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Analyses of animal social networks have frequently benefited from tech-

niques derived from other disciplines. Recently, machine learning

algorithms have been adopted to infer social associations from time-series

data gathered using remote, telemetry systems situated at provisioning

sites. We adapt and modify existing inference methods to reveal the under-

lying social structure of wide-ranging marine predators moving through

spatial arrays of passive acoustic receivers. From six months of tracking

data for grey reef sharks (Carcharhinus amblyrhynchos) at Palmyra atoll in

the Pacific Ocean, we demonstrate that some individuals emerge as leaders

within the population and that this behavioural coordination is predicted by

both sex and the duration of co-occurrences between conspecifics. In doing

so, we provide the first evidence of long-term, spatially extensive social pro-

cesses in wild sharks. To achieve these results, we interrogate simulated and

real tracking data with the explicit purpose of drawing attention to the key

considerations in the use and interpretation of inference methods and their

impact on resultant social structure. We provide a modified translation of

the GMMEvents method for R, including new analyses quantifying the

directionality and duration of social events with the aim of encouraging

the careful use of these methods more widely in less tractable social

animal systems but where passive telemetry is already widespread.
1. Introduction
Developments in biologging techniques are facilitating novel ways in which

information on animal social behaviours and movements are gathered, substan-

tially increasing the quantity, quality and longevity of interactions that can be

monitored simultaneously [1–3]. Proximity-based social networks (PBSNs),

for example, offer a means to reconstruct social structure in intractable species

from the frequency of paired spatial associations between tracked individuals

[4]. Recent analyses, designed to extract social networks from automated spatio-

temporal time series [5,6], have utilized telemetry data to infer social networks

for hundreds of individuals over periods of years having significant impact on

our understanding of the evolutionary processes driving population dynamics

[7–9], enabling researchers to measure social structure over vast sampling

areas. Such methods, to date, have adopted Bayesian inference, specifically

Gaussian mixture modelling (GMM) approaches, originally developed as

pattern recognition tools in machine learning, with the explicit aim of tackling

the non-trivial issue of how best to sample and construct graphs of social

association from automated telemetry data.

This particular application of Bayesian inference has arisen, in part, due to

the logistical limitations of deploying devices and retrieving data from spatial

proximity loggers that directly record animal contact rates (e.g. [10]). Logistical
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constraints still limit broad swaths of ecological systems from

the large-scale deployment of such technology, particularly

in systems where the tagged animals are unlikely to be

encountered again. For example, despite a few interesting

studies demonstrating proof of concept [11,12], proximity

logging of social animals in the marine environment remains

underdeveloped relative to terrestrial systems where their use

has enabled hugely detailed, automated mapping of social

networks in situ and in real time [2,10,13]. Fundamentally,

the marine environment rules out the use of radio telemetry

where many of the developments in this field have occur-

red (e.g. [14,15]). The logistical constraints to data storage,

retrieval and battery life of such systems in marine environ-

ments or the ability to deploy and collect sufficient

numbers of proximity loggers to capture the social structure

of wide-ranging animals remains prohibitive and hence the

emergence of analytical inference methods that can help to

fill this gap with no extra risk or cost associated [16].

Typically, in systems where directed interactions are not

obvious or easily recorded, there is an implicit assumption

that individuals in close spatial proximity are associating

with one another, a concept known as the ‘gambit of the

group’, which often fails to distinguish social and spatial pro-

cesses (as discussed in [4,17]). Constructing social networks

from temporal and spatial data addresses this to an extent,

but also provides a solution to the often subjective assignment

of aggregation time windows (i.e. sampling periods) to time-

series data [5,18]. Thus, an automated approach explores the

inherent structure already present in the visitation profile of

tagged animals, detecting the most likely ‘clustering events’,

of variable size, that reflect the variation expected in dynamic

animal societies [19]. These methods rely on individual- and

group-level patterns in the arrival of animals to specific areas

of interest (e.g. feeding stations). But how ‘clustered’ do the

data actually need to be to infer a biologically meaningful

signal? And can such methods be used, for example, to

sample the underlying social structure of a community of

free-ranging animals where the data-stream is comparatively

sparse owing to natural fission–fusion within the population.

The data that have typically been analysed to date using this

method (i.e. birds at feeding stations), often already contain

obvious structure in the visitation profile—imposed either by

experimental manipulation and/or by known circadian

rhythm, sensor on/off patterns and prior knowledge of fora-

ging that occurs in groups (e.g. [7,20]). In other systems,

such natural structure in the data may not always be known

and therefore cannot necessarily be assumed.

The methodology behind GMM inference of animal social

structure and how this mitigates the potential bias associated

with choosing a sampling period is already discussed in

depth by Psorakis and colleagues [5,6]. Equally, there are a

growing number of studies using this same model system

(i.e. RFID-tagged birds of the family Paridae in Wytham

Woods Oxfordshire, UK) to demonstrate the real potential

of these analyses to explore broad questions in population

and evolutionary ecology (e.g. [7,21]). Consequently, we do

not discuss either in great detail here. Rather we aim to

explore the broader utility of such methods for capturing

the underlying social structure of animals moving through,

but not necessarily attracted to, arrays of spatial receivers,

where data are typically rather sparse and sporadic, and

may have no natural ‘breaks’ in the pattern of detections.

Recently, Armansin and colleagues used a small acoustic
array to demonstrate that if receivers are placed close enough

together to overlap, hyperbolic positioning can be used to

reconstruct the social associations of site-attached, benthic elas-

mobranchs, using an approach akin to PBSN construction [22].

Building on such work and using time-series data gathered by a

spatially extensive, fixed array of non-overlapping acoustic

receivers at a remote Pacific Atoll, we address the following

questions: (i) can a GMM approach reconstruct social associ-

ations in simulated structured data? (ii) How are social

network metrics influenced by data partitioning? (iii) Can lea-

dership behaviour be inferred from within-event detection

chronology and social duration? We translate a modified ver-

sion of the GMMEvents code from [5] into open R code and

highlight a series of considerations for those wishing to con-

struct social networks on the long-term associations of

animals from passive tracking or logging data.
2. Material and methods
2.1. The structure of sparsely distributed biologging

data
A wealth of automated instrumentation now exists to record indi-

vidual animals tagged with both passive and active electronic

tracking devices [3,23]. Biologging, and in particular, the tracking

of animals in autonomous fixed-receiver arrays (AFAs), has long

been employed to enhance our understanding of animal space

use, visitation patterns and residency behaviour for a broad

range of marine and terrestrial species [24,25] and with clear appli-

cation in species conservation [26,27] and movement ecology [28].

In some instances, the data recovered from arrays of receivers can

be relatively sparse temporally as animals enter and leave the area

under surveillance, sometimes for long periods.

To illustrate the application of these inference methods to

such data, we use underwater, acoustic tracking data on the

movements of sharks through an AFA of hydrophone receivers.

The data used in this study were gathered as part of a long-

term field study into the movements of reef-associated predators

at Palmyra Atoll (58530 N, 1628050 W) in the central Pacific

Ocean. Specifically, we analyse data on the movements of grey

reef sharks (Carcharhinus amblyrhynchos, Bleeker 1856), tagged

with long-life V16 acoustic transmitters (n ¼ 44), monitored

within an array of 63 VR2 W hydrophone receivers (VEMCO,

Halifax, Nova Scotia), over a period of 3 years (552 026 detec-

tions). Sharks were tagged, as part of a larger study, to

quantify patterns of space use of predators at an island scale

Marine Protected Area. Detection ranges of acoustic receivers

can vary greatly depending on the local environment and typi-

cally range testing of receiver arrays to determine detection

probabilities is not always adequately considered within study

designs [29]. For the current data, a subsample of receivers

(owing to time constraints in such a remote location) in three

common habitats were range-tested revealing average detection

ranges of 500 m on the forereef, 250 m on the backreef and

350 m in lagoon habitats. For the purposes of this study, we

work to the backreef range as a minimum; however, we acknowl-

edge that future research addressing specific ecological

hypotheses will require an added weighting to the social net-

work inference whereby those receivers with smaller detection

ranges contribute more to the social network than those with

very large detection ranges.

These telemetry data were deemed representative of a

system, unperturbed by experimenter influence, where individ-

ual sharks enter and leave the array, and where sporadic

gathering events occur between multiple individuals, across mul-

tiple locations in a dynamic, fission–fusion manner. To address
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the applicability of the GMM approach for acoustic tracking, the

underlying structure of the data was explored by plotting the fre-

quency distribution of time differences, d(tz) ¼ tz – tz21, between

the arrival of consecutive individuals (z) at receivers across the

array, ignoring repeated detections by the same individual.

Even among temporally sparse detection data, we observe the

characteristic ‘heavy-tailed’ distribution (a ¼ 1.9) representing

high numbers of short time intervals, interspersed with low

numbers of long intervals (figure 1) that is indicative of clustered
aggregation data [5].
2.2. Modification of the GMMEvents code
The modified R code for the GMMEvents analyses, simulated

and real trial datasets, along with user instructions are available

at https://github.com/JacobyD/gmmevents. This code, which

is reliant upon a Gaussian mixture model with variational Baye-

sian inference (VBGMM), enables users to load a data-stream

containing time, individual and location from one or many logging

devices and extract the following: (i) the number of clustering

events at each location and collectively, as determined by the

GMM; (ii) the mean event times (centroids) for each event includ-

ing other summary statistics, and (iii) five N � N adjacency

matrices, A ¼ [aij], defined as a square, individual-by-individual

matrix quantifying different aspects of the paired (hereafter

referred to as dyadic) co-occurrences. These include matrices

(i) and (ii) which are count matrices (‘AdjMat_count’ and

‘AdjMat_pre_sig_count’) that provide an accumulated count of

the within-event detections for the individual in a dyad that was

present for the shortest period, San
ij , as per [5], both pre- and

post-significance test; (iii) a prime matrix that is an accumulation

of binary scores across events (AdjMat_PRIME) representing

the number of separate events dyads were detected together.

Of course, these matrices will be correlated, as one is derived

from the other, so why not simply use the count matrix as in

previous studies? We argue that the best indication of social be-

haviour from relatively course-scale telemetry data is the

number of times individuals co-occur across different events,

but that this relationship can be refined further by considering

the duration or mean duration of those co-occurrences (see Infer-

ring directionality and duration of social ties); (iv) we also

construct a directed, asymmetric version of the PRIME matrix

(AdjMat_PRIME_dir) and (v) a duration matrix (AdjMat_dur) per-

taining to the accumulated time in seconds that dyadic detections

overlap across all events they co-occur in. All adjacency matrices

are discussed in context below.
2.3. Simulated data trial
Given that the data appear to suggest aggregated activity at the

receivers, we examined the efficacy of the Gaussian mixture

model (GMM) approach to capture the underlying social struc-

ture of shark populations. The first step in this process was to

see how well the model performed with highly structured, simu-

lated data with ‘forced’ social affiliations. To do this, we

simulated 4000 random occurrence times (t), with a known dis-

tribution of K mean event times before randomly apportioning

individual detections (i) to those known K, with varying degrees

of probability and associated noise. The simulated data were

designed to represent a time series where each individual is

likely to be found in one of five events more than any other,

creating aggregations in time with a given probability of 0.9,

and where the participants are known in advance (figure 2a).

We then tested whether these a priori known social affiliations

were detectable with the GMM approach.
2.4. Partitioning the data-stream
As GMMs can be computationally expensive and time-consum-

ing, data are often divided into portions, run separately and

then combined, post model, into one adjacency matrix represent-

ing the broad social structure within the population. For some

social systems, discrete breaks in the visitation profile might

occur naturally or be assumed in advance; for example, foraging

behaviour in mixed-species population of tits (Paridae) is known

to occur only during daylight hours [21], providing an obvious

division of the data. Social behaviour in other systems might

be much less defined temporally and consequently, we explore

the influence of data-stream division on the eventual outcome

of the inferred social structure.

We take a week-long data-stream, equivalent to our simu-

lation, of 4000 detections of grey reef sharks and analyse it in

its entirety before splitting it into two equal-sized portions of

2000 each and re-running the analysis on each portion, combin-

ing the results. As the GMM is not deterministic, we then

iterate this process 50 times to produce error estimates for our

comparisons. While 50 times is a relatively low number of per-

mutations, the GMM is extremely time-consuming and

computationally demanding, involving multiple permutation

tests of its own and so this number of iterations was deemed

sufficient and manageable to assess error in comparing the

split and complete data-streams. The model output and resultant

social network characteristics were explored using Wilcoxon’s

signed-rank test and Spearman’s rank test.
2.5. Inferring directionality and duration of social ties
The idea that there is an inherent structure within the time series,

but also further structure pertaining to relative dyadic detection

profiles within each identified clustering event, allows us to

extend the methodology outlined in [5], providing new insight

into the nature of social events inferred from telemetry data.

For each event, we extract the chronology of arrival times at

locations between individuals to infer directionality of social

affiliations and identify followership and leadership behaviours.

In essence, this relies on identifying leadership based on dyadic

interactions. It is important to stress here that we measure leader-

ship in order to assess individual influence within the population

in the context of social network position, not to understand dom-

inance or social hierarchies; additional data at a finer spatial scale

would be required to achieve this goal. Leadership, however,

need not necessarily be reliant on complex social information

transfer between individuals. Studies on human groups in con-

trolled conditions, for example, demonstrate that without any

prior knowledge about group mates, individuals were able to

identify and benefit from individual leader behaviour [30]. We

https://github.com/JacobyD/gmmevents
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acknowledge that there are more sophisticated techniques that

measure leadership in coordinated group activities, such as the

leadership inference framework outlined in [31]; however,

we believe such approaches are more suitable in the context of

collective behavioural processes where the mechanistic foun-

dations of collective behaviour are being tested directly. We

also extract co-occurrence duration by retrieving the number of

overlapping detections between dyads within events and their

associated times.

Even semi-gregarious species that demonstrate a fission–

fusion approach to social behaviour require a mechanism for

spatiotemporal coordination often resulting in the emergence of

leadership and followership behaviour within a population

[32]. To illustrate the utility of the extensions we have added to

the code, we extract inference on leader–follower behaviour for

a six-month period of the grey reef shark acoustic tracking data

(approx. 125 000 detections). Leadership scores (Li) were con-

structed for each shark based on the proportion of each

individual’s degree that was represented by in degree
(Li ¼ kin

i =ki) within the directional adjacency matrix, dependent

upon whether individuals within a dyad were detected first or

second within an event. We then explored the predictability of

Li from individual network attributes of sex, total length (TL)

and mean event duration (fixed effects), as well as individual

(random effect), using a linear mixed-effects model (‘nlme’ pack-

age in R). Mean durations were calculated as the mean time

individuals co-occurred within an event across all dyads present,

which was then logged to achieve normality. All analyses

throughout were carried out in R v. 3.2.3.
3. Results
3.1. Capturing the structure of simulated data
The simulation showed that the GMM could successfully ident-

ify the five distinct events and the distribution of individuals

across those clustering events (figure 2). The prime matrix

(see Modification of the GMMEvents code (2.2)) suggests a
highly homogeneous network (figure 2b) reflecting the fact

that some individuals from all groups (A–E) were detected in

all five events within the simulated single location. Conversely,

the ‘count’ network that represents the minimum number

of detections per significant dyad provides an indication of

those dyads exhibiting some longevity in their co-occurrences,

and shows five distinct social groups (once non-significant,

red edges were removed) with some variability in membership

as a result of the noise introduced into the simulated data

(figure 2c). A sparse and noisy signal is indicative of the

nature of tracking data and the timescales over which

these large animals roam in and out of trackable areas.

Hence, construction of social networks for wide-

ranging species from telemetry data requires many receiver

locations and ideally long periods of tag retention time, as

per our shark tracking data-stream where individuals were

tagged internally.
3.2. Influence of data-stream partitioning
We demonstrate that when splitting the data-stream, the

GMM reports a significantly higher number of clustering

events (V ¼ 0, p , 0.001, figure 3a(ii)) than when the model

is run on the full data-stream. Despite this, there were signifi-

cantly similar structural properties at the individual level

with weighted individual degree (ki) showing a strong posi-

tive correlation (Spearman’s rank, r ¼ 0.89, p , 0.001,

figure 3b) and similarities in community structure, both visu-

ally and statistically (V ¼ 819, p . 0.05, figure 3a(i),b). We

do, however, identify differences in the average path length

(V ¼ 0, p , 0.001, figure 3a(iii)) and the overall mean degree

(V ¼ 339.5, p , 0.05, figure 3a(iv)) even within this relatively

small-scale network.

Variation in the global structural properties of a network

might not necessarily have an immediate impact on a given

individual (although it can), but it can substantially alter
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the dynamics of flow within a system and this has clear

implications for information and disease transmission rates

across the network [33,34]. Indeed, the long-range links in a

network (i.e. increased average path length) can be linked

to the emergence of more virulent infectious diseases as the

cost to the pathogen of wiping out a local host population

is reduced by this increased reach [35]. Therefore, the ability

of the model to capture the true global properties of the net-

work can be critical in situations where pathogens require a

tipping point to persist [36], or where information dissemina-

tion across the group is reliant on a threshold or quorum of

individuals obtaining and sharing it [37,38]. It is worth

being mindful of the potential risk of failing to capture

such thresholds from the structural properties of inferred net-

works where the data have been divided prior to processing.

Therefore, despite the computational costs involved, we

encourage practitioners to think carefully about when and
how to partition data for analytical purposes, using where

possible, ecologically determined divisions that represent

natural breaks in aggregation behaviour.
3.3. Inferring directionality and duration of social ties
Across sharks of a limited size range (owing to the constraints

associated with minimum tagging size), there was consider-

able variation in leadership tendencies and mean social

duration (figure 4). Typically, the strongest social ties occurred

between individuals of intermediate L score (i.e. those that

tended to lead and follow in equal measures) and interest-

ingly, these individuals had longer social durations than

conspecifics with a propensity to lead. This is intuitive as natu-
ral leaders will likely move on to a new location before natural
followers. Unlike TL, sex and mean social duration were both

significant predictors of leadership, as was the interaction
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Table 1. Sources of variation contributing to the emergence of leadership
within a shark population. The results are from the final linear mixed-effects
model fit by RMEL which included an interaction term between sex and total
length (TL) but not between either of these with log-transformed mean duration
per event (MDPE) (all fixed effects) and including a random effect of individuals.
The bold values are significant at the p , 0.05 level.

fixed
effects

model
coefficients s.e. td.f. p-value
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between sex and TL ( p , 0.05). The emergent structure within

the network appeared to suggest that male sharks were less

likely to lead, as were those individuals that maintained

longer co-occurrences with conspecifics (results summarized

in table 1). This analysis demonstrates leadership and its eco-

logical predictors; it is important to acknowledge, however,

that social affiliations are highly dynamic and often context-

dependent and that temporal analysis would be required to

understand the stability of leadership behaviours through

time and across context [39].
sex 21.015 0.460 22.20529 0.0355

TL 20.001 0.001 20.70929 0.4840

log10(MDPE) 20.077 0.032 22.40529 0.0228

sex : TL 0.007 0.003 2.17829 0.0377
4. Discussion
Grey reef sharks can display a range of behaviour, from cen-

tral place refuging with site residency, to more nomadic

wider ranging movements and evidence of social associations

between individuals [40,41]. In some locations, grey reef

sharks also form all female aggregations in very shallow

water, likely related to gestation [42]. The social dynamics

of these aggregations, however, have yet to be explored, in

part, due to the challenges associated with developing an

unbiased strategy for sampling the social network. Knowl-

edge of the fine-scale structural dynamics of shark

aggregations, and their temporal stability is important in

both an ecological and conservation context [43] and can be

used, for example, to understand reproductive strategies or

for highlighting periods of population vulnerability [44].

To this end, we explore the utility of GMMs for retrieving

inference on social network structure from telemetry data

of spatiotemporal co-occurrences, modifying the currently

available methodologies to extract additional behavioural

information on the timing and directionality of dyadic inter-

actions. We demonstrate leadership patterns in a shark
population overa six-month period and explain some of the pre-

dictors of these patterns. Our ability to demonstrate sex as a

significant driver of leadership is tantalizing and indicative of

the importance of fine-scale intersexual interactions in structur-

ing shark population dynamics [43]. By exploring leadership

over such a long period, however, we are likely missing some

of the nuances associated with individual- and group-level

behaviours, in addition to the role of abiotic factors in determin-

ing shifts in the timing of such behaviours. Reproduction, for

example, will no doubt be seasonal as individual grey reef

sharks tend not to show year-round fidelity to a single reef

area [40], but also spatially explicit as mating, gestation and pup-

ping perhaps all occur in specific (and potentially very different)

localities [45]. Perhaps most interestingly, these methods might

help to shed light on the complex interplay between individual

home ranges, contact rates and the potential asymmetry

between conspecifics regarding localized information about

resource distribution.
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4.1. Significance testing and edge weighting
The GMMEvents package has a number of randomization pro-

cedures incorporated. Firstly, the significance test assigns the

probabilities of individual detections to a particular distri-

bution or clustering event (this is irrespective of individual

ID). Secondly, and more crucially from a social network per-

spective, these data are then randomized at the bipartite

graph stage—that is an individual to event network—which

means that the detection frequency of an individual within an

event can be constrained. This is significant in the light of

recent evidence arguing that to avoid bias, null models for

hypothesis testing in animal social networks should rely on

randomizations of the raw data-stream over node-based ran-

domizations (see [46,47] for discussion), especially where

logging devices have large detection ranges such as the acous-

tic receivers in this study. Tagged animals can, for example,

rest within the range of a receiver and record many successive

detections providing added structure within the data-stream

and also an opportunity to use this within-event structure to

weight our associations. Crucially, permutation of the bipartite

graph allows us to control for the gregarious nature of individ-

uals and the greater probability of association between

individuals with overlapping home ranges, while randomiz-

ing the fact that individuals might have social preferences

within those aggregations. Network studies in captivity,

where individuals have been observed, often control for indi-

vidual gregariousness (e.g. [48]) or group size structuring (e.g.

[49]), but it is less obvious how best to do this when working

with abstract time-series data from biologging devices. Spiegel

et al. [4] suggest that randomization procedures that adopt

data-stream permutation still fail to fully discriminate bet-

ween the spatial heterogeneity and social attraction, arguing

that movement tracks be randomized within individuals not

between. Spiegel and colleagues’ promising methodology

offers an eloquent solution to this problem, although for

wide-ranging, fission–fusion species, there remains the

rather subjective challenge of assigning a time window to

randomize within an individual’s movement track.

4.2. Confidence in our inferences
Having explored the utility of the GMM approach for sparse,

fission–fusion detection data, it is prudent to discuss a

number of important considerations for how we interpret

the inferences we draw from such analyses. A reasonable

question to pose would be how much confidence do we

have in the sensitivity of our sensors from which we infer

social behaviour? For example, in this study, we work with

an approximate receiver detection range of 250 m (radius),

suggesting that a co-occurrence can be recorded between

individuals up to approximately 500 m apart. We noted ear-

lier that the effective detection range can be highly variable

and is not always fully accounted for in many studies

[29,50], suggesting further refinement of network weightings

is needed as these methods develop. The current method-

ology proposed in this paper remains unvalidated and

fine-scale, contact network data, such as that obtained from

proximity loggers, are much needed to confirm the accuracy

with which these techniques truly capture social associations

in marine organisms [2,51]. Terrestrial studies have taught us

that the reliability with which proximity networks capture

social processes can be highly variable [52] and can influence

how we interpret network structure [53]. Despite the scope
for uncertainty here also, we argue that if dyads are continu-

ally detected in different clustering events and at different

locations, then our confidence in a social association is

likely to increase proportionally. Combining this with our

ability to further weight or rank edges based on the duration

of shared detections, we can improve our confidence still

further. Caveats aside, there is clear merit in these method-

ologies given that the longevity of social network data

achieved using conventional passive tracking/logging in

combination with GMM analyses and the ability to track hun-

dreds of individuals simultaneously [5,8,21] continue to far

exceed even the most sophisticated proximity logging

systems currently available.

Although seemingly stating the obvious, one important

consideration that has clear bearing on the structural properties

of the network is the degree of temporal overlap between tags.

One can imagine using the GMM approach to infer a network

that indicates social segregation between two subgroups,

something that appears to be a statistically significant effect

when examined for assortment; such a result, however, might

materialize from minimal temporal overlap of the individuals

in each group. Put simply, if there is little overlap between the

last detections of one group and the first detections of a newly

tagged group, yet the data are all included in the GMM analysis,

then we are likely to return a false-positive result, a type I error.

Rarely are all individuals tagged at the beginning of a study

and so researchers interested in understanding the social struc-

ture of a population using this method must balance the

scientific questions (e.g. how does social behaviour change

with season?), with utilizing data with the greatest overlap of

individuals (i.e. a section of the time-series with the highest

number of tagged animals at liberty).

Finally, we are confident that this method can correctly

identify statistically significant dyadic partnerships within

an event, controlling for, to a degree, spatial bias in individ-

ual home ranges. However, the nature of the data collection

prohibits us from confirming whether the method always

captures a biological event per se. Thus, inference methods

do not necessarily always address whether the assignment

of a clustering event in time is indicative of an aggregation

of biological significance in our target species. For this

reason, validation of the results with visual or recorded

observations is much needed.
4.3. Conclusion
For better or worse, a limited number of successful and

highly refined technological systems dominate the global

telemetry market. This, however, has encouraged broad col-

laboration and the coordinated deployment of thousands of

tracking devices across diverse taxa, all gathering standar-

dized data [54]. While developments in proximity logging

have been limited in its ability to measure the social structure

of marine organisms, inference methods offer the opportu-

nity to interrogate the growing list of long-term, time-series

telemetry data (e.g. the Ocean tracking Network: http://

oceantrackingnetwork.org/) with new questions. We discuss

some of the strengths and constraints of this methodology

and provide code containing a number of modifications to

explore the drivers of behaviour from telemetry data. In

doing so, we construct the first long-term leadership network

in free-ranging sharks demonstrating how such tools will be

crucial in helping to elucidate the ecological role and

http://oceantrackingnetwork.org/
http://oceantrackingnetwork.org/
http://oceantrackingnetwork.org/
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conservation implications of sociality and behavioural hierar-

chies in marine ecosystems [23].

Authors’ contributions. D.M.P.J. and R.F. conceived and designed the
study. Y.P.P. collected the tracking data. D.M.P.J. and R.F. wrote the
code and analysed the data. D.M.P.J., Y.P.P. and R.F. wrote the paper.

Competing interests. We declare we have no competing interests.
Funding. D.M.P.J. and R.F. acknowledge core funding from the Zoolo-
gical Society of London.

Acknowledgements. We thank the US Fish and Wildlife Service for per-
mitting the telemetry work and the work of I. Psorakis for
inspiration. Y.P.P. thanks J. Caselle and K. Weng and the Marisla
Foundation, the Hawaii Undersea Research Laboratory/NOAA
Coral Reef Conservation Programme.
ublishing.or
References
g
J.R.Soc.Interface

13:20160676
1. Krause J, Krause S, Arlinghaus R, Psorakis I, Roberts
S, Rutz C. 2013 Reality mining of animal social
systems. Trends Ecol. Evol. 28, 541 – 551. (doi:10.
1016/j.tree.2013.06.002)

2. Rutz C, Burns ZT, James R, Ismar SMH, Burt J, Otis
B, Bowen J, St Clair JJH. 2012 Automated mapping
of social networks in wild birds. Curr. Biol. 22,
R669 – R671. (doi:10.1016/j.cub.2012.06.037)

3. Rutz C, Hays GC. 2009 New frontiers in biologging
science. Biol. Lett. 5, 289 – 292. (doi:10.1098/rsbl.
2009.0089)

4. Spiegel O, Leu ST, Sih A, Bull CM. 2016 Socially-
interacting or indifferent neighbors? Randomization
of movement paths to tease apart social preference
and spatial constraints. Methods Ecol. Evol. 7, 971 –
979. (doi:10.1111/2041-210X.12553)

5. Psorakis I, Roberts SJ, Rezek I, Sheldon BC. 2012
Inferring social network structure in ecological
systems from spatio-temporal data streams.
J. R. Soc. Interface 9, 3055 – 3066. (doi:10.1098/rsif.
2012.0223)

6. Psorakis I et al. 2015 Inferring social structure from
temporal data. Behav. Ecol. Sociobiol. 69, 857 – 866.
(doi:10.1007/s00265-015-1906-0)

7. Aplin LM, Farine DR, Cockburn A, Thornton A. 2015
Experimentally induced innovations lead to
persistent culture via conformity in wild birds.
Nature 518, 538 – 541. (doi:10.1038/nature13998)

8. Farine DR, Aplin LM, Sheldon BC, Hoppitt W. 2015
Interspecific social networks promote information
transmission in wild songbirds. Proc. R. Soc. B 282.
(doi:10.1098/rspb.2014.2804)

9. Farine DR et al. 2015 The role of social and
ecological processes in structuring animal
populations: a case study from automated tracking
of wild birds. R. Soc. open sci. 2, 150057. (doi:10.
1098/rsos.150057)

10. Boyland NK, James R, Mlynski DT, Madden JR, Croft
DP. 2013 Spatial proximity loggers for recording
animal social networks: consequences of inter-
logger variation in performance. Behav. Ecol.
Sociobiol. 67, 1877 – 1890. (doi:10.1007/s00265-
013-1622-6)

11. Holland KN, Meyer CG, Dagorn LC. 2010 Inter-
animal telemetry: results from first deployment of
acoustic ‘business card’ tags. Endanger. Species Res.
10, 287 – 293. (doi:10.3354/esr00226)

12. Guttridge TL, Gruber SH, Krause J, Sims DW. 2010
Novel acoustic technology for studying free-ranging
shark social behaviour by recording individuals’
interactions. PLoS ONE 5, 1 – 8. (doi:10.1371/
journal.pone.0009324)
13. Rutz C, Morrissey MB, Burns ZT, Burt J, Otis B, St
Clair JJH, James R. 2015 Calibrating animal-borne
proximity loggers. Methods Ecol. Evol. 6, 656 – 667.
(doi:10.1111/2041-210X.12370)

14. St Clair JJH, Burns ZT, Bettaney EM, Morrissey MB,
Otis B, Ryder TB, Fleischer RC, James R, Rutz C.
2015 Experimental resource pulses influence social-
network dynamics and the potential for information
flow in tool-using crows. Nat. Commun. 6, 7197.
(doi:10.1038/ncomms8197)

15. Mennill DJ, Doucet SM, Ward KAA, Maynard DF, Otis
B, Burt JM. 2012 A novel digital telemetry system
for tracking wild animals: a field test for studying
mate choice in a lekking tropical bird. Methods Ecol.
Evol. 3, 663 – 672. (doi:10.1111/j.2041-210X.2012.
00206.x)

16. Hooker SK, Barychka T, Jessopp MJ, Staniland IJ.
2015 Images as proximity sensors: the incidence of
conspecific foraging in Antarctic fur seals. Anim.
Biotelem. 3, 37. (doi:10.1186/s40317-015-0083-2)

17. Pinter-Wollman N et al. 2014 The dynamics of
animal social networks: analytical, conceptual, and
theoretical advances. Behav. Ecol. 25, 242 – 255.
(doi:10.1093/beheco/art047)

18. Krings G, Karsai M, Bernhardsson S, Blondel VD,
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