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Ocean acidification is recognized as a major anthropogenic perturbation of the modern
ocean. While extensive studies have been carried out to explore the short-term
physiological responses of phytoplankton to ocean acidification, little is known about
their lipidomic responses after a long-term ocean acidification adaptation. Here we
perform the lipidomic analysis of a marine diatom Phaeodactylum tricornutum following
long-term (∼400 days) selection to ocean acidification conditions. We identified a total
of 476 lipid metabolites in long-term high CO2 (i.e., ocean acidification condition)
and low CO2 (i.e., ambient condition) selected P. tricornutum cells. Our results
further show that long-term high CO2 selection triggered substantial changes in
lipid metabolites by down- and up-regulating 33 and 42 lipid metabolites. While
monogalactosyldiacylglycerol (MGDG) was significantly down-regulated in the long-
term high CO2 selected conditions, the majority (∼80%) of phosphatidylglycerol (PG)
was up-regulated. The tightly coupled regulations (positively or negatively correlated)
of significantly regulated lipid metabolites suggest that the lipid remodeling is an
organismal adaptation strategy of marine diatoms to ongoing ocean acidification. Since
the composition and content of lipids are crucial for marine food quality, and these
changes can be transferred to high trophic levels, our results highlight the importance
of determining the long-term adaptation of lipids in marine producers in predicting the
ecological consequences of climate change.

Keywords: food quality, adaptation, ocean acidification, lipidomics, diatoms

INTRODUCTION

Diatoms are responsible for ∼20% of global primary production and play crucial roles in carbon
and silicon biogeochemical cycles (Field et al., 1998). Their fixed carbon is partitioned into
either carbohydrates or lipids (Kroth et al., 2008). The lipids of diatoms consist of almost all
lipid classes, including both polar lipids (Guschina and Harwood, 2006) and non-polar lipids
[free fatty acids, sterols, glycerols and especially triacylglycerols (TAGs)]. TAGs of diatoms have
been increasingly studied for their potential as nutritional sources and for biofuel production
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(Hildebrand et al., 2012; Shahidi and Ambigaipalan, 2018). Fatty
acid profiles of diatoms are enriched with medium-chain and
very long-chain polyunsaturated fatty acids (PUFAs), namely
ω3 fatty acids such as eicosapentaenoic acid (EPA) (Dunstan
et al., 1993; Guschina and Harwood, 2006). In aquatic food
webs, PUFAs are exclusively synthesized by phytoplankton and
cannot be synthesized de novo by metazoans, and therefore
must be acquired by non-phytoplanktonic organisms via their
diet (Hixson et al., 2015). As such, PUFAs are important
determinants of food quality and, consequently, an important
indicator for the health and optimal functioning of marine and
freshwater food webs (Dalsgaard et al., 2003). The polar lipid
fraction of diatoms mainly consists of digalactosyldiacylglycerol
(DGDG), monogalactosyldiacylglycerol (MGDG), sulfoquino
vosyldiacylglycerol (SQDG), phosphatidylinositol (PI),
phosphatidylglycerol (PG), phosphatidylcholine (PC), and
minor lipids such as betaine lipids (Stonik and Stonik, 2015).

Global change induces many alterations in marine
environments, such as ocean acidification (Gattuso et al.,
2015). The molecular, physiological, biochemical and ecological
responses of diatoms to ocean acidification have been studied
extensively in the last two decades (Gao et al., 2012; Hennon
et al., 2015; Petrou et al., 2019; Shi et al., 2019; Li et al., 2021;
see also comprehensive reviews by Gao and Campbell, 2014;
Bach and Taucher, 2019 and references therein). It has been
reported that the lipid contents and fatty acid compositions of
diatoms are highly dependent on CO2 concentrations (Bermúdez
et al., 2015; Wang et al., 2017; Abreu et al., 2020). For example,
ocean acidification decreased the content of PUFAs in the
marine diatom Cylindrotheca fusiformis by ∼3% (Bermúdez
et al., 2015). The mechanisms through which CO2 affects
the composition of fatty acids in microalgae are still unclear,
however, it has been suggested that elevated CO2 can enhance
the synthesis and accumulation of saturated fatty acids (Sato
et al., 2003). This response reduces cell membrane fluidity,
which helps the organism to cope with pH reductions and
facilitates the regulation of cell homeostasis (Lane and Burris,
1981; Rossoll et al., 2012). More recently, it has been reported
that the operation of carbon concentration mechanisms (CCMs)
of microalgae are tightly coupled with their lipid metabolisms
(Renberg et al., 2010; Abreu et al., 2020) and that the CCMs of
diatoms are partially down-regulated under ocean acidification
conditions (Trimborn et al., 2009; Wu et al., 2010; Hopkinson
et al., 2011; Yang and Gao, 2012). The down-regulations of CCMs
led to decreased photorespiration and symptoms of oxidative
stress because of an increase in the electron sink constituted
by CO2 fixation (Raven, 2010; Renberg et al., 2010). These
changes consequently altered the composition of lipids (such as
DGDG, MGDG, and triacylglycerol, given their importance for
cell functioning, especially in stress-responses (e.g., oxidative
stress) (Bréhélin et al., 2007; Abreu et al., 2020). However, most
published studies have analyzed responses of lipid metabolisms
in the short term only (i.e., 1–2 weeks), and were thus unable to
resolve long-term responses to ocean acidification conditions.
Since diatoms are characterized by large population sizes,
standing genetic variations and short generation times (Reusch
and Boyd, 2013; Collins et al., 2020), they have a high potential to

adapt to acidifying oceans, as recently indicated (Li et al., 2017;
Zhong et al., 2021).

To address this fundamental knowledge gap, we carried
out a ∼400 days selection experiment with the model marine
diatom Phaeodactylum tricornutum, and employed a lipidomics
approach to investigate long-term responses in the lipid
metabolism of diatoms to different emission scenarios associated
with ocean acidification.

MATERIALS AND METHODS

Culture Conditions
Cultures of Phaeodactylum tricornutum Bohlin bac-2, obtained
from the Institute of Oceanology at the Chinese Academy of
Sciences, were maintained in half-strength Guillard’s “F” solution
(Guillard and Ryther, 1962). Prior to the long-term experiments,
the cultures were kept in 15◦C plant growth chambers
(HP1000G-D, Ruihua) under a photon flux of 100 µmol photons
m−2 s−1 with a light:dark cycle of 12 h:12 h (HP1000G-D,
Ruihua). To initiate the long-term selection experiments, the
single-clone cultures were diluted into triplicates (500 mL each)
and grown at low CO2 (400 µatm, ambient CO2 condition,
denoted LC) and high CO2 (1,000 µatm, projected year 2100
high CO2 according to the high emission scenario RCP 8.5,
IPCC, 2014, denoted HC) levels. The LC condition was attained
by pre-aerating the medium with the ambient outdoor air,
while the HC treatment was achieved within a plant growth
chamber (HP1000G-D, Ruihua). In the chamber, the target
CO2 level of 1,000 µatm was obtained by mixing air and
pure CO2 gas. The CO2 partial pressure was continuously
monitored and maintained at 1,000 ± 50 µatm. Triplicate semi-
continuous batch cultures were grown for ∼400 days under
the two selection regimes (i.e., LC, HC). After the 400-days
selection period, the cells have grown for approximately 885
and 883 generations under LC and HC conditions, respectively.
The initial cell concentration was 50 cells mL−1 and the cell
densities were maintained within a range of ∼4.0 × 104 to
5.0 × 105 cells mL−1 at the time of dilution. The cultures
were inoculated every 5–7 days to restore the cell density to
the initial level (i.e., batch growth cycle) with fresh medium
equilibrated with the corresponding target CO2 levels. To main
a stable carbonate chemistry over each batch growth cycle (pH
variations < 0.1 units), the cultures were maintained in closed
polycarbonate bottles that were completely filled with culture
medium to prevent head space gas exchange. Instead of analyzing
the carbonate chemistry parameters on a weekly basis for a
∼400 days experiment, we measured the parameters before
running the long-term selection experiments to ensure the semi-
continuous culture approaches are reliable (Jin et al., 2013). In the
pilot experiment, pH and dissolved inorganic carbon (DIC) were
measured before and after the renewal of the medium in LC and
HC cultures of P. tricornutum.

Lipid Extraction
At the end of the long-term selection experiment, six replicate
samples (n = 6) of the HC- and LC-selected cells were collected
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in the middle of the photoperiod, centrifuged (8,000 g, 10 min),
flash frozen in liquid nitrogen, and stored at −80◦C until further
analysis. The pellets of freeze-dried cells were placed into a
glass tube with a Teflon lined cap, and extracted in 0.75 mL
methanol. Then, 2.5 mL of methyl tert-butyl ether (MTBE)
was added and the mixture was incubated in a shaker at room
temperature for 1 h. Phase separation was induced by adding
0.625 mL of UHPLC -grade water. After 10 min of incubation
at room temperature, the sample was centrifuged at 1,000 g
for 10 min. The upper organic phase was collected, while the
lower phase was re-extracted with 1 mL of solvent mixture
[MTBE/methanol/water (10:3:2.5, v/v/v)] and the resulting upper
phase was collected again. The combined upper phases were dried
with a Termovap sample concentrator (Ecom, Czechia). To speed
up sample drying, 100 µL of MS-grade methanol was added to the
upper phase after 25 min of centrifugation. Extracted lipids were
dissolved in 100 µL CHCl3/ methanol/water (60:30:4.5, v/v/v) for
storage until further analysis using liquid chromatography with
tandem-mass spectrometry (LC-MS/MS).

Liquid Chromatography With
Tandem-Mass Spectrometry Analysis
Liquid chromatography with tandem-mass spectrometry
analysis was performed using a Thermo VanquishTM UHPLC
(ThermoFisher Scientific). Samples were injected into a Thermo
Accucore C30 column using a 20-min linear gradient at a flow
rate of 0.35 mL min−1. The column temperature was set at 40◦C.
Mobile phase buffer A was acetonitrile / water (6/4) with 10 mM
ammonium acetate and 0.1% formic acid, whereas buffer B was
acetonitrile/isopropanol (1/9) with 10 mM ammonium acetate
and 0.1% formic acid. The solvent gradient was set as follows:
30% B, initial; 43% B, 8 min; 50% B, 8.1 min; 70% B, 17 min; 99%
B, 24 min; 30% B, 27.1 min; 30% B, 31 min. The MS condition
was set as follows: Q-Exactive mass series spectrometer was
selected in the m/z 114-1700 scanning range, and the MS/MS
scan was used for a data-dependent full scan. The Q-Exactive
mass series spectrometer was operated in negative polarity mode
with a spray voltage of 3 kV, capillary temperature of 350◦C,
sheath gas flow of 20 arbitrary units and auxiliary gas flow of five
arbitrary units.

Lipid Identification
The raw data files generated by the HPLC-MS/MS were
processed using the software Compound Discoverer 3.0 (CD3.0,
Thermo Fisher) to perform peak alignment, peak picking, and
quantitation for each metabolite. The main parameters were
set as follows: retention time tolerance: 0.2 min, actual mass
tolerance: 5 ppm, signal intensity tolerance: 30%, signal/noise
ratio: 3, and minimum intensity: 100,000. Peak intensities were
normalized to the total spectral intensity. The normalized data
were used to predict the molecular formula based on additive
ions, molecular ion peaks and fragment ions. Peaks were
matched with the databases LIPID MAPS1 and LipidBlast to
obtain accurate qualitative and relative quantitative results. Then

1http://www.lipidmaps.org/

the identified metabolites were annotated using the Human
Metabolome Database (HMDB)2 and LIPID MAPS database.

Quality Evaluation of Lipid Metabolites
Data
Quality control samples (QCs) were obtained by collecting
an equal amount of mixture from each replicate sample. The
consistency analysis was performed between QCs and our culture
samples. Before the analysis, three QCs were used to stabilize
the analysis system and to remove the acquired data before data
processing. All QCs were used to monitor the robustness of
sample preparation and the stability of instrumental analysis by
analyzing batch random inserts. During the whole instrumental
analysis process, all samples were analyzed randomly to avoid
inter-batch differences (Wang et al., 2015). In order to evaluate
the overfitting of the model, 200 permutation tests were
performed in the partial least squares discriminant analysis (PLS-
DA) model (Broadhurst and Kell, 2006).

Statistical Analysis
After metabolic information collection and data pre-processing,
the resulting matrix was imported into the software metaX
(Wen et al., 2017) for unsupervised principal component analysis
(PCA) and supervised PLS-DA (Roede et al., 2014). Identification
of metabolites has a variable importance in the projection
(VIP) graphs (99% confidence) (Roede et al., 2014). For each
multivariate model, the calculated R2 value reflects the goodness
of fit. The parameter Q2 in the PLS-DA represents the predictive
ability of the model (Roede et al., 2014). A Q2 value close to 0.5
reflects a good model. We applied univariate analysis (t-test) to
calculate the statistical significance (p-value). Metabolites with
VIP > 1, p < 0.05 and fold change (FC) ≥ 2 or FC ≤ 0.5 were
considered to be differential metabolites. Volcano plots were used
to filter metabolites of interest, based on Log2 (FC) and -log10
(p-value) of metabolites. For clustering heat maps, the data were
normalized using z-scores of the intensity areas of differential
metabolites, and plotted using the pheatmap package in R (R
version R.3.6.1) and TBtools (Chen et al., 2020). The correlations
between differential metabolites were analyzed using the cor()
function in R (method = Pearson). Statistical significances of
correlation between differential metabolites were calculated by
the function cor.mtest() in R. P-values < 0.05 were considered as
statistically significant, and the correlation plots were generated
using the corrplot package in R. The Kyoto Encyclopedia of Genes
and Genome (KEGG) database was used for enrichment analysis
and pathway analysis of differential metabolites. Chi-square test
was used to test the differences in lipid metabolite compositions
between long-term HC- and LC-selected cells.

RESULTS

Sample Quality Control
The Pearson correlation coefficient between QC samples based
on the peak area value found high correlation coefficients (∼0.99)

2http://www.hmdb.ca/
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of QC samples, which indicated a stability of the whole detection
process and a high data quality (Supplementary Figure 1).

Overall Metabolites Description
We identified a total of 476 lipid metabolites in long-term HC-
and LC-selected P. tricornutum cells (Supplementary Table 1).
At the lipid category level, the majority of lipid metabolites were
glycerophospholipids (GP) (49%), followed by glycerolipids (GL)
(29%). Other lipid categories, such as sphingolipids (SP) and fatty
acyls (FA), contributed relatively small proportions (SP: 15%; FA:
6%) in the detected lipid metabolites. At the lipid class level, the
main lipid classes identified in long-term HC- and LC-selected
P. tricornutum cells were glycosyldiradylglycerols, accounting
for 27% of total lipid metabolites (Supplementary Table 1).
Other identified lipid classes, such as glycerophosphoglycerols,
glycerophosphocholines, and ceramides, represented 19, 15, and
13% of the total lipid metabolite pool (Supplementary Table 1).

Changes in Lipid Metabolites Between
Long-Term HC- and LC-Selected Cells
The principal component analysis (PCA) of total lipid
metabolites showed that PC1 and PC2 explain 43.4 and
31.1% of variation, respectively (Supplementary Figure 2).
Although there were some variations among the six replicate
samples due to the nature of the lipidomics analysis, our results
showed there was a satisfactory separation of lipid metabolites
between long-term HC- and LC-selected cells (Supplementary
Figure 2). This discrimination was further evidenced by the
PLS-DA scores plot (Supplementary Figure 3).

We found that of the identified 476 lipid metabolites, 74
significantly regulated different between long-term HC- and
LC-selected cells (Table 1). Of those 74 lipid metabolites, 44
were significantly up-regulated, while the remaining 30 were
significantly down-regulated in the long-term HC-selected cells
compared to those under LC-selection (Table 1 and Figures 1, 2).
Overall, the lipid classes MGDG (19%), HBMP (18%), PE (12%),
and PG (12%) dominated in these 74 differentially regulated
lipid metabolites (Table 1). However, the frequency of lipid
classes differed significantly between down- and up-regulated
lipid metabolites (χ2 = 65.317, p < 0.001, df = 16, n = 74)
(Table 1). Specifically, MGDG (43%) was the most abundant in
the down-regulated lipid metabolites, while HBMP (23%) and
PE (20%) dominated in the up-regulated lipids (Table 1). We
also found that the majority of the differently regulated PG lipids
(seven out of nine) were up-regulated in long-term high CO2
selected cells (Table 1).

Correlations of Differently Regulated
Metabolites
We further explored the correlations between differently
regulated metabolites. Our results showed that MGDG (37:1,
C46H86O10) were positively correlated with MGDG (34:4,
C43H74O10), MGDG (32:4, C46H86O10), MGDG (37:2,
C46H84O10) and GlcADG (37:1, C46H82O11) [Pearson
correlation coefficients (r): 0.70–0.86] (Figure 3). PC (36:7,
C44H74NO8P) were positively correlated with three MGDGs

(36:2, C45H82O10; 34:4, C43H74O10, 32:4, C41H70O10) (r: 0.70–
0.87). PC (36:7, C44H74NO8P) was positively correlated with
GlcADG (37:1, C46H84O11) (r: 0.80), SQDG (36:2, C45H82O12S)
(r: 0.74), HBMP (54:3, C60H111O11P) (r: 0.80), PG (33:0,
C39H77O10P) (r: 0.73), and PEtOH (40:10, C45H69O81P) (r: 0.99)
(Figure 3). In contrast, PC was negatively correlated with SQDG
(32:1, C41H76O12S) (r: −0.70) and MGDGs (40:3, C49H88O10)
(r: −0.73) (Figure 3). There were also pronounced negative
correlations of two metabolites (MGDG, 40:3, C49H88O10;
SQDG, 32:1, C41H76O12S) with the other metabolites presented
in Figure 3 [e.g., SQDG (C41H76O12S) with PG (C39H77O10P),
r: −0.6]. In summary, the up- and down-regulations of
the metabolites were tightly coupled either by negative or
positive correlations.

DISCUSSION

Our results show that after 400 days (corresponding to almost
900 generations) of long-term high CO2 selection, the marine
diatom species P. tricornutum revealed significant changes in
lipid metabolisms. One of the most apparent findings of the
present study is that MGDG, the main glycerolipid in non-
plastid membranes, was significantly down-regulated in long-
term LC selected cells. Our results are in agreement with the
results of a previous short-term (6 h) study with the green
algae species Chlamydomonas reinhardtii (Abreu et al., 2020).
MGDG is a hexagonal II phase polar membrane lipid, whose
role is to give the membrane a high internal lateral pressure
among the fatty acyl chains and a pressure on the membrane
proteins (Kruijff, 1997). Due to its non-bilayer lipid properties,
different ratios of MGDG to other phase properties lipids may
affect the lateral pressure on membrane proteins (Kruijff, 1997).
For instance, it has been widely reported that a lower ratio
of DGDG (a lamellar phase lipid) to MGDG reflects increased
sensitivities of microalgae to various abiotic stresses (e.g., low
temperature, CO2 limitation, salt stress, nitrogen starvation)
(Du et al., 2018; Liu et al., 2019). Since no significant changes
of DGDG were detected in the present study, the down-
regulations of MGDG in long-term HC selected cells resulted
in an increased ratio of DGDG:MGDG. Therefore, our results
suggest that long-term high CO2 selection may be not stressful
for P. tricornutum.

It is also worth noting that the down-regulations of MGDG
would result in an increased conductivity of the thylakoid and in
an increase of luminal pH, causing the activity of violaxanthin
de-epoxidase to decrease (Aronsson et al., 2008). In addition,
the down-regulations of MGDG are also likely to decrease the
violaxanthin availability from the membrane for violaxanthin de-
epoxidase (Schaller et al., 2010). Consequently, such a decrease in
de-epoxidase would lead to a low efficiency of the violaxanthin-
zeaxanthin interconversion, which is a key process of the
xanthophyll cycle, a crucial regulatory component for energy
dissipation in diatoms (Miloslavina et al., 2009; Goss and Jakob,
2010; Lepetit et al., 2017). This is evidenced by previous studies,
in which diatoms in high CO2 conditions exhibited higher non-
photochemical quenching (NPQ) (i.e., a lower energy dissipation
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TABLE 1 | Lipid metabolites that showed greater than twofold alterations in abundance in Phaeodactylum tricornutum selected under low (400 µam, ambient CO2

condition) or high CO2 (1,000 µam, projected year 2100 high CO2 according to high emission scenario RCP 8.5) for nearly 400 days.

Annotation Lipid class RT MW Formula Log2FC p-value VIP Change

MGDG (37:1) Glycosyldiradylglycerols 19.902 844.62783 C46H86O10 −4.90 <0.001 3.02 Down

GlcAG (37:2) Glycosyldiradylglycerols 17.251 810.58572 C46H82O11 −5.19 <0.001 3.28 Down

MGDG (36:1) Glycosyldiradylglycerols 19.376 830.61168 C45H84O10 −6.35 <0.001 4.06 Down

MGDG (36:2) Glycosyldiradylglycerols 17.84 828.5959 C45H82O10 −5.70 <0.001 3.92 Down

MGDG (34:4) Glycosyldiradylglycerols 14.714 796.5333 C43H74O10 −1.92 <0.001 1.19 Down

MGDG (36:2) Glycosyldiradylglycerols 17.835 842.6116 C45H82O10 −4.82 <0.001 2.96 Down

GlcAG (37:1) Glycosyldiacylglycerols 18.738 812.60128 C46H84O11 −5.29 <0.001 3.61 Down

MGDG (32:4) Glycosyldiradylglycerols 13.289 768.50235 C41H70O10 −1.83 <0.001 1.14 Down

GlcAG (36:2) Glycosyldiradylglycerols 16.612 796.5699 C45H80O11 −5.83 <0.001 3.22 Down

MGDG (37:2) Glycosyldiradylglycerols 18.469 842.61183 C46H84O10 −4.21 <0.001 2.48 Down

SQDG (36:2) Glycosyldiradylglycerols 15.457 846.55236 C45H82O12S −5.25 <0.001 3.76 Down

GlcAG (36:1) Glycosyldiradylglycerols 18.154 798.5855 C45H82O11 −6.81 <0.001 3.63 Down

SQDG (32:1) Glycosyldiradylglycerols 14.757 792.50538 C41H76O12S 2.86 <0.001 1.85 Up

MGDG (36:7) Glycosyldiradylglycerols 12.438 818.51756 C45H72O10 −1.68 <0.001 1.04 Down

MGDG (40:3) Glycosyldiradylglycerols 20.767 882.6431 C49H8O10 2.62 0.001 1.71 Up

MGDG (36:4) Glycosyldiradylglycerols 16.512 1,649.13028 C45 H78O10 −2.16 0.001 1.36 Down

MGDG (32:8) Glycosyldiradylglycerols 7.549 760.44013 C41H62O10 −4.13 0.001 2.42 Down

GlcAG (36:0) Glycosyldiacylglycerols 19.629 800.60171 C45H84O11 −4.69 0.001 2.48 Down

MGDG (32:2) Glycosyldiradylglycerols 14.717 786.54897 C41H74O10 −1.68 0.001 1.03 Down

MGDG (32:7) Glycosyldiradylglycerols 9.127 776.47078 C41H64O10 −1.63 0.002 1.09 Down

SQDG (38:6) Glycosyldiradylglycerols 13.527 866.52094 C47H78O12S 2.30 0.016 2.23 Up

MGDG (34:8) Glycosyldiradylglycerols 9.946 788.47124 C43H66O10 −2.21 0.021 1.66 Down

PG (33:0) Glycerophosphoglycerols 16.299 1,473.05044 C39H77O10P −2.60 <0.001 1.67 Down

HBMP (54:3) Glycerophosphoglycerols 22.134 1,038.78583 C60 H111O11P −2.13 <0.001 1.34 Down

PG (32:1) Glycerophosphoglycerols 15.427 720.49411 C38H73O10P 2.03 0.001 1.28 Up

PG (34:5) Glycerophosphoglycerols 12.299 740.46268 C40H69O10P 2.56 0.002 1.82 Up

HBMP (48:4) Glycerophosphoglycerols 19.577 952.6745 C54 H97O11P 2.11 0.002 1.37 Up

PG (40:1) Glycerophosphoglycerols 21.197 832.61914 C46H89O10P 2.93 0.003 2.14 Up

PG (38:5) Glycerophosphoglycerols 14.093 796.51613 C44H77O10P 1.80 0.003 1.28 Up

PG (32:4) Glycerophosphoglycerols 11.828 714.44694 C38H67O10P 2.14 0.004 1.53 Up

HBMP (60:15) Glycerophosphoglycerols 17.82 1,098.69968 C66H99O11P −2.16 0.006 1.27 Down

HBMP (58:14) Glycerophosphoglycerols 17.099 1,072.6759 C64H97O11P 3.03 0.008 2.12 Up

HBMP (54:12) Glycerophosphoglycerols 16.066 1,020.64492 C60H93O11P 2.53 0.011 1.95 Up

HBMP (52:9) Glycerophosphoglycerols 17.465 998.66072 C58H95O11P 2.62 0.012 2.03 Up

HBMP (58:13) Glycerophosphoglycerols 17.506 1,074.69166 C64H99O11P 2.55 0.012 2.00 Up

HBMP (52:8) Glycerophosphoglycerols 18.744 1,000.67935 C58H97O11P 1.88 0.013 1.30 Up

HBMP (52:11) Glycerophosphoglycerols 15.691 994.62916 C58H91O11P 2.58 0.014 1.63 Up

HBMP (56:13) Glycerophosphoglycerols 16.549 1,046.6605 C62H95O11P 2.97 0.014 2.46 Up

PG (36:8) Glycerophosphoglycerols 8.839 762.4466 C42H67O10P 3.02 0.014 2.15 Up

HBMP (52:5) Glycerophosphoglycerols 20.951 1,006.72378 C58H103O11P 1.63 0.028 1.26 Up

LPG (18:0) Glycerophosphoglycerols 3.953 512.31077 C24H49O9P 1.29 0.029 1.21 Up

HBMP (56:12) Glycerophosphoglycerols 17.205 1,048.67647 C62H97O11P 1.65 0.032 1.07 Up

PG (38:6) Glycerophosphoglycerols 12.303 794.50964 C44H75O10P 1.87 0.035 1.26 Up

PG (34:1) Glycerophosphoglycerols 16.164 748.53171 C40H77O10P −1.25 0.042 1.00 Down

HBMP (54:4) Glycerophosphoglycerols 21.665 1,036.7705 C60H109O11P −1.55 0.050 1.03 Down

PC (36:7) Glycerophosphocholines 10.633 821.51167 C44H74NO8P −2.16 <0.001 1.33 Down

LPC (17:0) Glycerophosphocholines 3.388 555.35194 C25H52NO7P 2.42 0.007 1.77 Up

LPC (18:2) Glycerophosphocholines 2.043 579.35316 C26H50NO7P 1.83 0.018 1.17 Up

LPC (18:0) Glycerophosphocholines 4.491 569.36864 C26H54NO7P 1.51 0.018 1.33 Up

PC (34:3) Glycerophosphocholines 14.846 801.55194 C42H78NO8P −2.00 0.025 1.04 Down

PC (38:8) Glycerophosphocholines 12.205 847.53582 C46H76NO8P −2.19 0.026 1.13 Down

PC (38:7) Glycerophosphocholines 13.058 849.55163 C46H78NO8P −1.92 0.031 1.01 Down

(Continued)
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TABLE 1 | (Continued)

Annotation Lipid class RT MW Formula Log2FC p-value VIP Change

LPC (16:3) Glycerophosphocholines 1.229 535.2892 C24H44NO7P 2.79 0.041 1.34 Up

LPC (18:2) Glycerophosphocholines 2.064 565.33693 C26H50NO7P 1.50 0.047 1.27 Up

PE (36:6) Glycerophosphoethanolamines 15.429 721.49724 C41H72NO7P 1.80 0.002 1.21 Up

PE (36:6) Glycerophosphoethanolamines 13.041 735.48352 C41H70NO8P 1.75 0.002 1.11 Up

PE (38:5) Glycerophosphoethanolamines 15.889 765.53126 C43H76NO8P 1.63 0.002 1.04 Up

PE (32:3) Glycerophosphoethanolamines 12.794 685.46822 C37H68NO8P 1.96 0.002 1.31 Up

LPE (16:1) Glycerophosphoethanolamines 2.388 451.26933 C21H42NO7P 2.25 0.004 1.54 Up

PE (36:5) Glycerophosphoethanolamines 15.84 723.52023 C41H74NO7P 6.46 0.004 3.42 Up

PE (34:4) Glycerophosphoethanolamines 14.065 711.48427 C39H70NO8P 1.62 0.012 1.03 Up

PE (32:2) Glycerophosphoethanolamines 14.05 687.4837 C37H70NO8P 1.95 0.021 1.19 Up

PE (30:0) Glycerophosphoethanolamines 14.832 663.48381 C35H70NO8P 4.51 0.023 1.86 Up

LPE (18:2) Glycerophosphoethanolamines 2.181 477.2847 C23H44NO7P 1.83 0.030 1.95 Up

LPE (18:1) Glycerophosphoethanolamines 2.949 479.30054 C23H46NO7P 1.74 0.031 1.76 Up

PE (34:5) Glycerophosphoethanolamines 13.344 695.4817 C39H70NO7P 1.43 0.035 1.25 Up

LPE (22:6) Glycerophosphoethanolamines 1.986 525.28436 C27H44NO7P 1.75 0.044 1.81 Up

Cer-AS (35:3) Ceramides 14.958 609.49647 C35H65NO4 5.03 0.006 2.24 Up

Cer-NP (35:3) Ceramides 14.944 563.49096 C35H65NO4 5.52 0.007 2.38 Up

Cer-NS (34:2) Ceramides 15.5 535.49586 C34H65NO3 5.49 0.050 2.18 Up

3α,7α,12α-trihydroxy-
5β-cholestan-26-oic
acid

Bile acids and derivatives 4.746 450.33401 C27H46O5 2.12 0.012 1.14 Up

PetOH (40:10) Other Glycerophospholipids 10.633 768.48079 C45H69O8P −2.61 <0.001 1.65 Down

1-P-3-S-2-P Glycerophosphates 10.68 760.59645 C43H85O8P −3.45 0.001 2.01 Down

SM (34:1) Phosphosphingolipids 14.98 748.57318 C39H79N2O6P 3.30 0.001 2.16 Up

RT, HPLC-MS/MS retention time (min); MW, molecular weight; VIP, variable importance in the projection.

capacity) (e.g., Gao et al., 2012; Wu et al., 2017; Li et al.,
2019). These findings were further supported by our recent
investigations, in which we found three proteins, namely the
precursor protein of zeaxanthin epoxidase (ZEP2), zeaxanthin
epoxidase (ZEP1) and violaxanthin de-epoxidase (VDE), were
significantly down-regulated in HC selected cells (data not
shown). To summarize, our results suggest that the MGDG
down-regulation in long-term HC selected P. tricornutum cells
is likely an adaptation strategy to cope with the long-term high
CO2 conditions.

PE is one of the major phospholipids (phosphoglycerides) in
most algae species (Guschina and Harwood, 2009). Very long
chain polyunsaturated fatty acid can be incorporated into PE
by acyltransferase reactions of the Kennedy pathway (Sayanova
et al., 2017; Li-Beisson et al., 2019). The production of PE by algae
was recognized as a response to abiotic stresses, such as light,
temperature and nutrient. For instance, it was evidenced that the
content of PE significantly increased with increasing temperature
(Thompson, 1996). Both dark exposure and phosphate starvation
were found to lead to a decrease of PE content in microalgae
species (McLarnon-Riches et al., 1998; Khozin-Goldberg and
Cohen, 2006). For the response of PE to high CO2, the degree
of unsaturation of PE was reported to decrease in response to
high CO2 by decreasing the contents of C18:3 at the sn-2 position
of PE (Sato et al., 2003). Our results indicated that rather than
the unsaturation of PE, the concentration of PE was significantly
enhanced under long-term high CO2 selection.

In addition to PE, the majority of the differently regulated PG
lipids (seven out of nine) were up-regulated in long-term high
CO2 selected cells (Figure 4). PG is the major phospholipid in
chloroplasts, and it contains an uncommon trans-3-hexadecenoic
acid (C16:1t), located exclusively at position sn-2 of the glycerol
backbone in all eukaryotic photosynthetic organisms (Boudière
et al., 2014; Figure 4). PG play an important role in the light
harvesting complex trimerization process and in the functioning
of the photosystem (Loll et al., 2007). Along with MGDG
and PE, PG is also sensitive to various abiotic stressors. It
is well recognized that the contents of PG in various algal
species, including diatoms, decrease under nutrient starvation
(Van Mooy et al., 2009; Abida et al., 2015; Wang et al., 2019),
elevated temperatures (Feijão et al., 2017, 2020), and low pH
conditions (Vítová et al., 2016). In the present study, we found
that ∼80% of the significantly regulated PGs were up-regulated
after long-term high CO2 selection (Figure 4). This may be due
to adaptation driven by long-term high CO2 selection. While the
content of PG may decrease after short-term high CO2 selection,
its content may be partially or completely reversed over the long-
term high CO2 selection period. Such an adaptive response has
been evidenced in multiple previous studies (Lohbeck et al., 2012;
Jin et al., 2020). For instance, the fatty acid and lipid contents of
three diatoms partly or entirely recovered following a long-term
exposure (∼2 years) to warming conditions (+4◦C) (Jin et al.,
2020). Thus, our results suggest a high potential of diatoms to
adapt their lipid metabolites to long-term high CO2 selection.
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FIGURE 1 | Volcano plot displaying the differentially regulated lipid metabolites between long-term low (400 µatm, LC) and high (1,000 µatm, HC) CO2 selected
Phaeodactylum tricornutum cells. The dots represented in blue (down-regulated) and red (up-regulated) are differentially regulated lipid metabolites with > 2-fold
change and a p-value of <0.05. VIP value represents the importance projection value of the metabolite obtained from the PLS-DA model.

It is known that an increase of SQDG could compensate
the absence of PG in plastids (Jouhet et al., 2010; Boudière
et al., 2014; Abida et al., 2015), thus the contents of SQDG
and PG are expected to be negatively correlated, as shown
in our study. Under stressful conditions, such as nutrient
starvation, a PG-to-SQDG replacement was considered to
be a ubiquitous phenomenon in photosynthetic organisms,
enabling the preservation of an anionic lipid environment to the
photosystems in the thylakoids (Boudière et al., 2014; Nakamura
and Li-Beisson, 2016). Besides a PG-to-SQDG replacement, there
was also a PC-to-DGTA replacement occurring in the diatom
P. tricornutum, which was also considered to be a strategy to
cope with environmental stresses (Abida et al., 2015). Since
we observed multiple negative or positive correlations between

different lipid metabolites (e.g., positive correlation between PC
and PEtOH; negative correlations between MGDG and PC), our
results suggest several more lipid remodeling mechanisms that
have not been identified yet. We propose that the underlying
mechanisms for lipid remodeling in response to various abiotic
stressors in diatoms should be further investigated as part
of future studies.

It is also recognized that the lipid metabolism of microalgae
was regulated by some mineral elements such as silicon and
calcium. For instance, lipid production in marine diatoms
Chaetoceros gracilis and Thalassiosira pseudonana was reported
to increase under silicon limitation conditions (Zendejas et al.,
2012; Adams and Bugbee, 2014). Since high CO2 was reported
to affect the biogenic silica cellular contents of diatoms
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FIGURE 2 | Heatmap displaying the log2-fold change in lipid metabolite between low (400 µatm, LC) and high (1,000 µatm, HC) CO2 selected Phaeodactylum
tricornutum cells.
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FIGURE 3 | Pearson correlations between differential metabolites (top 20). The size of the circle represents the magnitude of correlation. Green circles indicate
positive correlations, red negative correlations. The value of the correlation coefficient (r) is shown in the color bar below the graphs.

(Xu et al., 2014), such a change induced by high CO2 is
expected to regulate the lipid metabolism as well. Calcium
(Ca2+), a secondary messenger, plays a crucial role in the
signal transduction through the activation of various receptors
associated with metabolic in coping with various environmental
changes (Chen et al., 2014). Calcium can bind with calmodulin
and then affect the energy metabolism by regulating the cyclic
electron flow in photophosphorylation and respiratory oxidative
phosphorylation in microalgae (Chen et al., 2015). It is known
that an appropriate concentration of calcium can stimulate the
activity of Acetyl-CoA carboxylase that catalyzes the conversion
of acetyl-coenzyme A to malonyl-CoA during the fatty acid
biosynthesis (Gorain et al., 2013). However, how would high
CO2 interact with calcium to regulate the lipid modeling of
diatoms (through energy metabolism or signal transduction)

remains unknown. Hence, we recommend that the underlying
mechanisms for lipid remodeling in response to high CO2
interacting with essential (or non-essential) elements in diatoms
are warranted for further investigations.

In conclusion, our observations suggest that long-term
high CO2 selection triggered substantial changes in lipid
metabolites of the marine diatom P. tricornutum (Figure 4A).
Some lipid metabolites (such as PGs) showed high adaptive
potential to the selection. The tightly coupled regulations
(positively or negatively correlated) of lipid metabolites
reveal that the lipid remodeling is an organismal adaptation
strategy of marine diatoms to ongoing ocean acidification.
The composition and concentration of lipid are crucial for
marine food quality, and their changes can be transferred to
high trophic levels (Rossoll et al., 2012; Jin et al., 2015, 2020).
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FIGURE 4 | (A) Model of lipid metabolism changes in Phaeodactylum tricornutum after long-term high CO2 selection. The heatmaps display the log2-fold changes in
lysophosphatidylcholine [LPC, (B)], lysophosphatidylethanolamine LPE (C), monogalactosyldiacylglycerol [MGDG, (D)], PC, phosphatidylcholine [PC, (E)],
phosphatidylethanolamine [PE, (F)], and phosphatidylglycerol [PG, (G)].

Frontiers in Microbiology | www.frontiersin.org 10 October 2021 | Volume 12 | Article 748445

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-748445 October 9, 2021 Time: 16:11 # 11

Jin et al. Lipidomics Responses to Ocean Acidification

Therefore, our results outline the importance of investigating
the long-term responses of lipids of primary producers to
prolonged ocean acidification conditions, and assessing the
ecological consequences.
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