shimadzu, Japan). Chromatographic separa-
tion was achieved by gradient elution on a C18 analytical column (XSelect HSS XP,
2.1 mm × 100 mm, 2.5 µm, Waters, Milford, MA, USA) at 40 ◦C. The mobile phase consisted
of water (A) and acetonitrile (containing 0.1% formic acid, B). The elution procedure was
carried out in the following order: 0–0.5 min, 30% B; 0.5–1.5 min, 30%→90% B; 1.5–3.5 min,
90% B; 3.5–3.6 min, 90%→30% B; 3.6–4.1 min, 30% B. The flow rate was 0.5 mL·min−1, and
the injection volume was 8 µL.

Mass spectrometry was performed using an AB Sciex Triple Quad 4500 tandem triple
quadrupole mass spectrometer equipped with an electrospray ionization source (ESI) in-
terface. The positive ion mode with multi-reaction detection was used, and the multiple
reaction monitoring transitions of the analytes were as follows: m/z 500.1→ 72.2(quanti-
fier transition) and 500.1→455.3 (qualifier ion transition) for osimertinib, m/z 526.1→72.2
(quantifier transition) and 526.1→453.2 (qualifier ion transition) for aumolertinib, m/z
569.1→72.1 (quantifier transition) and 569.1→441.2 (qualifier ion transition) for furmon-
ertinib, m/z 468.2→255.4 (quantifier transition) and 468.2→273.1 (qualifier ion transition)
for IS (Figure 2). Other parameters were as follows: DP, 140 V (osimertinib, aumolertinib,
IS), 120 V (furmonertinib); ion spray voltage, 5500 V; CE, 80 V (osimertinib, aumolertinib,
and furmonertinib) and 45 V (IS), respectively; gas1, 60 psi; gas2, 50 psi; curtain gas (CUR),
25 psi; TEM, 500 ◦C.

3.3. Preparation of Stock and Working Solutions

The osimertinib, aumolertinib, and furmonertinib standards were precisely weighed
and dissolved in dimethyl sulfoxide solution (DMSO) to make standard stock solutions
with final concentrations of 1 mg·mL−1. The appropriate volume of the standard stock
solution was diluted with 50% acetonitrile into working solutions with concentrations of 50,
100, 500, 1000, 2000, 3000, and 5000 ng·mL−1 (osimertinib), 20, 50, 100, 500, 1000, 2000, 3000,
and 5000 ng·mL−1 (aumolertinib), and 5, 10, 50, 200, 400, 800, 1000, and 2000 ng·mL−1

(furmonertinib). The same method was used to prepare QC working solutions with
concentrations of 150, 1500, and 3750 ng·mL−1 (osimertinib), 60, 1500, and 3750 ng·mL−1

(aumolertinib), and 15, 500, and 1500 ng·mL−1 (furmonertinib). The IS was also dissolved
in DMSO to obtain a stock solution at a concentration of 1 mg·mL−1. The IS stock solution
was diluted with 50% acetonitrile to obtain a working solution at 500 ng·mL−1. All stock
solutions and working solutions were stored at −20 ◦C.
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3.4. Plasma Sample Preparation

Plasma samples were processed using the protein precipitation method. Ten micro-
liters of IS (200 ng·mL−1) were added to 100 µL of plasma sample (including calibration
curve or QC samples (10 µL of calibration standard solution or QC working solution were
added to 90 µL of blank plasma)). Then, 300 µL of acetonitrile were added, vortexed for
1 min, and centrifuged at 12,000 rpm for 10 min. The supernatant (100 µL) was added to
300 µL of 50% acetonitrile, vortexed and mixed, and finally transferred to an autosampler
vial for sample analysis.

3.5. Method Validation

The method was comprehensively validated for selectivity, calibration curve linearity,
the LLOQ, precision and accuracy, matrix effect, extraction recovery, stability, and carry-
over according to the US FDA [34] and Chinese Pharmacopoeia (2020) Guidelines for the
Validation of Bioanalytical Methods.

3.5.1. Selectivity

The method’s selectivity was determined by assessing the interference of other com-
ponents in plasma. Plasma samples containing 2 ng·mL−1 aumolertinib were prepared
by sequentially adding the aumolertinib working solution (20 ng·mL−1) to blank plasma
from different sources (n = 6). The samples were processed as described in Section 3.4.
Plasma samples containing osimertinib and furmonertinib were also prepared using this
procedure, and the plasma was then analyzed. In the absence of interference, the peak area
of the analyte in the blank plasma should be less than 20% of the LLOQ and 5% of the IS
within the retention time.

3.5.2. Calibration Curve and LLOQ

Using the concentration of the analyte as the horizontal coordinate (x), the peak area
ratio of the analyte to the IS as the vertical coordinate (y), and 1/x2 as the weighting factor,
a weighted least squares method was used to obtain the regression equation and generate
the calibration curve. The linear ranges of the standard curves for osimertinib, aumol-
ertinib, and furmonertinib were 5–500 ng·mL−1, 2–500 ng·mL−1, and 0.5–200 ng·mL−1,
respectively. The difference between the back-calculated and the nominal concentrations
for each standard in the calibration curve had an acceptable range (<15%). For LLOQ, the
difference should be less than 20%.

3.5.3. Precision and Accuracy

The precision and accuracy were assessed by measuring low, medium, and high
concentrations of QC (LQC, MQC, HQC) samples and LLOQ samples. Intra-day and inter-
day precision and accuracy were calculated by repeating the measurements six times a day
for three consecutive days for samples at each concentration level. Precision was expressed
by calculating the relative standard deviation (RSD) of the samples from six parallel
measurements. Accuracy was expressed by the relative error (RE) of the samples. The RSD
and RE were within ±15% for the QC samples and within ±20% for the LLOQ samples.

3.5.4. Matrix Effect and Extraction Recovery

The matrix effect for the analyte was determined by comparing the analyte peak area in
the blank plasma samples from six different donors at LQC and HQC levels (n = 6 for each
level) with the analyte peak area in pure solution. The extraction recovery was assessed
by comparing the analyte peak area in extracted plasma samples at LQC, MQC, and HQC
levels (n = 6 for each level), with the analyte peak area of a blank plasma extract spiked at
the same level.
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3.5.5. Stability

The stability of the samples under different storage or handling conditions was as-
sessed by analyzing the QC samples at different levels (LQC, MQC, HQC; n = 6). The
short-term stability was assessed after placing the plasma samples at room temperature for
8 h. Quality control samples were stored at −20 ◦C for 7 d to assess the long-term stability.
We also examined the stability of the samples stored in a refrigerator at 4 ◦C for 24 h. The
stability of the processed samples was assessed by storing the samples in an autosampler at
4 ◦C for 24 h. The samples stored at −20 ◦C were thawed at room temperature, and three
freeze–thaw cycles were performed to investigate the freeze–thaw stability of the samples.

3.5.6. Carry-Over

The carry-over of this method was investigated by sequentially injecting the LLOQ and
the ULOQ samples, followed by a blank biological matrix sample. The area of interfering
peaks at the retention time of the analyte in the blank plasma sample should be less than
20% of the LLOQ and 5% of the IS peak areas.

3.6. Clinical Samples Analysis

All the experimental procedures were approved by the Ethics Committee of Hebei
General Hospital (No. 2022094).

Plasma samples from patients who had been administered osimertinib, aumoler-
tinib, or furmonertinib for at least two weeks and were within half an hour before re-
administration were analyzed to demonstrate the applicability of the assay. The clinical
blood samples were residual blood samples obtained from patients for other routine clin-
ical measurements at Hebei General Hospital. Blood was collected in EDTA-containing
anticoagulation tubes, and the supernatant was separated by centrifugation at 3000 rpm
for 10 min at 4 ◦C. Then, the supernatant was transferred to 1.5 mL EP tubes and stored at
−20 ◦C until analysis.

4. Conclusions

We have developed a simple, rapid, and sensitive UPLC/MS/MS method to simulta-
neously determine osimertinib, aumolertinib, and furmonertinib concentrations in human
plasma. The validated method may also be a useful tool for the TDM of the third-generation
EGFR-TKIs for NSCLC patients in clinical practice.
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