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Dilated Cardiomyopathy is conventionally defined by left ventricular dilatation and

dysfunction in the absence of coronary disease. Emerging evidence suggests many

patients remain vulnerable to major adverse outcomes despite clear therapeutic success

of modern evidence-based heart failure therapy. In this era of personalized medical

care, the conventional assessment of left ventricular ejection fraction falls short in fully

predicting evolution and risk of outcomes in this heterogenous group of heart muscle

disease, as such, a more refined means of phenotyping this disease appears essential.

Cardiac MRI (CMR) is well-placed in this respect, not only for its diagnostic utility, but

the wealth of information captured in global and regional function assessment with the

addition of unique tissue characterization across different disease states and patient

cohorts. Advanced tools are needed to leverage these sensitive metrics and integrate

with clinical, genetic and biochemical information for personalized, and more clinically

useful characterization of the dilated cardiomyopathy phenotype. Recent advances in

artificial intelligence offers the unique opportunity to impact clinical decision making

through enhanced precision image-analysis tasks, multi-source extraction of relevant

features and seamless integration to enhance understanding, improve diagnosis, and

subsequently clinical outcomes. Focusing particularly on deep learning, a subfield of

artificial intelligence, that has garnered significant interest in the imaging community,

this paper reviews the main developments that could offer more robust disease

characterization and risk stratification in the Dilated Cardiomyopathy phenotype. Given

its promising utility in the non-invasive assessment of cardiac diseases, we firstly highlight

the key applications in CMR, set to enable comprehensive quantitative measures of

function beyond the standard of care assessment. Concurrently, we revisit the added

value of tissue characterization techniques for risk stratification, showcasing the deep

learning platforms that overcome limitations in current clinical workflows and discuss

how they could be utilized to better differentiate at-risk subgroups of this phenotype.

The final section of this paper is dedicated to the allied clinical applications to imaging,

that incorporate artificial intelligence and have harnessed the comprehensive abundance

of data from genetics and relevant clinical variables to facilitate better classification and

enable enhanced risk prediction for relevant outcomes.

Keywords: dilated cardiomyopathy, cardiac magnetic resonance, late gadolinium enhancement, artificial
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INTRODUCTION

Dilated Cardiomyopathy (DCM) merely describes a dilated
and dysfunctional left ventricle (LV) in the absence of
significant coronary disease, valvular dysfunction, or poorly
controlled hypertension. Documentation of LV size and
ejection fraction (EF) are the established measurements by
echocardiography or CMR that define phenotype and determine
risk stratification. CMR is considered the gold standard, as it
provides accurate volume assessment, morphology, function,
and tissue characterization all within a single assessment to better
describe underlying cardiac pathology.

It is increasingly appreciated that DCM is not simply the
single disease entity of “non-ischemic” heart failure, but rather,
represents a unique family of heart muscle diseases with complex
interactions between genetic predisposition and environmental
precipitants (see Figure 1) (1–3).

As such a clinical spectrum of DCM exists, with variable
expression of arrhythmic and functional changes over time
(4). Genetic testing clearly provides a fundamental insight into
discriminating part of these diverse DCM subtypes; however,
the complex interplay of genetics and environmental influences
dictates for a deeper characterization of the DCM phenotype
through advanced imaging techniques. This would also be
warranted in the matter of risk stratification, which to date,

FIGURE 1 | Complex interplay of environment with genetic factors contribute to the DCM phenotype. Commonly overlooked acquired factors that are either reversible

factors for those with “idiopathic” DCM or can contribute to the clinical expression or progression of those with underlying genetic predisposition.

remains particularly challenging for this cohort and appears to
be inadequate when focused on the single parameter of LVEF (5).
Evidently, a non-negligible proportion of DCMpatients suffering
from sudden cardiac death have much milder reductions in
LVEF that do not meet consensus criteria for primary prevention
implantable cardioverter-defibrillator (ICD) (6). Furthermore, at
least a third of adverse events can occur later in the course of
the disease, negating some of the reliability of static, solitary
measures of systolic function in predicting long-term outcomes
in DCM cohorts (7). There remains a relative lack of robust
markers for stratifying patients with the DCM phenotype, and
this is highlighted in the DANISH study, suggesting a limited
benefit of primary prevention ICD on overall mortality in
patients with non-ischaemic heart failure (8). By extracting a
multitude of information generated from images and clinical
datasets, Artificial Intelligence (AI) potentially holds the essential
link to uncovering some of the complex associations between
clusters of DCM patients in a fully automated manner. By
shifting toward better characterization, it may be ultimately
possible to integrate these disease characteristics and multiple
novel markers, thereby advancing the refined risk stratification
needed in DCM cohorts. This capability does not replace,
but rather should augment the clinical decision process in a
more efficient, user-friendly way, that hopefully translates into
improved patient care.
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The rest of the article is organized as follows, firstly, we
provide a summary of current methods for diagnosis and
characterization of DCM utilizing CMR techniques, followed by
recent and key applications of AI within this scope. Subsequently,
we highlight the use of AI for risk prediction in DCM and
methods that combine imaging and genetic information in
DCM characterization. Finally, we provide relevant discussions
on current research efforts and future work towards more
comprehensive and personalized imaging stratification of this
heterogenous phenotype.

CURRENT DIAGNOSIS AND
CHARACTERIZATION OF DCM

DCM is a heterogenous myocardial disease characterized by
several degrees of reduced LVEF. Whilst the majority with this
phenotype benefit from outcomes that improve year on year
with up to 90% alive and well at 10 years from diagnosis,
the natural history remains variable, with often unidentified
initiating triggers, and some individuals unfortunate enough to
succumb to unheralded life-threatening arrhythmias and sudden
cardiac death at the onset of their clinical presentation (9–13).

Understanding the characteristics, evolution and long-term
prognosis are key challenges to enabling proper etiological
classification, customized surveillance and initiation of
appropriate, effective treatment in a timely fashion. Although
evaluation in practice rarely deviates from the protocol-driven
investigation of heart failure, the heterogenous nature of the
disease that directly results in variable clinical and phenotypic
expression, dictates for a comprehensive, DCM-focused
investigation strategy. Furthermore, risk stratification based on
the simplistic evaluation of LV dimensions and LVEF is clearly
inadequate across the phenotypic spectrum and our current
grasp of suitable predictors of outcomes is still limited.

The Role of Imaging in DCM
Following detailed history, clinical examination,
electrocardiogram (ECG) and laboratory tests that may
elucidate features of a specific underlying etiology or secondary
organ dysfunction, imaging techniques play a crucial role in
confirming the diagnosis, ruling out other competing causes for
LV dysfunction, further evaluation of the etiology and in guiding
treatment strategies.

Whilst two-dimensional echocardiography is often first line
in the diagnostic imaging pathway and has an additional role in
both early and follow up function assessment in DCM patients,
its role in defining an underlying etiology is limited, particularly
with the compromise that occurs in light of inadequate acoustic
windows and poor endocardial border definition. Furthermore,
due to the inherent geometric assumptions that perform well in
healthy individuals with normal sized hearts, volume assessment
in those with distorted ventricular size and shape is less reliable,
with significant intra- and interobserver variability.

CMR is well-placed in this respect, with unrestricted field of
view and high spatial resolution to capture global and regional
changes in structure and function irrespective of ventricular

geometry or patient habitus (14). As there is less operator
dependence for endocardial delineation, the interobserver
reproducibility variability for volume and EF quantification is
less for CMR than it is in echocardiography (14). This is ideal
for both the initial evaluation, where decisions on initiation
of medical therapy are based on LVEF thresholds, but also to
carefully monitor progression of the disease and the appropriate
selection of those who require device implantation. The
integration of perfusion and whole heart angiography enables the
exclusion of significant coronary disease with a high accuracy,
thereby reducing the need for separate ischaemia assessment by
computed tomography (CT) or invasive coronary angiography
in the initial work up of DCM (15). Thus far, routine use of
CMR for diagnosis alone has not been shown to significantly
improve the clinical identification of non-ischaemic heart failure
causes (16). However, complementary information is offered
with tissue characterization and parametric mapping sequences
that enable assessment of changes to intrinsic myocardial
properties correlating with altered biological pathways. These
additional features offer the potential to aid the differentiation
of the underlying etiology, enable prognostic assessments and
guide treatment options. Although there remains a lack of
data from large randomized controlled trials asserting the role
of contemporary CMR on impacting patient outcomes, the
evolving landscape of techniques and applications for in-depth
phenotyping paired with advanced analytics pave an important
path toward CMR-guided precision care in the DCM population.

CMR for Dynamic Cardiac Assessment
Standard CMR provides the gold standard for biventricular
volume assessment, further allowing for accurate documentation
of systolic function, which is imperative for the investigation of all
comers with heart failure. Even though current clinical practice
focusses on these static measures obtained from only two end
time points of the cardiac cycle, due to real time acquisition over
multiple phases, cine-CMR possesses additional information
on dynamic volumetric changes. Consequently, it is feasible
to generate volume/time profile curves that allow evaluation
of continuous ventricular volume changes and extraction of
more sensitive parameters of cardiac function such as peak
filling rates (see Figure 2) (17). From this, additional indices
of filling and ejection are possible to obtain simultaneously,
with the potential for more detailed analysis of both systolic
and diastolic function (18). Differing LV filling patterns have
already been suggested to exist amongst DCM patients with
direct implications on the classification of functional status and
predicting adverse outcomes (19, 20). However, most studies
that assessed these parameters in the DCM phenotype were
significantly limited in the diversity of structural and functional
heterogeneity seen in most contemporary DCM cohorts, thus
hindering full exploration into the evolutions of filling and
ejection patterns in different subgroups and their varied clinical
outcomes (18, 21). Such studies are warranted but the current
tools for obtaining these parameters are limited by the extent
of user-interface involved in semiautomatic processing, whereby
contours are determined not only at each slice level but also at
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FIGURE 2 | LV volume (LVV) curve for a cardiac cycle, in blue end diastole (ED)

and end systole (ES) frames, in red peak ejection rate (PER), peak filling rate

(PFR), atrial contribution (AC), and peak atrial filling rate (PAFR) parameters.

each time point or phase prior to the computation of volumes
needed to produce the curves for each patient.

CMR Tissue Characterization
Unique tissue characterization sequences add a further
dimension to the investigative prowess of CMR in the evaluation
of the DCM phenotype. The ability to non-invasively assess
and quantitate myocardial tissue properties makes CMR well-
suited to unravel the onset and extent of pathogenic processes
occurring within the myocardium, that could only previously be
determined through high-risk invasive cardiac biopsy.

Late Gadolinium Enhancement- CMR
Tissue characterization using the late gadolinium enhancement
(LGE)-CMR technique enables the identification and
quantification of regional areas of replacement fibrosis; this
refers histologically to a process of reparative microscopic
scarring occurring in response to myocyte necrosis (21). It has
been found to be a clinically useful tool for distinguishing DCM
from other important differentials of LV dysfunction such as
coronary disease or sarcoidosis, subtyping the etiology of DCM,
as well as for predicting the trajectory of the disease (Figure 3)
(22, 23). Up to 45% of DCM patients are affected, usually in a
mid-wall distribution, with <15% showing an ischaemic pattern
that crucially, would not be sufficient to explain the degree of
ventricular dysfunction (22, 24).

There is substantial clinical evidence that the presence of
fibrosis and its detection via LGE-CMR heralds a strong and
independent predictor of adverse outcomes in patients with non-
ischaemic cardiomyopathy even in the absence of heart failure
symptoms (24–32). This is a powerful parameter in the era of
personalized risk stratification, especially when current criteria
for prophylactic ICD implantation on the basis of significant LV
dysfunction has low sensitivity for identifying some high risk
patients whose clinical outcomes are not consistently related to
LVEF (5).

The identification and extent of LGE at an early stage of
the cardiomyopathic disease provides additional information

beyond LVEF, thus enabling earlier prognostic characterization
and drawing attention to those who might benefit from closer
surveillance or earlier consideration of advanced therapies (25,
30). In the study by Gulati et al. (25), mid-wall fibrosis detected
by LGE-CMR imaging in a longitudinal study of 472 patients with
DCM, was incrementally associated with all-cause mortality and
cardiovascular death or transplantation across the entire range
of LVEF. In another study of 150 patients, up to 30% with the
mutation PLN (phospholamban) p.Arg14del had LGE on CMR
with a normal LVEF, suggesting this to be an early feature and
higher risk of arrhythmias in carriers of this mutation, but also
attesting to the phenotypic insights CMR offers for those with
underlying genetic substrate (33).

The identification of LGE in clinical practice and certainly
demonstrated in the majority of studies evaluating LGE-CMR in
DCM, occurs mostly by visual analysis which is clearly subject
to inter-observer variability (24). Elucidating the extent of LGE
is apparently complementary to detecting its presence in terms
of the additional risk stratification beyond conventional criteria.
Neilan et al. (31) assessed the extent of LGE using quantitative
methods in 162 patients with non-ischaemic cardiomyopathy
and assessed for the annual major adverse cardiac events
(MACE), including cardiovascular death and appropriate ICD
therapy. Over a follow up period for a mean of 29 ± 18 months,
quantified LGE extent demonstrated the strongest predictor of
MACE over age, sex and LVEF in multivariate analyses with an
adjusted HR 7.61, p < 0.0001.

Although quantitative methods might provide more
consistent validation for the presence of LGE and a
measure of the extent of fibrosis, there are also a number
of practical limitations; these include the lack of universal
access to quantitative software packages, variable extent of
fibrosis quantified by different methods and dependence on
supplementary, time-consuming contouring of LGE areas
(34, 35). Moreover, LGE which relies on differences in signal
intensity between healthy myocardium and focal fibrotic areas,
appears to be limited in its ability to assess and quantitate
diffuse (non-focal) myocardial injury and interstitial fibrosis
(36, 37). From a technical perspective, LGE is also affected
by inconsistencies in acquisition parameters, such as choice
inversion time (TI), and in post-processing when signal intensity
thresholds may be arbitrarily applied to distinguish normal
myocardium from fibrotic tissue. Finally, despite the strong
prognostic value in identifying high risk patients, randomized
controlled trials evaluating LGE-based risk stratification are still
warranted prior to any guideline recommendation on its use in
managing non-ischaemic heart failure cohorts.

T1 Mapping
Refined methods in quantitative assessment of tissue
characteristics enable routine measurement of diffuse fibrosis,
without the reliance on regional differences in tissue contrast
intensity (38). Novel techniques comprising of native (non-
contrast) and contrast-enhanced T1 mapping represent advances
in CMR that enable detection of pathological changes occurring
within myocytes and the interstitium in a number of disease
states (38). Native T1 is additionally helpful in those unable to
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FIGURE 3 | Short-axis late-gadolinium-enhanced CMR images demonstrating hyperenhancement (arrows) indicative of scar. The differing patterns help characterize

various myocardial diseases. (A,B) Represent typical ischaemic scar pattens involving subendocardium. (C,D) Represent non-ischaemic scar patterns which typically

involve epicardium to mid wall.

have contrast due to contraindications such as pregnancy or
severe renal failure. The acquisition of relaxation times during
the same cardiac phase enables T1 values to be displayed as a
pixelwise map, which can be used to directly quantify myocardial
T1 values globally and at specific regions. As this process is not
reliant on tissue contrast differences, T1 mapping overcomes
the limitations of LGE imaging in detecting diffusely diseased
myocardium but has the potential to detect and track myocardial
structural alterations throughout the clinical course of disease
expression (39, 40).

In DCM, the feasibility of T1 mapping as a surrogate of
diffuse fibrosis has been demonstrated at different stages of
the clinical phenotype, suggesting a potential biomarker role
for non-hazardous follow up in the progression of different
DCM cohorts (36, 41–43). This notion is further upheld in
the multicenter study of over 600 DCM patients, where T1
indices both regionally and globally showed significant predictive
associations with all-cause mortality and likelihood of heart
failure-related mortality or hospitalization over a median follow
up of 22 months, p < 0.001 (44). In a recent study of DCM
patients affected by complex ventricular arrhythmias, events
thought to be attributable to pathologic remodeling and the

inter-related process of diffuse fibrosis, global native T1 time
was found to be independently associated with ventricular
arrhythmias even after adjustment for LVEF and scar on LGE-
imaging (odds ratio 1.14, 95% confidence interval 1.03–1.25; p
= 0.008) (45). Whilst these studies demonstrate the incremental
value T1 mapping may provide in the evaluation of DCM,
substantial overlap in T1 values is apparent between those with
adverse outcomes and those without (44–46). Accounting for
this precise continuum of T1 values with pixel-to-pixel mapping
may more reliably differentiate higher and lower risk groups of
patients but would be technically difficult and laborious with
current manual techniques.

Pre- and post-contrast T1 mapping can also be adjusted
for haematocrit, i.e., correcting for the blood volume of
distribution, and this introduces an additional technique known
as the extracellular volume fraction (ECV), for more focused
examination of alterations occurring specifically within the
extracellular interstitial compartments (40). ECV appears to have
direct relationship with the extent of diffuse fibrosis with good
correlation to histopathological quantification and therefore
offers a non-invasive, quantifiable assessment of interstitial
disease that shows significant promise in prediction of heart
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failure related outcomes in DCM patients (36, 44, 47). Currently,
ECV still has a limited role in differentiating DCM from other
causes of non-ischaemic heart failure, due to the significant
overlap of values seen across various myocardial diseases (48).
However, its particular advantage appears to lie in its reduced
sensitivity to variation in scanner field strength, which lends
itself applicable toward multi-center and vendor evaluations to
assess the extent of its usefulness over LGE-CMR in future DCM
studies (47).

T2 and T2∗ Mapping
T2 weighted sequences exploit the biological parameter of T2
relaxation times associated with tissue water content. As such,
T2 images and subsequently quantitative T2 mapping can be
used for the assessment of myocardial oedema, adding to the
aetiological evaluation of active myocardial inflammation as
occurs in acute myocarditis (49). The clinical application of
T2 mapping to provide additional diagnostic information in
distinguishing DCM from healthy myocardium, with the former
showing larger and more progressive myocardial water content,
was recently supported in a meta-analysis (standardized mean
difference 1.90, p < 0.01) (50, 51). This could have a pivotal
role in the evaluation and differentiation of those who have
the functional appearance of DCM due to athletic training
from those with pathological myocardial disease (52). However,
differentiation of DCM from other forms of non-ischaemic
cardiomyopathy is limited in this respect, due to similar changes
in T2 values, and due to differences in the sequence acquisition
these values may vary from center to center (50, 53). Further
research is needed in regards to standardization, verification of
its usefulness and timing in the diagnostic pathway, and to better
understand the pathophysiological basis for an increase in T2
values in DCM without preceding myocarditis.

T2∗(star) relaxation mapping is a parameter that shortens
due to the local magnetic field homogeneity that occurs with
progressive iron deposition. This is useful for the assessment
and quantification of iron loading within the myocardium,
which can occasionally be associated with a DCM-like phenotype
(54). It is a clinically validated tool, with better predictive
capability than serum iron biochemistry and can detect the effects
of myocardial iron loading earlier than conventional cardiac
function assessments (54, 55). As a result, rapid hematological
diagnostic pathways can be primed without delay and the
response to treatment serially monitored non-invasively using
this tool (55).

CMR for Prognostication in DCM
CMR can confirm and reproduce the assessment of LV mass,
volumes, and LVEF, all of which are important indicators for a
worse prognosis in severe DCM and other causes of heart failure;
the latter two markers being key targets for reverse remodeling
and myocardial recovery (56–59). The main limitation of these
measures for predictive outcomes is that they are often assessed
at initial evaluation, failing to account for the dynamic nature of
the disease with favorable response to therapy for a significant
proportion of patients; concurrently, they are less sensitive for

those with mild-moderate dysfunction who are still prone to
significant risk of sudden cardiac death (25, 26, 60).

Risk stratification in this setting is difficult and the current
focus of this has shifted toward a multiparametric, dynamic
approach, which attempts to incorporate potential biomarkers
from biochemistry, ECG signals and imaging (12).

There is increasing evidence for applications within CMR
to guide prognostication and subsequent clinical management
in DCM. Whilst the majority of these applications for
risk prediction are captured through routine assessment, the
additional tools, and longitudinal follow-up capability is still
regarded as an investigational field of interest within the setting of
CMR (14). These current and potential clinical CMR applications
in the risk assessment of DCM are outlined in Table 1.

Much of the current CMR tools for characterization and
predicting outcomes in DCM rely on multiple dedicated imaging
sequences, followed by significant time devoted to qualitative
post-processing in the evaluation of structure, function and tissue
characterization. Despite their feasibility and utility, they are
often not fully exploited in clinical practice due to these time
constraints on clinical workflow. Even if employed, this often
occurs ad-hoc and limited to one or two additional parameters
evaluated in uniform manner, rather than assimilated in multi-
parametric fashion for personalized characterization and risk
stratification. Fully integrated analysis of all these features and
metrics could aid better selection of patients who might benefit
from earlier medical intervention, need closer surveillance
regardless of LVEF, and those who we can more confidently
discharge or halt medical therapies following improvement in
their cardiac status (5, 13, 66).

The Role of Genetics in DCM
Characterization
It is increasingly appreciated that DCM has a genetic basis, with
disease causing variants identified in up to 40% of families of
DCM and 25% of presumed sporadic cases (67). Some of these
genetic mutations can predispose carriers toward significant
brady- or tachy-arrhythmias, or in the presence of environmental
factors such as alcohol, can be the driver for a more severe
phenotype, and there is a suggestion that a genetic basis
could explain the higher prevalence of DCM seen in particular
ethnic groups (67–69). There has been an expansion in the
reported breadth of genes associated with the DCM phenotype,
particularly in recent times with the arrival of next generation
sequencing methodology (70, 71). However, robust genotype-
phenotype correlations are not always feasible as the genes
implicated encode proteins with a variety of different functional
properties, making it challenging to harmonize the extent of
genetic influence on the spectrum of structural and functional
changes in those with DCM (71). Furthermore, it is challenging
to clinically define and manage the large number of variants of
uncertain significance (VUS), inadvertently arising as a result of
the high throughput of current genetic testing.

Being able to discern the full scope of genetic influence in
those with DCM will further help tease underlying drivers of
disease manifestation and offer the opportunity to establish a
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TABLE 1 | The current and potential clinical CMR applications for predictive outcomes in DCM.

CMR

Biomarker

Current use Studies supporting

biomarker for

prognostication in

DCM cohorts

No. of

patients

studied

Median F/U HR/OR for primary end point (95% CI) p<0.05

LV volume and

LVEF

Clinical use Masci et al. (30) 125 1.2 years Primary endpoint = CV death and HF hospitalization. LVEDVi HR

1.02 (1.00–1.03), LVEF HR 0.94 (0.90–0.99).

Gulati et al. (25) 472 5.3 years Primary endpoint = ACM, cardiac transplantation. LVEF per 1%

HR 0.95 (0.93–0.96). LV-EDV index per 10 ml/m2 HR 1.09

(1.05–1.13), LVMi per 10 g/m2 1.12 (1.04–1.19).

Masci et al. (26) 228 1.9 years Primary endpoint = CV death, congestive heart failure, aborted

SCD. LVEDVi HR 1.008(1.000–1.016), LVEF HR 0.962

(0.934–0.990), LVMi HR 1.018 (1.006–1.030).

Buss et al. (60) 210 5.3 years Primary endpoint = aborted SCD, CV death, cardiac

transplantation. LVEDi HR 1.02 (1.01–1.03), LVEF HR 0.91

(0.88–0.94), LVMi HR 1.11 (1.04–1.18).

RV volume and

RVEF

Clinical use Alpendurada et al. (61) 60 2.2 years Primary endpoint = ACM, CV hospitalization. RVEF HR 0.96

(0.94–0.99) TAPSE HR 0.88 (0.80–0.96).

Gulati et al. (62) 250 6.8 years Primary endpoint = ACM, cardiac transplantation. RVEDVi per 10

ml/m2 HR 1.14 (1.05–1.25), RVEF HR 0.95 (0.93–0.97).

Becker et al. (63) 168 2.2 years Primary endpoint = ACM, cardiac transplantation, sustained

ventricular arrhythmia, appropriate ICD therapy. RVEF per 10% HR

0.74 (0.57–0.95).

LA volume and

dimension

Clinical use Gulati et al. (64) 483 5.3 years Primary endpoint = ACM or cardiac transplantation. LAVi per 10

ml/m2 HR 1.08 (1.01–1.15).

LGE Clinical use Assomull et al. (28) 101 1.8 years Primary endpoint = ACM, hospitalisations for CV event. LGE HR

3.4 (1.4–8.7).

Cho et al. (32) 79 1.6 years Primary endpoint = rehospitalisation, cardiac transplantation or

death. LGE HR 8.06 (1.03–63.41).

Masci et al. (30) 125 1.2 years Primary endpoint = CV death and HF hospitalization. LGE HR

3.96 (1.53–10.3).

Leyva et al. (27) 97 2.8 years Primary endpoint = CV death and transplantation. LGE HR 22.0

(4.73–102).

Neilan et al. (31) 162 2.4 years Primary endpoint = MACE, which included composite of

cardiovascular death and a ventricular arrhythmia, terminated by

the ICD. LGE presence HR 14.5 (6.06–32.61).

Gulati et al. (25) 472 5.3 years Primary endpoint = ACM, cardiac transplantation. LGE per 1%

increment 1.11 (1.06–1.17).

Masci et al. (26) 228 1.9 years Primary endpoint = CV death, congestive heart failure, aborted

SCD. LGE extent HR 5.104 (2.783–9.361).

Perazzolo Marra et al.

(29)

137 3 years Primary endpoint = SCD, sustained ventricular arrhythmia,

appropriate ICD intervention. LGE presence HR 4.17 (1.56–11.2).

Puntmann et al. (44) 637 1.8 years Primary endpoint = ACM. LGE presence HR 2.9 (1.4–6.3).

T1 Mapping Research tool Barison et al. (43) 89 2 years Primary endpoint = composite of cardiovascular death,

hospitalization for heart failure, and appropriate defibrillator

intervention. ECV HR 8.59 × 107 (1,503–4.80 × 1,012).

Puntmann et al. (44) 637 1.8 years Primary endpoint = ACM. Native T1 HR 1.1 (1.06–1.15), ECV per

% change HR 1.1(1.05–1.14).

Nakamori et al. (45) 107 Retrospective

events

Primary endpoint = ventricular arrhythmia. Native T1 each 10-ms

increment OR 1.14 (1.03–1.25).

FT-CMR: LV

strain

Research tool Buss et al. (60) 210 5.3 years Primary endpoint = combination of CV death, heart

transplantation, and aborted SCD. GLS HR 1.33 (1.21–1.47),

GCS HR 1.23 (1.13–1.34), GRS HR 0.89 (0.84–0.95).

Romano et al. (65) 507 4.4 years Primary endpoint = all-cause death. GLS HR 1.402 (1.299–1.513).

LV, left ventricular; LVEF, left ventricular ejection fraction; HF, heart failure; LVEDVi, indexed left ventricular end diastolic volume; ACM, all-cause mortality; LV-EDV, left ventricular end

diastolic volume; LVMi, indexed left ventricular mass; SCD, sudden cardiac death; CV, cardiovascular; RV, right ventricular; RVEF, right ventricular ejection fraction; TAPSE, tricuspid

annular plane systolic excursion; RVEDVi, indexed right ventricular end diastolic volume; ICD, implantable cardioverter defibrillator; LA, left atrial; LAVi, indexed left atrial volume; LGE,

late gadolinium enhancement; MACE, major adverse cardiac events; ECV, extracellular volume; FT-CMR, feature tracking-cardiac magnetic resonance imaging; GLS, global longitudinal

strain; GCS, global circumferential strain; GRS, global radial strain.
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FIGURE 4 | Visual example of the differences between machine learning (ML) and deep learning (DL) methods.

deeper characterization of the phenotype. Coupled with the
challenge to examine genetic influence on the spectrum of
structural and functional changes, the addition of mutation
status to clinical and imaging parameters may improve risk
stratification and potential treatment strategies beyond the
consensus management for heart failure with reduced ejection
fraction (HFrEF) (72).

AI APPLICATIONS IN THE CMR
CHARACTERIZATION OF DCM

AI is the division of computer science that deals with the ability
of computer systems to use algorithms in order to interpret
and learn from data, and successfully perform tasks that would
normally require human intellect and input. Over time, we have
seen AI gaining popularity in medicine, having applications
within medical record mining, predictive clinical application
systems, virtual patient care and, its widest application, medical
imaging (73, 74). In short, AI has the potential to perform
routine tasks more efficiently or provide new insights into disease
processes, that were previously not achievable by manual review
and analysis due to time and labor constraints (75).

AI, machine learning (ML), and deep learning (DL) are three
terms often used interchangeably but are essentially hierarchical.
AI is the overarching concept aiming to develop computers with
human intelligence. ML is the subfield of AI that gives computers
the ability to learn without being explicitly programmed (76).
DL is a subset of ML algorithms called neural networks. Neural
networks are algorithms that mimic the human brain’s behavior
in decision-making and try to find the most optimal path
to a solution. Traditionally, ML methods contain a feature
engineering phase, where experts propose a set of hand-crafted
features to facilitate the learning from examples. This phase
is very important and affects the overall performance of the
learning system. In a DL pipeline, feature extraction is embedded

in the learning algorithm where features are extracted in a fully
automated way and without any intervention of a human expert
(see Figure 4 for visual example of the ML and DL method). A
number of fundamental neural network architectures lie at the
basis of DL models, and we provide a basic introduction to their
concepts. However, for a more comprehensive overview of these
architectures and DL algorithms for cardiac image segmentation,
we refer the interested reader to Chen et al. (77), Convolutional
neural networks (CNN) are the most popular class of DL
network, widely applied in CMR, utilizing a patch-based image
extraction approach (see Figure 5A for an example of a CNN
network). As opposed to this conventional neural network, a fully
convolutional neural network (FCNN) performs more efficient
and accurate pixelwise segmentation by leveraging upsampling
layers to concatenate multi-scale features obtained through a
series of convolutions applied to the entire image (see Figure 5B
for an example of a FCNN) (77). Finally, another emerging
class of DL algorithms are the Generative adversarial networks
(GAN). These consist of a pair of neural networks, contesting
one against another (“adversarial”), in order to generate new,
synthetic instances of data that can pass for real data (see
Figure 5C for an example of GAN architecture).

There are three important types of AI algorithms: (1)
Supervised learning algorithms try to model relationships and
dependencies between the target prediction output and the input
features or observations such that we can predict the output
values for new data based on the learnt relationships. This is the
most partial and widely adopted form of AI, but it requires a large
amount of labeled training datasets; (2) Unsupervised learning
is where there are no corresponding output variables, and the
goal is to discover relationships between the input features
or reveal the latent variables behind the observations; and (3)
Reinforcement learning aims to learn a mapping from situations
to actions so as to maximize a scalar reward or reinforcement
signal. A key difference with supervised learning is that the
reinforcement learning agent is never told the optimal action,
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FIGURE 5 | (A) Example of a convolution neural network (CNN) where first section corresponds to the feature extraction and second section to classification; (B)

Example of a generic fully convolutional neural network (FCNN) with feature map volumes that are color-coded by size. Figure adapted from Bai et al. (78); (C)

Example of a generative adversarial networks (GAN) that comprises two networks (generator and discriminator).

instead it receives an evaluation signal indicating the goodness
of fit for the selected action.

Medical image analysis involves the use of images generated
in clinical practice, that can be interpreted to improve our ability
to solve clinical problems and make treatment decisions more
effective (79). As the increasing wealth of digital data becomes

more accessible, clinicians need to be able to find more efficient
ways of meaningfully combining this data to boost precision-
based healthcare.

Due to the spatial and temporal pathologic heterogeneity
of particular clinical phenotypes, such as DCM, the ability to
accurately identify and extract relevant imaging biomarkers in
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routine clinical practice is prone to subjective errors and has
low reproducibility when carried out by hand. Over the last
decade, AI has made significant progress in the field of medical
imaging, improving techniques involved in acquisition, analysis,
and interpretation with gradually less human oversight involved
in the process (74). These efforts reduce the variability associated
with subjective image interpretation, and moreover, enable
feature extraction around regions of interest. It has the potential
to provide quantifiable features that relate more objectively and
in more detail with relevant clinical information (80).

Overcoming the Barriers to Fully
Automated Image Segmentation
The opening act to CMR characterization involves image
acquisition and segmentation, prior to feature extraction. The
quality of this step is essential to the outcome of further
downstream analysis and provides baseline cardiac parameters
as well as the untapped features that might better describe
cardiac function in specific cohorts. Assessment of the anatomical
features following cine acquisition includes assessment of
myocardium, pericardium, all 4 cardiac chambers, valves and
vascular connections. Typically, a visual quality assessment is
needed first to ensure the signal-to-noise ratio is enhanced
by adequate positioning and breath-holding technique, limited
blurring by cardiac gating, and appropriate planning for each
subsequent image plane acquisition. Following the anatomical
review, long and short axis cines are acquired that enable
dynamic views of the global heart function. Segmentation
by manual planimetry, or by semi-automated methods with
clinician oversight enables the reproducible 3-dimensional (3D)
assessment of atrial and ventricular volumes, LV mass and
EF quantification.

Studies have shown that DL methods can outperform
conventional ML, and in some cases, even better in both
detection and segmentation tasks analyzed by human expertise
(80, 81). CNNs are the technique of choice and the most
successful type of models for image analysis (82, 83). Efficacy
of the DL models is often assessed in the form of pixel
classification accuracy. Although different methods for assessing
this exist, the preferred evaluation metric for DL-based
segmentation approaches is the Dice metric, which evaluates the
overlap between automated segmentation and the ground truth
segmentation. The Dice metric has values between 0 and 100%,
where 0 denotes no overlap and 100% denotes perfect agreement.

One of the main challenges to implementation of CNNs in
medical imaging is the lack of high-quality expert annotated
data, available for training the DL network. Furthermore, these
datasets often suffer from class imbalances due to certain
conditions being encountered less frequently, thereby making
it more difficult for a CNN to generalize and limiting large
scale CMR evaluations. As highlighted in Table 2, whilst
the segmentation performance of state-of-the-art DL methods
is commended, it is evident that the number of DCM
cases encountered in these evaluations has significantly low
representation. Given the heterogeneity of this condition with
many individuals at presentation subject to highly remodeled

ventricles and rotated cardiac axes, these current automated
segmentation methods may not yet be robust enough for the
deployment and evaluation of this phenotype.

To ensure any of these methods can translate into clinically
useful tools in the evaluation of DCM, it is essential they
are complemented by high quality datasets, that help improve
the accuracy of segmentation and classification tasks, whilst
providing large variability in terms of the clinical phenotype
and image acquisition modules, thus enabling generalizability
(87, 91). However, manual annotations of large datasets that are
able to encompass this scale of heterogeneity is no easy feat,
being costly and requiring extensive expert time for good quality
annotation. This could be partly overcome with data sharing
initiatives and collaborations between CMR centers to obtain
large repositories of images with associated clinical information.
This is not inevitably a seamless solution, as there are often ethical
and legal requirements to satisfy within all participating sites,
with limits set on how and where specific data can be utilized
during the development and deployment of the pipeline.

Encouragingly, over the years open technical challenges
and several publicly available datasets have been made
available, helping to unravel this generalizability issue
(93, 94). The UK Biobank (UKBB), although limited to a
single CMR vendor, provides one of the largest imaging
datasets facilitating the exploration of DL capabilities in a
large general population whilst solving issues relating to
ethics and clinical data aggregation. This was harnessed
recently in a genome-wide association study of CMR-
derived LV measurements in ∼36,000 participants from
the UKBB to study the relationship between genetic variants
associated with LV structure and function, and risk of incident
DCM (95).

Another way of improving the generalizability during training
and take advantage of the limited amount of high-quality labeled
data is the strategy of data augmentation. It is possible to
artificially increase the variation of examples encountered by
applying random transformations such as image rotation by
certain degrees, image scaling to increase variations in organ
size, changing image orientation with random horizontal or
vertical flips and even inclusion of random “noise” to images
(94, 96, 97). Whilst this option effectively enables the acquisition
of more labeled data, the diversity in practice may still be
limited in terms of reflecting the full spectrum of the DCM
phenotype and the pixel-level differences of images obtained
from different CMR vendors. The breakthrough in improving
this generalization of networks to reliably segment heterogenous
phenotypes acquired from different CMR vendors and clinical
sites was demonstrated recently by Chen et al. (94). Unlike
the efforts to solely re-train or fine tune networks to improve
the performance on a specific dataset, they explored the pre-
processing step of data normalization enabling their network to
deal with the distribution changes amongst input features from
multi-source images. This overcomes the small differences in
features arising from images obtained from different scanners
and the overfitting to distribution changes that occurs with
network development from a single source. Along with data
augmentation strategies, their approach achieved encouraging
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TABLE 2 | State of the art DL architecture on CMR datasets and number of DCM cases encountered in test datasets.

Selected Work,

References

DL

Architecture

and type of

images

Structures

Segmented

No. subjects in

total used for

training/validation/

testing

Dice metric

between AS and

MS: LV cavity

Dice metric

between AS

and MS: LV

myocardium

Dice metric

between AS and

MS: RV cavity

No. of DCM

test cases

Bai et al. (78) 2D FCNN, SAX

images

Biventricular

and atria

Training 3,975

Validation 300

Testing 600

Mean 0.94 (SD

0.04)

Mean 0.88 (SD

0.03)

Mean 0.90 (SD

0.05)

142

Tran (84) 2D FCNN with

transfer training,

SAX images

Biventricular Training 131

Validation 100

Testing 115 (LV),

32 (RV)

Mean 0.92 (SD

0.03)

Mean 0.96 (SD

0.01)

Mean 0.84 (SD

0.21)

Unspecified;

mix of cardiac

conditions

Isensee et al.

(85)

Ensemble FCNN

(2D and 3D

U-net), SAX

images over full

cardiac cycle

Biventricular Training 100

Testing 50

Mean 0.945 Mean 0.905 Mean 0.908 10

Tao et al. (86) 2D FCNN, SAX

images from

multivendor

dataset

LV/Myocardium Training 400

Testing 196

Mean 0.92 (SD

0.06)

Mean 0.94 (SD

0.05)

46

Khened et al.

(87)

2D Densenet

(FCNN), SAX

images

Biventricular Training 700

Validation 300

Testing 490

Mean 0.93 (SD

0.05)

Mean 0.89 (SD

0.03)

Mean 0.91 (SD

0.05)

10

Jang et al. (88) 2D M-net

(FCNN),

weighted cross

entropy loss,

SAX images

Biventricular Training 80

Testing 20

Mean 0.938 (SD

0.05)

Mean 0.879 (SD

0.04)

Mean 0.890 (SD

0.07)

10

Fahmy et al. (89) 2D FCNN with

alignment and

T1 estimation,

SAX images

LV/Myocardium Training 63

Testing 147

Mean 0.85 (SD

0.07)

Unspecified;

mix of cardiac

conditions

Avendi et al. (90) 2D CNN for

localizing LV,

stacked

autoencoders for

shape inference.

Deformable

model for

segmentation,

SAX images

LV Training 45

Validation 30

Testing 30

Mean 0.94 (SD

0.02)

Unspecified;

mix of cardiac

conditions

Avendi et al. (91) 2D CNN for

localizing RV,

stacked

autoencoder for

automatic

initialization.

Deformable

model for

segmentation.

RV Training 16

Testing 16

Mean 0.83 (SD

0.14)

Unspecified;

mix of cardiac

conditions from

dataset of 48

patients

Oktay et al. (92) 2D FCNN with

anatomical

shape priors,

SAX images

LV/Myocardium Training 900

Validation 100

Testing 200

Mean 0.939 (SD

0.02)

Mean 0.81 (SD

0.03)

0

DL, deep learning; AS, automated segmentation; MS, manual segmentation; LV, left ventricle; RV, right ventricle; FCNN, fully convolutional neural network; CNN, convolutional neural

network; SAX, short axis.

results in terms of reliable segmentation accuracy across test
images from multi-scanner and site domains (mean Dice metric
of 0.91 for the left ventricle, 0.81 for the myocardium, and

0.82 for the right ventricle from a single site dataset; and 0.89
for the left ventricle, 0.83 for the myocardium from a multi-
site dataset).
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DL-Based Global Assessment of Function
Recent DL techniques have enabled rapid expansion in
the CMR domain to achieve robust contour identification
and accurate classification performance, whilst significantly
minimizing the extent of post-processing involved in volumetric
data calculations (98). Emerging approaches that have recently
become commercially available, have further demonstrated
the feasibility and precision of fully automated dynamic
measurement of LV volumes (99, 100). Utilizing anatomical
localization methods to determine relevant boundaries between
structures, contours are created in consecutive frames of the
cardiac cycle with LV volume/time curves derived at no extra
time expense and with high correlation to the manual reference
technique (99). Whilst such applications show promise for
the application to evaluating DCM cohorts, the development
and training of this technique has been based on very limited
representation from such patients, with less accuracy seen in
those with significantly dilated ventricles and whose impaired
breath-holding technique can lead to significantly more artifacts,
reducing image quality. Furthermore, the details of the DL
pipeline are not disclosed by the manufacturer and this lack
of transparency will make it difficult to optimize the current
algorithm in order to generalize to other scanners and more
diverse patient cohorts.

Motivated by these limitations, Ruijsink et al. (17) developed a
robust, accurate and fully automated framework for CMR cardiac
function analysis which included comprehensive quality control
detection using a CNN to limit erroneous output. Segmentation
of both ventricles in all frames was then executed utilizing a
17-layer 2D-FCNN, prior to an iterative alignment process to
correct for any differences in breath-holding and motion. After
validating their framework that presented with high correlation
to manual analysis, biventricular volume curves were generated
for over 2,000 healthy individuals to obtain a more detailed
description of cardiac function, inclusive of diastolic parameters
such as peak early filling rate, atrial contribution, and peak
atrial filling rate. These parameters stratified healthy patients
by age categories, with lower filling rates correlating with
older age–a relationship consistent with the known increase
in ventricular stiffness with age (101). Considering that these
LV filling patterns also appear capable of distinguishing the
different categories of diastolic dysfunction characterized on
echocardiography, it is anticipated that this method could
enable within DCM subgroups detection of those with persistent
diastolic impairment despite LV systolic recovery on medical
therapy, and identify patients with subclinical disease who will
require closer surveillance (102). These parameters are feasible
with no additional imaging outside routine care and can occur at
no extra time-cost whilst the routine clinical analysis is ongoing.
In terms of the potential clinical application to evaluation of the
DCM phenotype, it is significant that the method employed by
Ruijsink et al. (17) performed similarly well in unseen patients
with cardiomyopathy as well as those without cardiac disease.
It has been reported from studies on emerging 4D flow CMR,
that DCM patients have altered and heterogenous diastolic flow
patterns that occur due to abnormal filling kinetics and varying
degrees of pathological geometrical configuration of the LV (103).

This highlights the potential role offered by fully automated LV
filling assessment in differentiating those with persistent altered
filling patterns and abnormal diastolic flow, thereby remaining
at risk of relapse compared to those who have truly achieved
recovery and remission. Based on this promising AI tool, current
work by this group is also exploring the innovative use of
GANs to generate realistic CMR images from any domain in
order to advance the generalization of the network and robustly
deal with clinical CMR data from multiple centers, vendors,
and field strengths (104). Given the feasibility to evaluate both
ventricular filling profiles, and the suggested prognostic role of
serial revaluation of RV function in the follow up of DCM, the
characteristics and clinical utility of RV filling patterns over time
will be another area of application in the DCM population (105).

DL-Based Tissue Characterization
State-of-the-art algorithms utilized in scar segmentation are
commonly semi-automated, fixed-model approaches where the
pixel intensities of scar regions are exploited through a process
of thresholding (106). This requires a user-selected area of
interest and knowledge of the nearby intensities of healthy nulled
myocardium, prior to operating a region growing process to
segment the scar region. These methods are currently popular
for segmenting contiguous regions of scar, and are highlighted
for their reproducibility, with encouraging performance against
consensus segmentation by experts (106). Whilst simple to
implement, they remain heavily user dependent for pre-
processing with respect to definition of the myocardial borders,
activating the boundaries of interest, initialization for region
growing in each slice, and the subjective baseline selection of
remote healthy myocardium as well as the perceived extent
of scar. More automated approaches have been developed to
help minimize the degree of user interaction whilst maintaining
reproducible performance (106). These methods mostly utilize
clustering techniques to fit data of different tissue signal
intensities in order to characterize the voxels belonging to
scar regions (106). Whilst they show good correlation with
the fixed-model approaches in accurately identifying LGE, they
unfortunately are not robust enough for clinical translation due
to failure to accurately segment scar where CMR-LGE images
are affected by noise or share homogenous signal intensity
distributions within myocardial boundaries and other nearby
tissues (106–109). This limitation is particularly important
as most of these traditional methods have been validated
on CMR-LGE images obtained from patients with coronary
disease, where the pattern of scar is subendocardial as
opposed to that seen, if present, in DCM and other non-
ischaemic cohorts, occurring in the mid to epicardial wall
segments, where tissue intensity homogeneities are more likely
to be encountered.

As the attention of CMR segmentation transitions toward
more DL-based approaches, it is hoped that these innovative
techniques will also facilitate a more practical and reliable means
of achieving standardized quantification of LGE. This is highly
desirable, given the suggestion that even after adjustment of
LVEF, the proportion of LGE assists the clinical stratification
of DCM patients who are prone to a higher risk of death and
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hospitalization (28). Not to mention, the ability to efficiently
characterize border zone tissue–areas of variable transition
between scar and normal tissue that have arrhythmogenic
potential, thereby helping to identify those at risk of malignant
arrhythmias and more likely to benefit from ICDs (110).

A successful FCNN architecture, the ENet was recently
harnessed to deal with the task of scar segmentation (111).
Several variants of this popular architecture have been adapted
to enhance the accuracy of different cardiac segmentation tasks
(see Table 2). However, the pursuit of scar segmentation is a
relatively new concept. In this work by Moccia et al. (111),
the ENet was adapted and evaluated to see if pre-identified
LV regions could enable more accurate scar segmentation than
current methods, and furthermore whether a fully automated
output of scar segmentation was feasible and maintained a
similar or improved accuracy. As a proof of concept, this
method showed both protocols were able to identify scar on
the CMR-LGE images without the need for pre-processing
extraction steps. However, it was the semi-automated method
with a priori knowledge of the restricted myocardial boundary
in which to search for scar, that outperformed state of the art
CMR-LGE segmentation algorithms and was closest to expert
annotation (with a sensitivity of 0.88 and Dice coefficient
of 0.71). This is still an important breakthrough, holding
advantages over current efforts to quantify scar by minimizing
subjective evaluation, user interaction and any parameter tuning
prior to implementation. Expanding the training datasets to
incorporate the variability of scar seen in those with a sole
DCM phenotype and those with accompanying embolic sub-
endocardial scar, could be an encouraging start to help encode the
high variability of scar dimensions seen in this population. This
study provides an important step forward in the clinical practice
of scar quantification, and by enhancing the pixel classification
through training, the ENet would not only acquire improved
segmentation performance, but would be more generalizable to
the DCM population.

In conjunction with acquiring diverse DCM datasets, image
data augmentation is another common method to artificially
boost training datasets in order to improve performance
and generalizability of a deep learning model. This may be
particularly relevant with regards to the DCM population, where
a disconnect exists between high demand for sufficient training
images and the variability of scar presence across the spectrum of
patients, in essence, limiting the real-world availability of training
examples (24). This was recently explored in the simulation
of scar tissue on the LGE-CMR images of healthy patients
(112). Lau et al. (112) utilized their GAN framework which
could additionally incorporate domain-specific knowledge, to
simulate various scar tissue shapes in different positions. These
images were highly realistic as demonstrated by the improved
segmentation prediction of scar tissue pixels correctly identified
during testing from 75.9 to 80.5% and the qualitative assessment
that imaging experts were unable to reliably distinguish between
simulated and authentic scar.

A stream of work has focused on extending the use of a trained
FCNN to assist analysis of myocardial tissue characterization
by means of automated native T1 mapping (89). With good

agreement to manual calculations, this showed promise for
an automated pipeline to minimize the workflow involved in
quantifying global T1 characteristics. This was validated on
a single scanner, with further study needed to see if this
method can be applied to other mapping sequences such
as the modified Look-Locker inversion recovery (MOLLI) or
the contemporary shortened modified Look-Locker inversion
(shMOLLI) method, that is more acceptable and compatible with
typical limits for end-expiration breath-holding in patients (113).
Puyol-Antón et al. (114) evaluated an automated framework
for tissue characterization using the shMOLLI method at 1.5
Tesla using a Probabilistic Hierarchical Segmentation (PHiSeg)
network. This method models the probability distribution of
pixel-wise segmentation samples from the input image and
generates an uncertainty map to quantify the degree of error in
segmentation, so that erroneous representations are not utilized
for T1 mapping. A morphological operation was then applied to
detect the LV-RV intersection and delineate LV free wall from
the interventricular septum. T1 ranges were obtained from the
uncovered myocardial regions of interest with correction for
T1 from the ventricular blood pools to improve discrimination
between healthy subjects and those with cardiovascular disease
(115). Using this proposed method, they characterized global and
regional T1 values from over 10,000 subjects from the UKBB
dataset which included a significant proportion of non-ischaemic
cardiomyopathies. In line with present comprehension, they
demonstrated that for those conditions in which diffuse fibrosis
is more prevalent such as DCM, hypertrophic cardiomyopathy
(HCM), and cardiac sarcoidosis, they found significantly higher
T1 values (all p < 0.05). The quality control process is
an important feature for clinical scalability of this tool and
would enable this supplementary prognostic information to
be added to each DCM case in a uniform manner with no
added time-expense. Furthermore, it would enable large scale
application to assess the role that native T1 analysis may have in
deriving enhanced prediction of adverse outcomes for particular
subgroups of DCM, particularly those who remain at risk despite
having only mild or moderately impaired LV function. In order
to be more generalizable, the proposed model requires validation
on datasets acquired from the various different vendors available
currently in clinical practice.

CLINICAL RISK PREDICTION AND THE
ROLE FOR AI

Whilst clinical risk prediction models for prognostic assessment
exists for heart failure populations in general, these tend to
be below par when utilized in DCM patients (116). For the
most part, these models are derived mostly from heart failure
due to ischaemic etiology, which on average is associated with
a higher mortality risk, and tends to affect older individuals
who have other associated cardiovascular risk factors (116).
DCM tends to affect younger patients with the vast majority
having mild dysfunction remaining stable for many years.
Alternatively, they can also be characterized by incidences of
sudden progressive dysfunction, or by those without severe LV
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dysfunction who remain susceptible to ventricular arrhythmias
and sudden cardiac death; both of which would not be accounted
for by conventional risk prediction models (1, 117, 118).

Emerging techniques in AI pertaining to the exploration
of informative clinical biomarkers potentially offers a better
appreciation of the phenotypic heterogeneity underlying DCM,
with refined clinical implications in risk stratification, earlier
detection and personalized treatment strategies (116). In this
section, we provide an overview of these AI-based clinical
applications that are primed to advance the field of clinical risk
prediction in DCM.

Chen et al. (119) recently evaluated their ML model based on
32 features obtained from baseline patient characteristics, bloods,
ECG, echocardiography and CMR, and assessed its performance
in predicting cardiovascular events in a group of severe DCM
patients. Feature selection occurred with Information Gain, an
attribute selection technique that enables rapid classification of
the most relevant features to the cardiovascular events. Although
a number of ML models performed well in terms of accuracy and
ability to discriminate between an event and non-event for each
feature, a naïve Bayes classifier was selected as themodel of choice
due to the additional transparency offered with the generation
of conditional probabilities associated with each outcome. This
was the most meaningful in terms of clinical translation, as the
relevant significant features could form part of the clinician’s
probabilistic reasoning in the decision aid for guiding a patient’s
treatment. This would need further exploration in subsequent
iterations of the model and prospective clinical trials in order
to evaluate the capability to assign risk to particular patients.
Nonetheless, by handling most of these features that are often
used variably in practice for risk prediction such as LGE extent,
degree of mitral regurgitation, and QRS duration, this model
outperformed current scoring systems and LVEF alone for the
prediction of cardiovascular events in each patient [AUC, 0.887
(95% confidence interval, 0.813–0.961)].

By integrating longitudinal clinical, biochemical and
echocardiography imaging data from over 4,000 patients with
cancer, Zhou et al. (120) built predictive supervised ML models
for applicable cardiovascular outcomes such as heart failure and
de novo cancer therapy-related cardiac dysfunction (CTRCD).
Based on a number of model iterations from five different
classification methods, logistic regression provided the optimal
classification performance, with an area under the receiver
operating characteristic curve of 0.882 (95% CI, 0.878–0.887)
for heart failure and 0.802 (95% CI, 0.797–0.807) for de novo
CTRCD. They identified a combination of 9 clinically relevant
variables that were strong predictors for these outcomes (p <

0.05) and maintained this high performance even when tested
on data from separate time points to the training dataset. As one
of the potentially reversible causes of DCM, this generalizability
and high performance in predicting CTRCD over time makes
ML models such as this a potentially promising tool for real-
world cardiac risk assessment in cancer patients throughout
their treatment journey. As these models are evaluated in larger
cohorts with fine-tuning and model-specific variable selection
to enhance performance, this group are also collaborating with
clinicians to develop integrated risk calculators with outcomes in

order to test the prospective potential of ML-derived biomarkers
in cardio-oncology practice.

Treatment of DCM is predominantly as part of the
management of heart failure with reduced ejection fraction.
This is directed at reversal of adverse LV adaptive mechanisms
that occur in progressive LV dysfunction, so called LV reverse
remodeling (LVRR), and is a key determinant of prognosis in
DCM (1). Up to 40% of patients are reported to experience
this within two years, due to removal of the precipitating
factor or induced through medical therapies and/or cardiac
resynchronization therapy (CRT) in those who have left
bundle branch block and subsequent dyssynchronous ventricular
activation (1, 121). Beyond medical therapy, CRT in this setting
has clear efficacy in terms of improving symptoms and reducing
mortality (122). However, determining those who will “respond”
to this therapy moving toward and maintaining remission in the
long-term, as opposed to those who may be non-responders, is
still a current challenge in the clinical setting (1, 123). Whilst
multiple clinical, imaging, and even device implant factors are
associated with the likelihood of positive response to CRT, gaps
of knowledge still remain regarding timing of this evaluation and
how to leverage this information to identify evidence of early
remodeling (121, 123).

A number of ML algorithms have explored the combined
assessment of different clinical variables in predicting response
to CRT and recovery of myocardial function. Multiple kernel
learning (MKL) has been used by different groups as it offers the
possibility of combining data from different sources as different
kernel matrices, and it learns the importance of each kernel. For
example, a framework was developed by Peressutti et al. (124),
which captured LV motion information from spatio-temporal
atlases deployed in CMR imaging from a mixed cardiomyopathy
cohort. They then applied a supervised MKL to combine and
evaluate the relationship between the rich motion descriptors
and selected clinical information derived from clinical reports,
ECG and data from echocardiography. Although applied to a
limited cohort of 34 patients selected for CRT, this coupling
of electro-mechanical LV data to clinical metrics achieved an
accuracy of 94% in predicting super-responders and 91% for
non-responders, at 6 months post CRT implant. Future work
incorporating anatomical descriptors into the atlases could
potentially inform ofmechanistic differences between responders
and non-responders.

Cikes et al. (125) utilized an unsupervised MKL algorithm
in a heart failure cohort of over 100 patients recruited from
the Multicenter Automatic Defibrillator Implantation Trial with
Cardiac Resynchronization Therapy (MADIT-CRT trial). This
trial had previously demonstrated the added benefits CRT
added to ICD in terms of decreased risk of heart failure
events in those with a low LVEF and wide QRS duration on
ECG (126). In order to provide meaningful classification of
this phenotypically heterogenous cohort, this algorithm was
used to cluster patients by clinical characteristics, biochemical
biomarkers, ECG, and echocardiography-derived patterns. They
observed specific phenogroups with characteristics predictive
of best volume reduction, CRT response, and overall better
treatment effect on heart failure outcomes [hazard ratio (HR)
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0.35; 95% confidence interval (CI) 0.19–0.64; P = 0.0005 and HR
0.36; 95% CI 0.19–0.68; P = 0.001].

Although most of the examples above come from more
diverse heart failure cohorts, ML within these settings clearly
has the potential for novel integration of the readily available
and extensive clinical, biochemical, and imaging parameters to
phenotype heterogenous diseases, such as DCM. They offer the
added advantage of exploiting this information as biomarker
data to unearth and compare the similarities between subgroups,
and importantly provide a degree of interpretability for the
associations identified (125). Understanding the value and
accuracy of this output is not only relevant to understanding how
to improve the ML algorithm’s operation, but is fundamental for
bridging the gap to advances in the clinical application of these
tools. This has been a need particularly for DL algorithms, which
havemade impressive leaps in performance and accuracy in some
image classification tasks, but are often depicted as “black boxes,”
offering little understanding to the prediction of their results.

Puyol-Antón et al. (127) offered in the first of its kind,
an interpretable approach to a DL model for the prediction
of CRT response. This framework was based around a DL-
based generative model known as a variational autoencoder
(VAE) which encodes the segmented biventricular data
into a low dimensional latent space, followed by a primary
task classifier of predicting those who would respond to
CRT utilizing pre-treatment CMR images. A secondary
classifier which follows a similar structure to the first, and
then incorporates clinical domain knowledge to provide an
explanatory concept within the encoded space. By example,
they utilized the concept of septal flash–an identified pattern
of early septal contraction and a marker of interventricular
dyssynchrony (128). The classifiers enabled the separation of
CRT responders and non-responders in the image domain
with visualization of where the learned features of CRT
responders corresponded to the clinical domain knowledge.
This has important implications beyond predicting CRT
response in DCM, with the potential ability of DL models
to explore multiple validated clinical parameters involved in
arrhythmia prediction and reverse remodeling as explanatory
concepts, thus granting a better understanding of the disease
process pathways and the varying responses of different
subgroups (129).

AI TOOLS FOR INTEGRATED
IMAGING-GENETICS IN DCM

Supervised ML approaches improved the prediction of DCM
patients mostly likely to experience LV reverse remodeling
following the novel therapeutic approach of immunoadsorption
and immunoglobulin substitution (130). The integration of
overlapping myocardial gene expression patterns, using a
support vector machine and random forest analysis, enabled
the development of a robust classifier that helped distinguish
responders to therapy, and enhanced predictions beyond clinical
parameters and antibody response levels alone [sensitivity of

100% (95% CI 85.8–100%); specificity up to 100% (95% CI
79.4–100%); cut-off value:−0.28].

Similarly, Schmitz et al. (131) demonstrated that ML
algorithms could be applied to identify predictive combinations
of clinical and genetic markers that could enhance the
classification of heart failure patients likely to respond to CRT
treatment. This work proposed the concept of underlying genetic
substrates that may exclusively or through interaction with
other factors contribute to the remodeling phenotype of certain
heart failure cohorts. This additional predictive information may
provide some understanding of the variable responses to CRT
therapy and help improve outcomes.

High fidelity ML models incorporating genetic sequencing,
2D and 3D CMR, explored the complexities surrounding the
molecular mechanisms of DCM pathogenesis, mediated by
titin-truncating variants (TTN) (132). These variants frequently
associate with the DCM phenotype in sporadic and familial
forms, and are also reported to occur in just under 1% of
the general population, where their clinical significance is less
clear (133, 134). However, following mass univariate analyses
in healthy individuals, integrating multiple cardiac parameters
obtained through CMR imaging, anthropometric variables and
their relationship to detailed sequencing of the TTN genotype,
Schafer et al. (132) demonstrated association between TTN status
and higher LV volume due to eccentric remodeling. In leveraging
this high-resolution phenotyping, this study highlighted the
feasibility and benefits of ML in estimating the effect size of
candidate pathogenic mutations on multiple metrics of cardiac
morphology and function that are applicable to a deeper
characterization of the DCMphenotypic spectrum. Furthermore,
such studies are needed to help define the clinical indicators of an
inherited DCM and the mechanistic interactions between genetic
variants and other conditions that share some clinical features
such as peripartum cardiomyopathy (135).

The potential of AI for rapid, purposeful extraction of high-
quality imaging-derived phenotypes assimilated with genetics is
also a promising arena for DL methods. Following rapid LV
analysis in ∼17,000 individuals by a FCNN highly optimized
to automatic segmentation, the largest genome wide association
study (GWAS) of image-derived phenotypes identified 14
significant loci for different LV traits that related to cardiac
morphogenesis and risk of heart failure development (136).
Furthermore, there were distinct loci that associated with LV
remodeling, and others that were causal genes for multiple
LV traits such as BAG 3 and TTN; two genes that also
share implications in the pathogenesis of DCM. These findings
emphasize a potential genetic basis underlining many of the
structural and functional LV imaging traits routinely acquired
through CMR imaging. With the unparalleled performance of
fully automated imaging analysis by DL, it may be feasible to
integrate this information and enrich our understanding of the
pathogenic evolution of heart failure syndromes occurring in
some DCM subtypes.

These promising applications highlight the unrivaled
capability of AI to integrate complex structural, functional
and genetic characteristics of DCM to better understand and
characterize the phenotype. However, in order to universally
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translate to the clinical setting, they warrant validation and
replication across the spectrum of LV dysfunction in order to
tease the different pathways that are involved in the evolution
of DCM.

FUTURE PERSPECTIVES AND
CONCLUSIONS

Advances in the applications of AI based medical innovations
are rapidly increasing with a particular surge of interest within
the specialties of Radiology and Cardiology (137, 138). Even
now, across Europe and America, a number of innovations have
already received Conformité Européenne (CE) marked or Food
and Drug Administration (FDA) approval for the introduction
of AI based solutions to simplify detection of cardiovascular
risk and enable efficient, personalized disease prediction across
a range of imaging modalities and clinical platforms (137, 138).

Despite this rapidly evolving landscape for AI opportunities in
cardiac healthcare, there are still some limitations that need to be
addressed before such applications can be successfully deployed
into clinical practice. Firstly, the generalization of themethods, as
most are only validated with high-quality data from standardized
research environments which don’t necessarily generalize well
to external databases. To overcome this limitation, we think
that AI models need to be validated in external databases that
reflect real-world, heterogenous populations, and tested using
decentralized techniques such as federated learning in order
for them to be relevant and personalized to specific cohorts. A
pioneer example of such initiative is the partnership between
the British Heart Foundation and the Health Data Research
UK (HDRUK), enabling access to the UK’s large-scale and
diverse cardiovascular data resource, where population-wide data
analysis can be utilized to extract valuable information from
unstructured data and investigate novel insights into cardiac
disease pathways.

Another well-known pitfall of AI models is that they are
“black boxes,” being difficult to gauge how they reach their output
decisions and predictions. Explainable AI is a new branch of
AI that aims to add interpretability to the models. From our
point of view, this is likely to facilitate faster adoption of AI
systems into the clinical healthcare setting and will help foster
vital transparency and trust with their users.

For the DCM population, this further research from AI tools
is welcomed and needed to find meaningful insights that are able

to enhance the rapid, reliable automation of all relevant imaging
indices for characterizing the phenotype. If these could help
define the relationships between imaging phenotypes, genomic
features and the impact of specific precipitant factors, then
it may be possible to generate biomarker profiles to discover
clusters of DCM patients that have similar outcomes, to better
understand their similarities and furthermore, understand the
influence of different treatment strategies. These biomarker
indicators would be important in redefining risk stratification
beyond LVEF, enabling a multi-parametric approach that can
feasibly assess dynamic changes in cardiac status and help
tailor treatments to the needs of a specific subtype and more
specifically, the individual.
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