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Abstract
Controlling bioaerosols has become more important with increasing participation in indoor

activities. Treatments using natural-product nanomaterials are a promising technique be-

cause of their relatively low toxicity compared to inorganic nanomaterials such as silver

nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from

natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica
extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity,

filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and anti-

microbial activity increased as a function of nanoparticle deposition time (590, 855, and

1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobi-

al efficacy was greater against Staphylococcus epidermidis thanMicrococcus luteus; ~61,
~73, and ~82% ofM. luteus cells were inactivated on filters that had been coated for 3, 6,

and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S.
epidermidis. Although statistically significant differences in filtration performance were not

observed between samples as a function of deposition time, the average filtration efficacy

was slightly higher for S. epidermidis aerosols (~97%) than forM. luteus aerosols (~95%).

High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass

spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. ja-
ponica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaemp-

ferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica
nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bac-

terial strains than a reference soluble nickel compound, which is classified as a human car-

cinogen. This study provides valuable information for the development of a bioaerosol

control system that is environmental friendly and suitable for use in indoor environments.
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Introduction
Bioaerosols, which are aerosols of biological origin, may include intact microorganisms and/or
parts or products of organisms [1]. Among them, airborne viruses, bacteria, and fungi have
been investigated actively because airborne pathogens are readily transmitted by airflow and
can cause a variety of diseases, including allergic rhinitis, asthma, chronic obstructive pulmo-
nary disease (COPD), influenza, and severe acute respiratory syndrome (SARS) [2–5].

Over the last several decades, much effort has been devoted to develop efficient bioaerosol
control methods and devices, including thermal methods [6–8], ultraviolet irradiation [9–11],
antimicrobial filters [12,13], and titanium dioxide catalysis [14,15]. Among these, antimicrobial
air filtration technologies are considered promising because they are easily applied to conven-
tional air-conditioning systems. Previous studies have shown that air filtration technologies
employing antimicrobial inorganic nanoparticles are effective in controlling bacterial aerosols.
The antimicrobial efficacies of such systems depend on the exposure time, particle size, and
concentration [16,17]. In particular, silver (Ag) nanoparticles are antimicrobial agents with a
broad antimicrobial spectrum. Ag nanoparticles damage bacterial cell membranes and induce
metabolic changes by decreasing enzyme activity [18,19]. Due to the outstanding antimicrobial
activity of these materials, they have been extensively studied and applied in a variety of fields
including indoor air quality (IAQ) and human health, air filtration, clothing manufacturing,
electronics, food processing, cosmetics, and medical devices [20,21]. Similarly, copper (Cu)
nanoparticles are widely known as antimicrobial substances. Previous studies showed that
Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, and Pseudomo-
nas aeruginosa are sensitive to Cu nanoparticles [22]. Carbon nanotubes (CNTs) have also
been applied to the control of water quality and IAQ. In their aquatic dispersion, CNTs showed
strong antimicrobial activities as the reduction in bacterial viability reached a maximum of ~6
log, and in combination with Ag nanoparticles enhanced the antimicrobial activity of air filters.
CNTs in direct contact with bacterial cells induce membrane damage and subsequent cell
death. Single-walled CNTs are more toxic to bacteria than multi-walled CNTs [23–25].

Despite these advantages, inorganic nanoparticles [26,27] can exert adverse effects on health
[28–30]. Previous studies have indicated that Ag nanoparticles are toxic to mammalian cells
and certain organs because of transcutaneous penetration of the particles. Copper oxide nano-
particles induce DNA damage and oxidative stress in cells [31–34]. Various toxicity mecha-
nisms for CNTs have been reported, including the interruption of transmembrane electron
transfer, penetration of the cell envelope, and oxidation of cell components [35,36]. Moreover,
long-term exposure or inhalation of these nanoparticles can lead to a reduction in respiratory
functions [37,38].

To overcome these disadvantages, alternative air filtration technologies employing natural
antimicrobial materials have been proposed [39–41]. Natural products, such as plant extracts,
are typically less toxic relative to inorganic antimicrobial materials [42]. Natural-product nano-
particles consist of multiple compounds with various chemical properties. Depending on the
extract and the nature of the material, these properties can include antibiotic activities such as
anti-inflammatory, antiviral, and/or antimicrobial effects [43–46]. Many natural antimicrobial
products have been discovered, including extracts from Ratibida latipalearis, Teloxys graveo-
lens, Dodonaea viscosa,Hyptis albida,Melaleuca alternifolia (tea tree oil), and Sophora flaves-
cens [47–50]. In addition, various chemical compounds contained in natural products have
been shown to control bacterial metabolism. Recently, reports detailing the control of bacterial
aerosols using natural-product nanoparticles have shown that extracted essential oils can re-
duce bacterial loads when applied to contaminated ventilation systems [51]. Air filters coated
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with tea tree oil inactivated ~99% of bacteria on their surface within 2–8 min. Filters coated
with S. flavescens nanoparticles inactivated>91% of bacteria within 2 min [12,41,51].

In this study, a Euscaphis japonica extract was used to produce natural-product nanoparti-
cles that were deposited onto air filters. Extracts of E. japonica, a tree grown in Northeastern
Asia, are an ingredient in traditional herbal medicines used primarily to treat inflammation
[52]. Several antibiotic activities of E. japonica have been reported, including anti-fibrotic [53],
antiproliferative, and antimutagenic activities [54]. However, the antimicrobial activity of E. ja-
ponica when used in an air filtration system has not been reported. E. japonica nanoparticles
were produced by a nebulization-thermal drying process [55,56]. The characteristics of E. ja-
ponica nanoparticle-coated filters were evaluated in terms of filtration efficiency, pressure
drop, and antimicrobial activity under various particle deposition conditions. Additionally, the
major components of the extract were analyzed using high-performance liquid chromatogra-
phy-electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS) and the cytotox-
icity of E. japonica was compared with that of a soluble nickel compound (SNC), a known
human carcinogen.

Materials and Methods

Preparation of Euscaphis japonicamethanolic extract powder
E. japonica was purchased from a plant extract bank at the Korea Research Institute of Biosci-
ence & Biotechnology (KRIBB), dried at room temperature, and pulverized in a blender. Pul-
verized E. japonica was extracted with methanol (106,009; Merck KGaA, Darmstadt,
Germany) and sonicated for 3 days. Sonication was performed for 15 min, 10 times per day.
The extracts were passed through nonfluorescent cotton filters (0.45 μm pore size, 13 mm filter
diameter; Smartpor GHP syringe filter, Woongki Science, Seoul, Republic of Korea) and con-
centrated in vacuo to yield the methanol extract. After concentration, the extract was lyophi-
lized for 24 h and the resulting E. japonica extract powder was stored at 5°C.

Preparation of E. japonica nanoparticle-coated filters
Antimicrobial filters were coated with E. japonica nanoparticles. Then 0.25 g of E. japonica ex-
tract powder was dissolved in 40 mL of methanol and filtered through a 0.45-μm cellulose ace-
tate membrane filter (National Scientific Co., Rockwood, TN, USA) to remove insoluble
residues. Fig 1 (A) shows the experimental setup for the fabrication of nanoparticle-coated fil-
ters. Twenty milliliters of the above E. japonica solution was poured into a one-jet Collison
nebulizer (BGI Inc., Waltham, MA, USA). The nebulizer was supplied with 1 L/min of HEPA-
filtered air under 1 psig. The resulting E. japonica aerosol was passed through an activated car-
bon absorber, mixed with 9 L/min of clean and dry air, and passed through a thermal glass
quartz tube heater to remove methanol. The size and number concentration of the fabricated
natural-product nanoparticles were measured using a wide-range particle spectrometer (WPS-
100XP; MSP Co., Minneapolis, MN, USA) calibrated to a size range of 10–10,000 nm. The par-
ticle morphology was examined using a scanning electron microscope (200 NANO SEM; FEI
Co., Hillsboro, OR, USA). The fabricated natural-product nanoparticles were continuously de-
posited onto polyurethane resin fiber filters (Clean & Science Co., Ltd., Seoul, Republic of
Korea) (fiber diameter: 10–20 μm; thickness: 0.3 mm; and packing density: 33%).

Test bacteria
Staphylococcus epidermidis (Korean Collection for Type Cultures KCTC 1917; Biological Re-
source Center, Republic of Korea) andMicrococcus luteus (KCTC 9856) were used as the test
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bacteria in this study. Gram-positive bacteria are widely used in bioaerosol research [57] and
are common in indoor environments and on human skin [58,59]. The bacteria were incubated
in a nutrient broth medium (Becton Dickinson, Franklin Lakes, NJ, USA) at 37°C. When the
optical density of the bacterial suspension reached ~0.8 at 600 nm, the bacteria were harvested
by centrifugation and washed three times with distilled water. The concentration of the result-
ing suspension was ~108 colony forming units (CFU)/mL. One milliliter of the bacterial sus-
pension was mixed with 19 mL of distilled water and loaded into a six-jet Collison nebulizer
(BGI Inc.).

Filtration efficiency and pressure drop
Fig 1 (B) shows a schematic diagram of the apparatus used to measure the filtration efficiency,
pressure drop, and antimicrobial activity of the coated filters. Droplets containing test bacteria
were sprayed using a six-jet Collison nebulizer supplied with a 5 L/min airflow under 1 psig.
Moisture was removed from the droplets by passing through a diffusion dryer, and the bacterial
aerosols were introduced onto the surface of the filter medium. The particle size and concentra-
tion of bacterial aerosols were measured with an aerodynamic particle sizer (APS model 3321;
TSI, Inc., Shoreview, MN, USA) at both the inlet and outlet of the filter holder.

Fig 1. Experimental configurations of (a) the nebulization-thermal drying process used to fabricate E. japonica extract nanoparticle-coated filters,
and (b) the antimicrobial filters, and pressure drop and filtration tests.

doi:10.1371/journal.pone.0126481.g001
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Filtration efficiencies of the coated filters were calculated using the following equation:

Z ¼ 1� Coutlet

Cinlet

; ð1Þ

where Cinlet and Coutlet represent the particle concentrations (particles/cm
3
air) of the bacterial

aerosol at the inlet and outlet of the filter, respectively. The pressure drops of the coated filters
were measured using a micromanometer (FC012; Furness Control, Ltd., Bexhill, UK).

Antimicrobial tests
The bacterial aerosols were deposited onto the filters for ~3 min. After a contact time of 10
min, the filters were placed in 5 mL (Vextraction) of phosphate-buffered saline (PBS) containing
0.01% Tween 80 and sonicated for 10 min to transfer the bacteria from the filters to the PBS so-
lution. The resulting bacterial suspension was serially diluted onto plates of nutrient agar (Bec-
ton Dickinson) and incubated at 37°C for 24 h. The colonies that grew on the plates were
counted. Bacterial inactivation efficiency was calculated as follows:

ABCF ¼ CFUcontrol

Ncontrol

; ð2Þ

ABAF ¼ CFUantimicrobial

Nantimicrobial

; ð3Þ

Ncontrol or Nantimicrobial ¼
Cinlet � Qsampling � Z � zextraction

Vextraction

; ð4Þ

Ratio of bacterial inactivation ¼ 1� ABAF
ABCF

; ð5Þ

where ABCF is the active proportion of bacteria from the control filter and ABAF is the active
proportion of bacteria from the antimicrobial filter; CFUcontrol and CFUantimicrobial are the con-
centrations (CFU/mL) of active bacterial suspensions produced from the control and antimi-
crobial filters, respectively; and N is the concentration of bacteria (particles/mL) in the
extraction suspension that was plated onto agar. Qsampling is the total airflow sampling volume
and zextraction is the physical extraction efficiency of the filter for bacteria, which is defined as
the ratio of the number of particles transferred from the filter to the extraction liquid to the
number of particles removed from the airflow using the filter. In this study, we assumed that
the physical extraction efficiency for bacterial particles from all filters was identical.

Chemical analysis of the E. japonica extract
Identification of the major chemical compounds in the E. japonica extract was performed
using an HPLC-ESI/MS device (Thermo Fisher Scientific Inc., San Jose, CA) equipped with an
ACCELA photodiode array detector (PDA), an autosampler, a quaternary pump, and an LCQ
FLEET ion trap with an electrospray ionization source. The Thermo Xcalibur software (version
2.1) was used for data acquisition and processing. The mobile phase consisted of 0.1% formic
acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). The gradient mode
was as follows: 0–5 min, initial mobile phase solvent A/B (90:10, v/v); 5–40 min, linear gradient
30:70; 40–50 min, isocratic mode 30:70, and reconditioning steps to initial conditions for 15
min. AWaters Acquity BEH C18 column (3.0 × 100 mm, 1.7 m; Waters, Milford, MA, USA)
was used for chemical separation of the E. japonica extract. The LC pump solvent flow rate was
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150 mL/min. The sample injection volume was 5 μL. The ESI/MS conditions were as follows:
positive and negative dual ion mode; mass range,m/z 100–1000; capillary voltage, 49 V; tube
lens, 100 V; sheath gas flow rate (N2), 35 arb; auxiliary gas flow rate (N2), 10 arb; capillary tem-
perature, 300°C.

In vitro cytotoxicity of E. japonica nanoparticles
A549 human lung adenocarcinoma cancer cells and HEL 299 human lung fibroblasts were ob-
tained from the American Type Culture Collection (ATCC, Rockville, MD, USA) and the cells
were maintained in a 5% CO2 humidified atmosphere at 37°C. Eagle's minimum essential me-
dium (EMEM; ATCC) was used to support the HEL 299 cells and RPMI-1640 (Hyclone,
Logan, UT, USA) was used for A549 cultivation. These cells were supplemented with 10% (v/v)
fetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomycin.

Cell viability upon exposure to E. japonica extract was evaluated using an EZ-Cytox cell via-
bility assay kit (Daeil Lab Service, Ltd., Seoul, Republic of Korea) according to the manufactur-
er’s instructions. Cells (1 × 104 cells/well) were plated in 96-well plates, incubated at 37°C for
24 h, and given a fresh change of medium containing E. japonica extract at the indicated con-
centration for 48 h. At the end of the incubation, 10 μL of EZ-Cytox solution was added to the
well and incubated for at least 1 more hour. The absorbance at 450 nm was measured using a
Synergy HTMulti-microplate reader (BioTek Instruments, Winooski, VT, USA). Data were
expressed as cell growth percentages relative to the controls (cells treated with dimethyl sulfox-
ide (DMSO) only) for each extract concentration.

Statistical analyses
Correlation coefficients, linear regressions, and t-statistics of experimental data were calculated
using the SPSS statistical software, version 12.0 (SPSS, Inc., Chicago, IL, USA).

Results and Discussion
As shown in Fig 2 (A), nebulization and thermal drying produced natural-product nanoparti-
cles with a wide size distribution, ranging from a few to several hundred nanometers in diame-
ter. The distribution is best represented by a monomodal curve with a peak diameter of 75.16
nm, a geometric mean diameter (GMD) of 75.82 nm, and geometric standard deviation
(GMD) of 1.217. The particles generated from methanol showed a broad size distribution, and
compared to size distribution and concentration of natural-product nanoparticles, the particles
generated from methanol were trivial (<3%). The deposition efficiency of these particles is
shown in Fig 2 (B). More than 98% of particles with diameters less than 43 nm and greater
than 277 nm were deposited onto the control filter. The deposition efficiency of particles be-
tween 43 and 277 nm was lower. The lowest deposition efficiency on the control filter was
~85.3% for particles 92 nm in diameter. The relatively low deposition efficiency observed for
particles between 43 and 277 nm results from the mechanism of particle filtration. Particles
with midrange diameters were too large for diffusion filtration and too small for impaction and
interception mechanisms [1]. SEM micrographs show spherical and polydisperse natural-
product nanoparticles on the filter fibers (Fig 2 (B)). The quantity of deposited material was de-
termined by weighing the filters before and after particle deposition using a microbalance
(Mettler MT5; Mettler-Toledo International, Inc., Seoul, Republic of Korea). The weight of the
particles deposited on the filter surface ranged from ~590 to 1150 μg/cm2

filter (590, 855, and
1150 μg/cm2

filter correspond to deposition times of 3, 6, and 9 min, respectively).
Fig 3 shows that pressure drop across the filter increased linearly from 1.1 to 13.4 mmH2O

as the quantity of deposited nanoparticles increased (y = 1.37x + 1.94, r2 = 0.9857, p<0.05)
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[60]. Filtration efficiencies were tested using S. epidermidis andM. luteus aerosols. As shown in
Table 1, the test bacteria concentrations were ~278 (S. epidermidis) and ~234 particle/cm3 (M.
luteus), respectively. The distribution of the S. epidermidis aerosol was a monomodal curve
with a peak diameter of ~0.84 μm, a GMD of ~0.81 μm, and a GSD of ~1.22 (S1 Fig, Table 1).
Although the shape of size distribution curve of theM. luteus aerosol was similar to that of S.
epidermidis aerosol, theM. luteus particles were larger than those of S. epidermidis (S1 Fig). No
statistically significant difference was observed between the filtration efficiencies of filters that

Fig 2. (a) Particle size distribution of natural E. japonica extract nanoparticles and residues frommethanol, and (b) the fractional deposition
efficiency of control filters and scanning electron micrographs (SEM) of the nanoparticles. Error bars indicate standard deviations (n = 3).

doi:10.1371/journal.pone.0126481.g002

Fig 3. The pressure drop through the antimicrobial air filters is shown as a function of particle
deposition conditions. Error bars indicate standard deviations (n = 3).

doi:10.1371/journal.pone.0126481.g003
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had been coated for 3 and 9 min (p>0.05). However, because of the dissimilar size distribu-
tions of the two bacterial aerosols, filtration efficiencies of the two species were slightly different
(p<0.05): ~97% for S. epidermidis and 95% forM. luteus. Also, note that flat panel-type filters
were used in these tests to estimate the effects of natural-product nanoparticles. Real-world ap-
plications would typically employ folded filters to increase the filtration area and decrease the
pressure drop.

As shown in Fig 4, the inactivation efficiencies of antimicrobial filters increased for both
bacteria with increasing nanoparticle deposition time (M. luteus: r2 = 0.9612, S. epidermidis:
r2 = 0.9959, p<0.05). Approximately 61, 73, and 82% of theM. luteus aerosols were inactivated
on filters that had been coated for 3, 6 and 9 min, respectively, while the corresponding values
were ~78, ~88, and ~94% with S. epidermidis.M. luteus was more resistant to the E. japonica
extract than S. epidermidis under all conditions (p<0.05), with a maximum difference of
~17%. Although bothM. luteus and S. epidermidis are Gram-positive bacteria,M. luteus is
more suited to survive in extreme and/or nutrient-poor environments over extended periods of
time [61]. Similarly, in extreme environments,Micrococcus strains have been shown to exhibit
greater resistance to novobiocin than Staphylococcus strains [62].

The major chemical constituents of E. japonica extract were investigated using HPLC.
The results showed that the chromatogram detected at 280 nm contains three major peaks
(1–3) with relative peak areas of 16.6, 5.8, and 3.2%, respectively (S2 Fig). Positive and negative
ion mode ESI/MS was used to identify these three major peaks. Peak 1 corresponded to a
[M-H]- ion atm/z 935 in negative ion mode. In positive ion mode, Peak 1 corresponded to the

Table 1. Concentrations, GSD, GMD, and peak diameters of test bacterial bioaerosols (n = 3).

Type of bacteria Concentration (×102 particle/cm3) GSD1 GMD2 (μm) Peak diameter (μm)

S. epidermidis 2.78 ± 0.08 1.22 ± 0.01 0.81 ± 0.01 0.84 ± 0.01

M. luteus 2.34 ± 0.03 1.42 ± 0.01 1.54 ± 0.01 1.80 ± 0.07

1GSD, geometric standard deviation.
2GMD, geometric mean diameter.

doi:10.1371/journal.pone.0126481.t001

Fig 4. The inactivation rate of E. japonica extract nanoparticles-coated filters on bacterial aerosols.
Error bars indicate standard deviations (n = 3).

doi:10.1371/journal.pone.0126481.g004
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[M+H2O]
+ ion atm/z 954. Fragmentation of peak 1 produced product ions atm/z 785 (loss of

gallic acid) andm/z 767 (loss of gallic acid and H2O). Peak 1 was therefore identified as 1(ß)-O-
galloyl pedunculagin. The presence of ions atm/z 301 or 284 in the mass spectra of peaks 2 and 3
indicated that these compounds were quercetin and kaempferol derivatives, respectively. Peak 2
yielded a [M-H]- ion atm/z 477 and another characteristic fragment atm/z 301, corresponding
to the loss of a glucuronide moiety. Peak 2 was therefore assigned to quercetin-3-O-glucuronide.
Peak 3 yielded a [M-H]- ion atm/z 447 (corresponding to an aglycone) and a major fragment
ion atm/z 284 due to the loss of a hexose unit, and was identified as kaempferol-3-O-glucoside.
These results were confirmed by comparisons with MS data in previous reports [63–65]. Previous
studies showed that flavonoids quercetin-3-O-glucuronide and kaempferol-3-O-glucoside exhib-
ited antibacterial activity by reducing the fluidity of the inner and outer layers of bacterial mem-
branes, inhibiting DNA and RNA synthesis, and deterring energy metabolism [66]. Quercetin-3-
O-glucuronide showed stronger antibacterial activity and a lower acute toxicity than kaempferol-
3-O-glucoside [67]. The antibiotic activities of 1(ß)-O-galloyl pedunculagin are not well known.
Thus, quercetin-3-O-glucuronide and kaempferol-3-O-glucoside likely play important roles in
determining the antimicrobial efficacy of E. japonica.

To assess the toxicity of E. japonica, in vitro cytotoxicity tests were conducted using EZ-
Cytox cell viability assay kits, the results of which were compared with those of SNCs,
which are known to produce genotoxic effects in cells. The SNC used in this study is classified
as a human carcinogen by the U.S. National Toxicology Program (NTP) and Beraterkreis
Toxikologie in Germany [68] although it is a weaker carcinogen than other, insoluble nickel
compounds. Fig 5 shows the concentration of E. japonica and SNC required to attain 50% inhi-
bition of A549 cancer cells and HEL 299 cells. For both cell types, the inhibitory concentration
of E. japonica was statistically confirmed to be higher than that of the SNC following 48-h ex-
posures (p<0.05). The required E. japonica concentrations were 137 and 256 μg/mL,>57%
higher than those of the SNC.

In addition, the antimicrobial activities of E. japonica and the SNC were casually evaluated
using the disk diffusion method. Approximately 50 mg of E. japonica extract and SNC powders
were dissolved in 1 mL of DMSO and distilled water, respectively, and 10 μL of each suspension
was used to soak Whatman filter papers (11-mm diameter; GE Healthcare Life Sciences,

Fig 5. The inhibitory effects of E. japonica and a soluble nickel compound (SNC) on A549 cancer and
HEL 299 cells. Error bars indicate standard deviations (n = 10) 1Half maximal inhibitory concentration, 2A549
human lung adenocarcinoma cancer cells, 3HEL 299 human lung fibroblast cells.

doi:10.1371/journal.pone.0126481.g005
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Pittsburgh, PA, USA). Fig 6 shows the results against S. aureus, Enterococcus hirae,M. luteus,
and S. epidermidis. The antimicrobial activities of E. japonica were similar to those of the SNC
against E. hirae andM. luteus (p>0.05), while it was considerably more effective against S. au-
reus and S. epidermidis with inhibition zones extending to more than twice the radius of those
of the SNC (p<0.01) The results in Figs 5 and 6 confirm that E. japonica is less toxic and ex-
hibits stronger antimicrobial activity on some bacteria than the SNC.

Conclusion
Filters coated with natural E. japonica extract nanoparticles are effective in inactivating bioaer-
osols. The pressure drop and antimicrobial activity of nanoparticle-coated filters increased
with increasing nanoparticle deposition time. HPLC and ESI/MS analyses showed that the
major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quer-
cetin-3-O-glucuronide, and kaempferol-3-O-glucoside. The latter two compounds likely play
important roles in the inactivation of bacterial aerosols. In vitro cytotoxicity and disk diffusion
tests showed that E. japonica nanoparticles were less toxic and had stronger antimicrobial ac-
tivity on some bacterial strains than the SNC, which is classified as a human carcinogen. Note
that the amount of nanoparticles deposited on a given filter must be optimized for the type of
bacterial aerosol. The antimicrobial performance of the E. japonica nanoparticle-coated filters
depended both on the amount of nanoparticles deposited and the nature of the airborne bacte-
ria. Additionally, previous studies showed that major chemical components in a natural

Fig 6. A comparison of the antimicrobial activity of E. japonica and SNC using the disk diffusionmethod (n = 5).

doi:10.1371/journal.pone.0126481.g006
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product were naturally degraded over time at room temperature [69] and antimicrobial activity
and morphologies of natural-product nanoparticles were affected by a variety of environmental
factors such as humidity and temperature [40,70]. Thus, the long-term stability and effects of
humidity and thermal energy on E. japonica nanoparticles need to be evaluated to estimate the
efficiency of nanoparticle-coated filters for real-world applications. Although the in vitro tests
showed that E. japonica is less toxic than the carcinogen, it does not mean that the natural
product is harmless to human health. Thus, additional studies such as in vivo experiments are
required. In a biological setting, many experimental values should be considered. Thus, field
experiments are required to confirm the applicability of the natural-product nanoparticle-coat-
ed filter in a real environment. We are considering a field experiment of our filters in a future
study. This study provides valuable information for the development of an environmentally
friendly bioaerosol control system that is suitable for use in indoor environments.

Supporting Information
S1 Fig. The size distribution of test bacterial bioaerosols.
(TIF)

S2 Fig. (a) HPLC chromatogram of E. japonica extract detected at 280 nm and (b) mass
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