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Abstract 

The opioid crisis of pain medication bears risks from addiction to cancer progression, but little experimental evidence exists. Expression 

of δ-opioid receptors (DORs) correlates with poor prognosis for breast cancer patients, but mechanistic insights into oncogenic 
signaling mechanisms of opioid-triggered cancer progression are lacking. We show that orthotopic transplant models using human 

or murine breast cancer cells displayed enhanced metastasis upon opioid-induced DOR stimulation. Interestingly, opioid-exposed 

breast cancer cells showed enhanced migration and strong STAT3 activation, which was efficiently blocked by a DOR-antagonist. 
Furthermore, opioid treatment resulted in down-regulation of E-Cadherin and increased expression of epithelial-mesenchymal 
transition markers. Notably, STAT3 knockdown or upstream inhibition through the JAK1/2 kinase inhibitor ruxolitinib prevented 

opioid-induced breast cancer cell metastasis and migration in vitro and in vivo . We conclude on a novel mechanism whereby opioid- 
triggered breast cancer metastasis occurs via oncogenic JAK1/2-STAT3 signaling to promote epithelial-mesenchymal transition. These 
findings emphasize the importance of selective and restricted opioid use, as well as the need for safer pain medication that does not 
activate these oncogenic pathways. 
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Introduction 

Opioids are potent analgesic drugs that are indispensable in cancer
therapy, as their use alleviates pain during and after tumor resection surgery.
Moreover, opioids are applied to relieve cancer-related pain resulting from the
tumor pressing on different organs or causing massive inflammation/tissue
damage. Opioids are also administered to manage pain arising from chemo-
or radiotherapy [1] . However, opioids are widely misused and often given to
Abbreviations: OR, Opioid receptor; DOR, OPRD1, δ (delta)-opioid receptor; EMT, 
Epithelial–mesenchymal transition; GPCR, G protein-coupled receptors; JAK1/2, Janus 
kinase 1/2; STAT3, Signal transducer and activator of transcription 3. 
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isk group patients of older age with chronic disease/pain, despite that they 
re more susceptible to develop invasive cancers. 

The use of opioids in cancer patients is a controversial debate. 
pidemiologic studies showed that the risk of cancer recurrence and 
etastasis is enhanced when surgical tumor removal was performed under 

eneral anesthesia with systemic opioid administration [2–4] . Furthermore, 
urvival probabilities of tumor patients were found to be reduced by using 
pioid-based general anesthesia [5–7] . Enhanced metastasis was also reported 
n opioid-treated rodents with mammary carcinomas [ 8 , 9 ], but the cellular
nd molecular mechanisms underlying these observations remain unclear. It 
s, therefore, important to investigate whether these observed protumorigenic 
ctions are opioid-specific effects involving specific downstream signaling 
echanisms. 

The classical analgesic effect of opioids is mediated by μ-, δ-, and κ-
pioid receptors, which belong to the family of G protein-coupled receptors 
GPCRs). Opioid receptors are linked to different intracellular signaling 
ascades including ERK1/2 and AKT signaling [10] , which contribute 
o various cellular processes including proliferation, differentiation, and 
urvival [ 11 , 12 ]. Opioid receptors are most strongly expressed in neurons
f the nociceptive system, but can also be found in heart, immune system,
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gastrointestinal tract and reproductive system cells [ 13 , 14 ]. Recently, high
expression of δ-opioid receptors (DORs) was observed in tissue samples from
breast cancer patients, which correlated with tumor progression and poor
prognosis [15] . Given that breast cancer patients often undergo significant
surgical procedures for axial lymph node clearance and mastectomy, requiring
general anasthesia, we investigated the role of opioid-mediated DOR
signaling on the migration and metastasis of mammary tumor cells. 

Here, we reveal through comprehensive data mining that DOR
mRNA is significantly overexpressed in various independent cohorts of
breast cancer samples, as well as other solid cancer types, from patients
with increased cancer progression or metastatic incidence. We employed
orthotopic transplant models using human and murine breast cancer
cell lines to demonstrate that opioid-induced DOR stimulation enhances
metastasis. Importantly, we explored the mechanism of how DOR activation
promotes breast cancer progression, finding strong induction of oncogenic
JAK1/2-STAT3 signaling and epithelial-mesenchymal transition (EMT)
markers. Notably, we utilized pharmacologic inhibition of JAK1/2 and
stable genetic STAT3 knockdown to conclude that opioid-triggered STAT3
activation promotes breast cancer migration and metastasis. Together, these
findings reveal novel mechanistic insights into opioid-mediated breast cancer
progression and dissemination. 

Materials and methods 

Cell culture 

Breast cancer cell lines MDA-MB-231, MCF-7, T47D, 4T1, and human
glioblastoma cells LN299 were purchased from the American Type Culture
Collection (ATCC; VA, USA). LN299 and human breast cancer cell lines
were maintained in Dulbecco ś modified Eagle ś medium (DMEM; Sigma
Aldrich, MO, USA) supplemented with 10% fetal bovine serum (FBS; PAA
Laboratories Inc., AUT) and 100 U/mL Penicillin-Streptomycin. 4T1 cells
were cultured in RPMI-1640 medium supplemented with 10% FCS and
100 U/mL Penicillin-Streptomycin. Cells were maintained at 37 °C with 5%
CO 2 . 

RNA interference and lentiviral transduction 

Cells with stable STAT3 knockdown were generated by using lentiviral
RNA interference as described in Kasper et al using Metafectene pro
(Biontex, GER) transfection reagent. Viral particles were produced in
transfected 293FT cells for each of the following short hairpin RNA (shRNA)
constructs (Mission TRC shRNA library, Sigma Aldrich): control shRNA
(SHC002), shRNA STAT3 (shSTAT3) #1 (TRCN0000071456) and #2
(TRCN0000020843). Lentiviral transduction of MCF-7, MDA-MB-231,
and T47D cells with control and shSTAT3 constructs was performed as
previously described [16] . Two days after transduction, breast cancer cells
were selected with Puromycin and further analyzed for knockdown efficiency
by Western blot and qPCR. 

Cell extracts and immunoblotting 

Immunoblotting was performed as previously described [17] . Briefly, cells
were treated with 1 μM [D-Ala 2 , D-Leu 5 ]-Enkephalin acetate salt (DADLE;
Bachem, CH; in text indicated as opioid) or rhIL-6 (200 ng/mL; 20 min),
rhIL-2 (15 min; 100 ng/mL;), rhEGF (5 min; 100 ng/mL) and rhTGF (40
min; 1 ng/mL) as indicated and lysed with ice-cold RIPA buffer (10 mM
Tris-Cl (pH 8.0), 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1%
sodium deoxycholate, 0.1% SDS, 140 mM NaCl). Total cell lysates (30 μg)
were subjected to 7% SDS polyacrylamide gel electrophoresis and blotted
on nitrocellulose membrane (GE Healthcare, GBR). Membranes were
blocked with 5% BSA in TBS/Tween-20 (0.1%) and probed with antibodies
gainst ACTIVE-B-CATENIN (ABC) (Cell Signaling Technology (CST), 
A, USA; 95625), E-CADHERIN (14472), GAPDH (2118), phospho- 

42/p44 (Thr202/Tyr204) (9101), total SMAD2/3 (8685), phospho- 
MAD2 (Ser465/467)/SMAD3 (Ser423/425) (8828), SNAIL (3879), 
hospho-STAT3 (Tyr705) (9131), total p42/p44 (9102), total STAT3 
12640), total STAT5 (9363), phospho-STAT5 (Tyr694) (Becton Dickinson 
BD), NJ, USA; 611964), DOR-1 (Santa Cruz Biotechnology (SCB), TX,
SA; 9111), HSC-70 (7298), TWIST (81417) or β-ACTIN (69879). After
ashing and membrane incubation with respective secondary antibodies, 
roteins were detected by chemiluminescence using LumiGLO Reagent 
CST) and ChemiDoc XRS + (Bio-Rad, CA, USA). The original uncropped

estern blot images with molecular weight ladders visible are provided as a
upplemental Information file. 

low cytometry analysis 

To measure proliferation, 2 × 10 4 cells were seeded in 6-well plates,
reated with 1 μM opioid, and counted by FACS each day for 4 d. For cell
ycle analysis, cells were treated with 1 μM opioid for 24 h and subjected
o cell cycle analysis by means of propidium iodide staining as previously
eported [18] . Cell staining was recorded by a BD FACS Canto II flow
ytometer and FACS Diva software (BD) as described [17] . 

ell migration 

Migration of breast cancer cells was assessed by scratch assay. Specifically,
ells were seeded onto 6-well plates at 5 × 10 4 cells/well. Confluent
onolayers were scratched with a sterile 1 mL tip and washed 2 times with
BS. Cells were maintained in fresh DMEM medium and exposed to 1
M opioid, 10 μM naltrindole (selective DOR antagonist from Bachem)
r ddH 2 O as vehicle control. Scratches were photographed at selected time
oints using an Olympus CK841 microscope (JP) and quantified with
mageJ software [19] . For the transwell assay, 1 × 10 5 cells were placed
nto an insert (Millicell, 8 μm pore size; Merck Millipore, MA, USA) with

MEM medium containing 1% FBS and 1 μM opioid, 3.3 nM ruxolitinib
Selleckchem, TX, USA) or ddH 2 O. Inserts were placed into a 24-well
late filled with DMEM medium containing 5% FBS as a chemoattractant.
fter incubation at 37 °C, cells that migrated through the membrane were
xed with 4% formaldehyde and 99% ice-cold methanol, and stained
ith DAPI (100 ng/mL). Insert membranes were imaged on an Olympus

X71 fluorescence microscope and migrated cells were quantified by ImageJ
oftware. 

n vivo metastasis assay 

C.Cg-Rag2 tm1Fwa Il2rg tm1Wji ( Rag2 −/ −γ c −/ −) were backcrossed onto the
reast cancer susceptible Balb/C background for more than eight generations,
nd Balb/C microsatellite marker analysis with transplant efficiency 
onfirmed isogenicity. Mice were maintained at the University of Veterinary
edicine Vienna under specific pathogen free (SPF) conditions. 1 × 10 6 
DA-MB-231 were injected into the fourth mammary fat pad of female

ag2 −/ −γ c −/ − mice or 1 × 10 4 4T1 cells were injected into the fourth
ammary fat pad of female wildtype mice. When tumors reached about

00 mm 

3 in volume, the primary tumors were resected. Mice were then
andomly divided into vehicle control (PBS) and opioid-treated groups. To
imic human pain management, treatment was started immediately after 

umor resection (2 mg/kg opioid intraperitoneal injection; every 24 h). Ten
ays after primary tumor removal, mice were sacrificed, lungs were perfused,

solated and the lung weight was assessed. Primary tumor volumes were
alculated according to the formula: length × (diameter) 2 × π/6. 
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Histopathology 

Lungs were fixed overnight in 4% Roti-Histofix (Carl Roth, GER),
dehydrated, paraffin-embedded and cut in 4 μm sections. Sections were
stained with Hematoxylin (Merck, GER) and Eosin G (Carl Roth).
For immunohistochemical staining, heat-mediated antigen retrieval was
performed in citrate buffer at pH 6.0 (Dako, CA, USA; S1699). Lung sections
were then stained with antibodies against cleaved Caspase-3 (dilution 1:200,
CST; 9661), Ki-67 (dilution 1:1.000, eBioscience; 14.5698.80), Vimentin
(dilution 1:200, CST, 5741) or CK8 (dilution 1:50, Leica microsystems,
GER; NCL-L-CK8-TS1) using standard protocols. Images were taken using
an Olympus IX71 microscope. 

Oncomine data analyses 

Gene expression datasets from human cancer patients were analyzed for
the expression levels of OPRD1, OPRK1 or OPRM1 by using the Oncomine
Platform (Thermo Fisher, Ann Arbor, MI) [20] . Briefly, the P value cutoff for
statistical significance was set at < 0.05, while the fold change cutoff was set
to 1.5 and the gene rank cutoff was defined as ‘all’. 

Statistics 

Student t test, one-way ANOVA and two-way ANOVA test were
performed using GraphPad Prism Software version 5.04. The differences in
mean values among groups were evaluated and expressed as the mean ± SD.
P values less than 0.05 were considered statistically significant ( ∗ P < 0.05;
∗∗ P < 0.01; ∗∗∗ P < 0.001; ∗∗∗∗ P < 0.0001). 

Study approval 

All experiments were approved by the institutional animal care committee
and review board, and conform to Austrian law (BMBWF-68.205/0094-
V/3b/2018). 

Results 

Expression of δ-opioid receptors and association with solid tumor 
progression 

To obtain a comprehensive view of the role of DOR in breast cancer
disease progression and metastasis, gene expression analyses were performed
using breast cancer patient datasets publicly available from the Oncomine
database. As shown in Fig. 1 A, the expression of DOR ( OPRD1 ) mRNA
was significantly higher in Grade 2 than in Grade 1 mammary malignancies.
Moreover, Stage III breast cancer exhibited higher DOR expression than Stage
II tumors ( Fig. 1 B). Notably, expression of DOR mRNA correlated with
enhanced disease progression in breast cancer metastasis ( Fig. 1 C and D). 

Interestingly, these observations were not restricted to mammary
malignancies. Oncomine data evaluation also revealed significant associations
of increased DOR expression in other epithelial cancer subtypes including
lung adenocarcinoma, renal cell cancer, and skin squamous cell carcinoma,
compared with healthy tissues ( Fig. 1 E-G). Furthermore, data mining
revealed profound associations of increased DOR expression and cancer
recurrence or survival in squamous cell carcinomas of head and neck, tongue
or ovarian cancer ( Fig. 1 H-J). In addition, increased expression of DOR
was found in cutaneous melanoma compared with healthy skin samples,
and higher DOR levels were associated with shorter survival of superficial
spreading melanoma patients ( Fig. 1 K and L). Tumors of mesenchymal
or germ cell origin were also associated with increased DOR expression,
including leiomyosarcoma and cancer of testis versus healthy control tissues
( Fig. 1 M and N). 
In addition to higher DOR expression, data mining revealed that various 
ggressive cancer types also overexpress κ- (KOR, OPRK1 ) and μ- (MOR, 
PRM1 ) opioid receptors. KORs were found to be increased at the mRNA

evel in adenocarcinomas of the lung and pancreas, prostate carcinoma and 
yxoid/round cell liposarcoma, versus healthy control tissues (Fig. S1A-D). 
xpression of MOR mRNA was significantly upregulated in clear cell renal 
ell carcinoma and pancreatic ductal adenocarcinoma versus healthy tissue 
Fig. S1E-F), and increased MOR levels were also associated with patient 
urvival/tumor recurrence in squamous cell lung carcinoma, esophageal 
quamous cell carcinoma, and colon adenocarcinoma (Fig. S1G-I). Thus, 
hese broad data mining analyses indicate that opioid receptors are more 
ighly expressed in various human solid cancers, and particularly elevated 
OR expression levels are associated with tumor progression and accelerated 
etastatic disease. 

pioid treatment with a DOR agonist increases migration/metastasis of 
reast cancer cells 

Opioids used as common analgesics bind to and activate opioid receptors, 
ncluding DOR. The striking data on elevated DOR mRNA levels and 
reast cancer progression as well as the clinical need to better understand 
echanisms of breast cancer progression prompted us to further explore 

he role of DOR in opioid-induced breast cancer metastasis. To establish 
odel cell systems for in vitro and in vivo experiments, three human breast

ancer cell line models of epithelial (MCF-7 and T47D) or mesenchymal 
rigin (MDA-MB-231) were examined for opioid receptor expression. All 
hree cell lines were found to endogenously express DOR protein ( Fig. 1 O).
ext, to investigate opioid-induced breast cancer metastasis, we used a 

pontaneous metastasis breast cancer model that mimics human breast cancer 
atients [21] whereby MDA-MB-231 cells were implanted into mammary 
at pads of fully immunocompromised Rag2 −/ −γ c −/ − mice. After surgical 
emoval of the primary tumor, mice were treated with a classic DOR 

gonist [D-Ala 2 ,D-Leu 5 ]-Enkephalin (hereby indicated as “opioid”) for 10 
 ( Fig. 2 A), and distant metastases were examined in the lungs of the mice
y immunohistochemistry ( Fig. 2 B and C). The primary tumor removal 
rolongs the life span of the tumor-bearing mice, but does not prevent the
umor from metastasizing to distant parts of the mice. Compared to the 
ehicle control, lungs of opioid-treated mice showed more clusters of Ki- 
7 and Cytokeratin 8 (CK8) positive cells ( Fig. 2 C), identifying them as
etastatic breast cancer cells [22] . To evaluate immune cell contribution, 
e next employed an immunocompetent allograft breast cancer model. We 
erformed opioid treatment in Balb/C wildtype mice bearing murine 4T1 
reast cancer cell orthotopic transplants, which also resulted in significantly 
ore metastatic lung nodules than vehicle controls (Fig. S2A). These 2 

rthotopic transplant models demonstrate that opioid treatment significantly 
ncreased lung metastasis of primary breast cancer tumor cells irrespective of 
mmune cell contribution. 

Next, migration of DOR-expressing breast cancer cells was examined. 
ranswell and scratch assays showed that exposure of epithelial MCF- 
 and T47D, and mesenchymal MDA-MB-231 breast cancer cells to 
pioid significantly enhanced migration ( Fig. 2 D, and Fig. S2B, 2E and
2C). Opioid-induced migration was abolished by naltrindole, a DOR- 
elective antagonist ( Fig. 2 F and Fig. S2D). Importantly, opioid exposure 
ffected neither proliferation nor cell cycle distribution (Fig. S2E, S2F). Our 
ndings indicate that opioids promote breast cancer cell migration via DOR 

timulation. 

TAT3 is activated by a DOR agonist in breast cancer cells 

Migration of epithelial carcinoma cells can be promoted through multiple 
ore cancer pathways, including the JAK1/2-STAT3/5, β-Catenin/WNT, 
AS/RAF-ERK1/2 or TGF- β/SMAD2/3 pathways. Whereas incubation of 
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Fig. 1. Delta opioid receptor levels are increased in aggressive cancers. (A-N) Data mining of OPRD1 mRNA expression levels significantly increased in various 
human cancer patient datasets. All data were extracted from the Oncomine Platform from the following specified studies (indicated in italics; individual P - 
values are indicated by stars within each box plot). (A, B) Box plots showing OPRD1 mRNA expression levels at different grades (2.2-fold; P -value: 0.026; 
Bittner Breast) (A) or stages (1.6-fold; P -value: 0.044; Miyake Breast) (B) of mammary tumor progression . (C, D) Box plots showing OPRD1 mRNA expression 
levels in breast cancer patients with or without metastatic events at 1 y (1.8-fold; P -value: 0.03; Desmedt Breast ) (C); (1.7-fold; P -value: 0.024; Minn Breast 
2) (D). (E-N) Box plots showing OPRD1 mRNA expression in various samples from cancer or normal tissues (as indicated), including lung adenocarcinoma 
(1.8-fold; P -value: 0.001; Okayama Lung ) (E), renal Wilm ś tumor (1.6-fold; P -value: 0.021; Cutcliff Renal ) (F), squamous cell carcinomas of skin (1.7-fold; 
P -value: 0.021; Riker Melanoma ) (G), head and neck (1.6-fold; P -value: 0.01; Ginos Head-Neck ) (H) and tongue (2.8-fold; P -value: 0.008; Rickman Head-Neck ) 
(I), ovarian carcinoma (1.6-fold; P -value: 0.001; Bild Ovarian ) (J), melanoma (1.6-fold; P -value: 0.03; Riker Melanoma ) (K), superficial spreading melanoma 
(2.4-fold; P -value: 0.019; Xu Melanoma ) (L), leiomyosarcoma (4.4-fold; P -value: 0.041; Quade Uterus ) (M), and testicular tumor (2.7-fold; P -value: 0.02; 
Skotheim Testis ) (N). (O) δ-opioid receptor (DOR) protein expression in MCF-7, T47D, and MDA-MB-231 cells was determined by Western blotting. 
Neuronal LN229 cells served as positive control (pos. GBM) for opioid receptor expression. HSC-70 was used as loading control. Blots are representative of 
3 independent experiments. 
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Fig. 2. A DOR agonist increases metastasis/migration in breast cancer cells. (A) Experimental scheme. (B) Quantification of metastasis in the lungs of opioid- 
and saline-treated Rag2 −/ −γ c −/ − mice. Graphs represent quantification of CK8-positive tumors per section as mean ± SD ( n = 14 for PBS-treated mice and 
n = 15 for opioid-treated mice; magnification of section: 40 ×; ∗∗P < 0.01; Student t test). (C) Immunostainings of lungs from control and opioid-treated mice 
for H&E, Ki-67 and CK8 (magnification: 40 × and 100 ×; scale bars 200 μm and inserts 100 μm). (D) Transwell migration assay of MCF-7 (upper panel; ∗P < 

0.05) and MDA-MB-231 cells (lower panel; ∗P < 0.05) after opioid stimulation (1 μM, 16 h incubation). Controls (ctrl) were treated with ddH 2 O (Bar graphs 
represent the fold change of migrated cells over the control as mean ± SD in duplicates from a single experiment, representative of 3 independent experiments; 
unpaired two-sided Student t test). (E) Scratch assays of MCF-7 and MDA-MB-231 cells exposed to opioid (1 μM) or ddH2O (ctrl). Quantification represents 
gap closure (migration) rates as mean ± SD of the % of the closure of original gap of duplicates from a single experiment, representative of three independent 
experiments (MCF-7: ∗∗P < 0.01 versus control; MDA-MB-231: ∗∗P < 0.01 versus control; ∗∗∗P < 0.001 versus control; two-way ANOVA). (F) Scratch 
assay of MCF-7 and MDA-MB-231 cells treated with 1 μM opioid in the absence or presence of 10 μM naltrindole. Quantification represents gap closure 
(migration) rates as mean ± SD of the % of the closure of original gap of duplicates from a single experiment, representative of 3 independent experiments 
(MCF-7: ∗∗P < 0.01 versus control; ∗∗∗P < 0.001 versus control; MDA-MB-231: ∗∗P < 0.01 versus control; ∗∗∗∗P < 0.0001 versus control; two-way 
ANOVA). DOR, δ-opioid receptors 
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Fig. 3. Opioid exposure induces STAT3 tyrosine phosphorylation and expression of individual EMT-related markers in breast cancer cells. (A) MCF-7 and 
MDA-MB-231 cells were treated with 1 μM opioid for 5 min – 72 h and analyzed for pSTAT3 Y705 , tSTAT3, SNAIL, TWIST and E-Cadherin levels by 
immunoblotting. β-ACTIN was used as loading control. Blots are representative of 3 independent experiments. (B) Representative H&E, Vimentin and 
Cleaved Caspase-3 stained lung sections of mice engrafted with MDA-MB-231 cells after primary tumor removal and postsurgical opioid treatment for 10 d 
(original magnification: 40 × and 100 ×; scale bars 200 μm and inserts 100 μm). 
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MCF-7, T47D and MDA-MB-231 cells with opioid for different time
periods had no significant effect on activation of β-Catenin (ABC), ERK1/2
or SMAD2/3 (Fig. S3A), immunoblotting showed that cell exposure to
opioid resulted in a rapid increase in STAT3 activation (pYSTAT3) ( Fig. 3 A
and Fig. S3B). Many cytokine and growth factor receptors trigger JAK1/2-
STAT3/5 activation, however, it was somewhat unexpected and striking
that a GPCR such as DOR could also activate STAT3 in breast cancer
cells to a similar extent as IL-6 cytokine stimulation ( Fig. 3 A). In contrast,
STAT5A/B transcription factors also known to have oncogenic functions and
promote breast cancer progression remained unaffected by DOR activation
(Fig. S3C). Oncomine data analyses also identified an increase in DOR
mRNA expression correlating with increased in vitro sensitivity to the tyrosine
kinase inhibitor dasatinib in breast cancer cell lines (Fig. S3D). Given that
dasatinib can inhibit the activity of various tyrosine kinases including JAKs,
these data also suggest that increased DOR expression results in dependence
on signaling pathways targeted by dasatinib, such as JAK-STAT. 

STAT3 can control cell migration through promotion of EMT [23] .
To test whether opioid treatment can induce EMT, breast cancer cells
were analyzed for classical EMT-related transcription factors controlled by
STAT3, in particular the E-Cadherin repressors SNAIL and TWIST [24–
26] . Immunoblotting revealed that opioid treatment led to an upregulation
of SNAIL in all tested breast cancer cells ( Fig. 3 A and Fig. S3E, S3F and
S3G). Moreover, TWIST was enhanced in opioid-treated MCF-7 and T47D
cells. Consistently, E-Cadherin was decreased in MCF-7 and T47D cells.
 o
mmunostainings of lungs from opioid-treated mice bearing breast cancer 
enografts further demonstrated that the observed metastases are highly 
ositive for Vimentin, a further mesenchymal marker, and negative for
leaved Caspase-3 ( Fig. 3 B). Therefore, our data suggest that opioids may
romote EMT through STAT3 activation, loss of E-Cadherin and gained
imentin expression. 

ole of STAT3 in opioid-mediated cell migration and metastasis 

Next, the role of STAT3 activation in opioid-mediated cell migration
as examined. First, cell motility was assessed in the presence of the FDA-

pproved JAK1/2 inhibitor ruxolitinib. Ruxolitinib blocked opioid-induced 
TAT3 activation ( Fig. 4 A) and prevented opioid-triggered migration
 Fig. 4 B and Fig. S4A). Opioid-induced STAT3 activation was also reduced
y the DOR antagonist naltrindole ( Fig. 4 A). In a second approach, STAT3
unction was blocked by stable RNA knockdown. Infection of breast cancer
ells with STAT3-shRNA reduced STAT3 expression by more than 70% at
oth the mRNA and protein level (Fig. S4B, S4C). Importantly, STAT3
nockdown did not affect cell proliferation, cell cycle distribution or basal
igration activity (Fig. S4D-F), but notably it prevented increased migration

f breast cancer cells in response to opioid exposure ( Fig. 4 C and Fig. S4G). 
To assess the role of STAT3 in opioid-driven metastasis, MDA-MB-

31 cells stably transduced with STAT3-shRNA or control-shRNA were 
rthotopically injected into Rag2 −/ −γ c −/ − female recipients. Primary tumors 
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Fig. 4. Inhibition of STAT3 attenuates opioid-triggered breast cancer cell migration and metastasis. (A) MDA-MB-231 cells were treated with 1 μM opioid 
in the absence or presence of naltrindole (10 μM) or ruxolitinib (3.3 nM), and analyzed for pSTAT3 Y705 and tSTAT3 by immunoblotting. β-ACTIN was 
used as loading control. (B) Transwell assay. MCF-7 and MDA-MB-231 cells were exposed to opioid (1 μM) alone or together with ruxolitinib (3.3 nM). 
After 16 h, cells that migrated through the membrane pores were quantified (Bar graphs represent the fold change of migrated cells over the control as mean ±
SD in duplicates from two independent experiments; ∗P < 0.05 opioid versus vehicle, one-way ANOVA). (C) MCF-7 and MDA-MB-231 cells were infected 
with unrelated control-shRNA ( sh ctrl ), STAT3-shRNA #1, or STAT3-shRNA #2, and examined for migration activity after opioid treatment by transwell assay. 
Controls were treated with ddH 2 O (Bar graphs represent the fold change of migrated cells over the control as mean ± SD in duplicates from 2 independent 
experiments; not statistically significant (ns), unpaired two-sided Student t test). (D) Volumes of primary tumors formed by MDA-MB-231 cells infected 
with sh ctrl or STAT3-shRNA ( shSTAT3 ) over time ( n = 10 for PBS-treated mice and n = 10 for opioid-treated mice; not statistically significant (ns), two-way 
ANOVA). (E) Quantification of tumor metastasis in the lungs of opioid-treated Rag2 −/ −γ c −/ − mice engrafted with STAT3-shRNA infected MDA-MB-231 
cells. Graphs depict CK8-positive tumor spots per section as mean ± SD ( n = 10 for PBS-treated mice and n = 10 for opioid-treated mice; magnification of 
section: 40 ×, ∗∗∗P < 0.001, unpaired two-sided Student t test). (F) Representative images of H&E, Ki-67, CK8 and Vimentin immunostainings of lungs from 

mice engrafted with STAT3 -silenced MDA-MB-231 cells after primary tumor removal and postsurgical opioid treatment for 10 d (original magnification: 
40 ×; scale bars 200 μm). Control mice were treated with PBS (vehicle). 
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formed by STAT3 -silenced cells were similar in growth kinetics and volume
compared to MDA-MB-231 control-shRNA cells ( Fig. 4 D). Following
primary tumor resection, mice were treated with opioid or vehicle and lung
metastasis was examined. Strikingly and in line with in vitro results, animals
injected with STAT3-shRNA infected cells had significantly less CK8-positive
metastatic lesions in the lungs after opioid treatment than vehicle-treated
controls ( Fig. 4 E and F). Lungs from opioid-treated mice injected with
STAT3 -silenced cells also displayed significantly less Ki-67 and Vimentin
staining than saline-injected controls ( Fig. 4 F). Taken together, we show
here for the first time that DOR-triggered migration and metastasis of breast
cancer cells acts via oncogenic JAK1/2-STAT3 signaling, promoting breast
cancer progression potentially through increased EMT. 

Discussion 

Opioid usage in cancer patients is currently under scrutiny as evidence
is emerging of adverse effects on tumor progression. Concerningly, opioids
are taken as painkillers to alleviate chronic disease symptoms, which has led
to an ongoing debate over opioid safety and the rise of an “opioid crisis”. In
this study, we provide important mechanistic insights into the detrimental
biological functions of opioids in breast cancer progression, as evidenced by
their capacity to increase migration and metastasis through STAT3 activation
and EMT reprograming. 

We mined public gene expression datasets that revealed DOR expression
to be upregulated in many solid cancers, focusing further on advanced
and invasive breast cancer, where DOR expression levels correlated with
accelerated metastasis and disease progression. Previous studies revealed that
signaling of DOR strongly differs from signaling of μ- and κ-opioid receptors
(MOR, KOR). This results in differences in the regulation of nociception and
emotional responses [27] , but also proliferation, differentiation and survival
of cells outside the central nervous system [ 28 , 29 ]. It is unclear what mediates
the specificity of DOR functions, but alternative G protein coupling may
be relevant. In contrast to MOR and KOR, DOR activates G q/11 proteins
[30] and these were found to promote metastasis [31] . 

Using in vitro techniques and different breast cancer transplant models
in immunosuppressed and immunocompetent mice, we demonstrated
that DOR activity accelerates breast cancer migration and metastasis
irrespective of immune cell status. Furthermore, our pharmacologic and
genetic interference studies culminate on an essential role of JAK1/2-STAT3
activation in opioid-induced EMT processes through reduced E-Cadherin
expression. Whether this mechanism involves indirect or direct JAK1/2-
STAT3 pathway signaling still needs to be further examined, however, the
rapid induction of pY705-STAT3 activating phosphorylation upon DOR
ligation suggests that a direct mechanism may be likely. Indeed, JAK1/2
activation by GPCRs was previously reported to be facilitated by a direct
interaction with the α subunit of G q proteins [32] . DORs are coupled
to G q proteins, likely contributing to JAK1/2-STAT3 pathway activation.
Furthermore, signaling through GPCRs such as chemokine or cardiotrophin
receptors were previously shown to trigger significant pYSTAT3 levels
[33] . Interestingly, STAT5 activity remained unaffected by opioid treatment
despite being a downstream target of JAK1/2. This observation could be due
to cell type-specific expression level differences, where higher STAT3 levels
may contribute to the dominant JAK1/2-STAT3 signaling mediated by DOR
activation in breast cancer cell migration and metastasis. 

An increase in pY705-STAT3 upon DOR stimulation has not been
observed formerly. SNC80, a DOR agonist, was reported to increase pS727-
STAT3 in murine mesenchymal stem cells [29] , which is important for the
mitochondrial activity of STAT3 [34] . However, the direct role of DOR
activation by SNC80 in this study remained unclear and so the induction of
pS727-STAT3 is likely to represent an off-target effect of this agonist [35] . In
contrast, stimulation of pY705-STAT3 was reported for opioid receptor like-
1 overexpression in transfected human embryonic kidney (HEK293) cells
36] . In this artificial cell system, opioid receptor like-1 activated STAT3 via
ransfected G α16 , whose expression is usually restricted to hematopoietic cells
nd is not significantly expressed in epithelial cells [37] . Our data thus show
or the first time that stimulation of DORs endogenously expressed in breast
ancer cells rapidly and strongly induces pY705-STAT3 and downstream gene
ranscription. 

Previous studies revealed that β-endorphin and other selective DOR 

gonists inhibit thymic and splenic T cell proliferation and cytokine
roduction [38–40] , suggesting that DOR signaling could promote 
etastasis by suppressing immune function. However, breast cancer 
etastasis was enhanced in both immunocompetent and immunodeficient 
ouse models, implying that the immunosuppressive effect of opioids is not

 key driver for breast cancer progression. 
We demonstrated that DOR stimulation enhances breast cancer cell 

igration, suggesting that opioid-promoted metastasis originates from 

nhanced cancer cell motility. DOR-stimulated cell migration has been 
reviously observed for non-tumor cells such as epithelial cells, fibroblasts
nd keratinocytes [ 28 , 41 , 42 ]. Importantly, we found that opioid exposure
ailed to induce classical migration pathways such as MAPK/ERK, TGF-
/SMAD2/3 or WNT/ β-Catenin in breast cancer cells, but activated the
igratory JAK1/2–STAT3 axis. Opioid-induced STAT3 activation without 

ny concomitant effect on the WNT/ β-Catenin pathway was surprising,
s ABC/WNT signaling is considered an essential driver of cell motility
nd it synergizes in colorectal carcinoma progression with oncogenic STAT3
ctivation [43] . Since WNT and STAT3 share common downstream target
enes, such as D-type cyclins and c-MYC , we conclude that activation of both
athways is not required for opioid-mediated breast cancer migration and
etastasis. 

The observed lung metastases in opioid-treated xenografts were all found
o be Vimentin positive. Vimentin has a critical role in metastasis by
tabilizing mature invadopodia, which is a prerequisite for invasive spread of
ancer cells. Vimentin is expressed in MDA-MB-231 cells [44] , but we found
ven more intense Vimentin expression in MDA-MB-231 cells after opioid
reatment in transplanted tumors. Enhanced Vimentin expression in MDA- 

B-231 cells after opioid exposure could be a downstream effect of further
ncreased STAT3 activation, as STAT3 can bind to and activate the Vimentin
romoter [45] . Opioid exposure also resulted in a consistent upregulation of
he EMT marker SNAIL and downregulation of E-Cadherin in breast cancer
ells. SNAIL enhances cell movement via RhoB upregulation, which alters
ocal adhesion dynamics [46] . The loss of E-Cadherin expression is striking
nd could be a combined consequence of upregulated E-Cadherin repressor
NAIL as well as STAT3 activation. In contrast, the loss of E-Cadherin
fter breast cancer cells were exposed to opioid for 1 h suggests a rapid
nternalization of the transmembrane glycoprotein after DOR stimulation. 
-Cadherin is internalized via Clathrin-coated pits, which are also involved in
pioid-induced endocytosis of DORs [47] . Stimulated DORs are maximally 
nternalized within 1 h [48] , thus a co-internalization via Clathrin-coated pits

ight account for the observed loss of E-Cadherin in opioid-exposed breast
ancer cells. 

Several clinically relevant opioids such as morphine, methadone, and 
entanyl analogues may also trigger DOR signaling [ 49 , 50 ]. Therefore,
pplication of these potent analgesics in cancer patients or aged patients with
nhanced cancer risk has to be considered with more care, increased risk
ssessment and further mechanistic studies. We do not propose STAT3 or
AK1/2 inhibition as promising therapies to be combined with opioids, as
his could result in severe immunosuppression or altered stromal-tumor cell
ignaling [51] . Moreover, drugs like ruxolitinib are known to alter cancer cell
etabolism and may increase the risk of breast cancer by alternative pathways

51] . 
In conclusion, we show here for the first time that DOR triggered

igration and metastasis of breast cancer cells, which acts via oncogenic
AK1/2-STAT3 signaling and potentially promotes breast cancer progression 
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through increased EMT. Thus, our findings emphasize the importance of
selective and restricted use of opioid-based pain medication in cancer patients
or elder patients at high-risk. We advocate the need for safer pain medication
that does not activate oncogenic pathways such as JAK1/2-STAT3 signaling.
Thus, further mechanistic studies will be important and required to identify
safer pain medication alternatives. 
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