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Abstract: In this study, a hydrogel using single and double crosslinking was prepared using GelMA,
a natural polymer, and the effect was evaluated when the double crosslinked hydrogel and tannic
acid were treated. The resulting hydrogel was subjected to physicochemical property evaluation,
biocompatibility evaluation, and animal testing. The free radicals generated through APS/TEMED
have a scaffold form with a porous structure in the hydrogel, and have a more stable structure
through photo crosslinking. The double crosslinked hydrogel had improved mechanical strength and
better results in cell compatibility tests than the single crosslinked group. Moreover, in the hydrogel
transplanted into the femur of a rat, the double crosslinked group showed an osteoinductive response
due to the attachment of bone minerals after 4 and 8 weeks, but the single crosslinked group did not
show an osteoinductive response due to rapid degradation. Treatment with a high concentration of
tannic acid showed significantly improved mechanical strength through H-bonding. However, cell
adhesion and proliferation were limited compared to the untreated group due to the limitation of
water absorption capacity, and no osteoinduction reaction was observed. As a result, it was confirmed
that the treatment of high-concentration tannic acid significantly improved mechanical strength, but
it was not a suitable method for improving bone induction due to the limitation of water absorption.

Keywords: gelatin methacryloyl; osteoinduction; tannic acid; crosslinking; hydrogel; biodegradable

1. Introduction

Bone defects are health-threatening diseases and are caused by various factors such
as trauma, genetics, and cancer. The number of patients increases with age. Although
bones can be regenerated, the ability widely varies from person to person. Currently, the
most common method to recover the damaged bone defects is the direct implantation
of a bone-grafted material into the defective area. Bone grafting must include essential
elements of bone regeneration, namely osteoinduction, osteoconduction, and osteogenesis,
in conjunction with the final bonding between the bone and the graft material [1]. In
bone tissue engineering, various complex processes involving cell adhesion, migration,
proliferation, differentiation, and matrix formation are used while applying biomaterials to
induce bone generation [2]. To recover functions, often, biomaterials containing bioactive
substances are used [3]. Hydrogels made of natural and synthetic biomaterials that similarly
mimic the structure and biological properties of the natural extracellular matrix have long
been studied as candidates for cell delivery in medicine and dentistry [4].

Gelatin is a type of derived protein partially extracted from collagen by thermal
or chemical denaturation. It is suitable for hydrogels due to its retentive ability for a
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motif of peptides that are degraded by matrix metalloproteinase (MMP) and arginine-
glycine-aspartic acid (RGD) related to cell adhesion. Additionally, gelatin has an ex-
cellent biocompatibility and swelling ratio [5–8]. However, gelatin dissolves in water
at a body temperature above 37 ◦C and does not offer structural stability. Its physical
properties are improved by chemical crosslinking with glutaraldehyde or 1-ethyl-3-(3-
dimethylaminopropyl)-carbodiimide) (EDC)/(N-hydroxysuccinimide) (NHS) [9,10]. How-
ever due to crosslinker toxicity, many restrictions were imposed as referred from previous
studies [11–13].

The recently developed gelatin methacryloyl (GelMA) can be produced by chemical
modification of the amine and hydroxyl groups of gelatins, through which the hydrogel
can be covalently crosslinked in the presence of photoinitiators and light [14]. In addition,
GelMA hydrogels irreversibly change some structures due to hydrolysis and chemical
modification but retain some properties of collagen and gelatin, such as cell adhesion, heat
sensitivity, and enzymatic degradation [6,14,15]. GelMA hydrogels support the formation
of novel ECMs, are enzymatically degradable, can be produced at low cost, are readily
crosslinked under physiological conditions, and show potential for tissue engineering [16].

Irgacure 2959 (2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone) is the most
commonly used in tissue engineering applications [17–20]. However, its low water solubil-
ity and UV light (365 nm) exposure cause potentially harmful effects on cells and tissues.
Prolonged exposure to UV light may damage the DNA and cellular functions [21–23].
However, visible light (VL) uses a longer wavelength (405 nm) and penetrates further
into the tissue during treatments. Additionally, no heat is generated, and cell damage is
minimal [24]. The biocompatibility of GelMA hydrogel in bone tissue engineering has been
demonstrated by many studies [25–30]. However, hydrogels fabricated with GelMA have
lower mechanical strength than other natural and synthetic polymeric hydrogels [31–33].

Recently, hydrogels made with double crosslinking (DC) are attracting a lot of attention
due to their excellent mechanical performance [34]. In addition, methods have been
proposed to adjust the mechanical properties of GelMA using several crosslinking steps. For
example, Rizwan et. al. achieved double crosslinking by performing physical crosslinking
and then photo crosslinking [35]. In another study, Zhou et. al. used enzyme crosslinking
followed by photo crosslinking to improve the viscosity of GelMA for bioprinting [36].

Tannic acid (TA) is a natural polyphenol compound with biological antioxidant and
antibiotic properties [37]. However, TA forms an amorphous structure with a complex coag-
ulation behavior in hydrogels making it difficult to control these strong interactions [38,39].
Accordingly, macromolecules such as DNA proteins are used to balance the change [40], or
multiple steps are applied on TA under controlled conditions [41]. Similar to polydopamine
inspired by mussels, a high pyrogallol and catechol content of the TA molecular structure
can improve compressive and tensile properties via bonding [42].

In this study, based on the excellent binding ability of the GelMA hydrogel fabricated
using double crosslinking and TA (see Figure 1), it was evaluated through analysis whether
the hydrogel network could be strengthened in a well-arranged manner by TA. In addition,
changes in mechanical properties were observed when the double crosslinked hydrogel
and TA were applied to the hydrogel, and the effect on biodegradation and osteoinduction
when finally implanted in an animal model was observed. Based on this, it was attempted
to confirm whether the manufacturing method using double crosslinking showed better
effects than the manufacturing method using single crosslinking. In addition, we tried to
determine whether the improvement of mechanical strength when TA was combined and
whether TA had an effect on the improvement of bone induction.
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Figure 1. Schematic diagram of (a) Fabrication of double crosslinked hydrogel and tannic acid treatment, (b) Sample type
and location for in vivo test (Sample placement in the femur), (c) Group division according to the schedule of staining
reagent injection time for checking and analyzing bone formation behavior.

2. Materials and Methods

All materials used in this experiment, including type A gelatin, tetramethyl ethylene
diamine (TEMED), ammonium persulfate (APS), methacrylic anhydride (MA), and tannic
acid (TA), were purchased from Sigma Aldrich (Yongin, Korea). All chemicals were used
without further purification.

2.1. Systhesis of Gelatin Methacryloyl

According to a previously reported study [43], methacryloyl-bonded GelMA macrom-
onomer was synthesized. A total of 10% (w/v) of gelatin was completely dissolved in
Dulbecco’s phosphate-buffered saline (DPBS) at 60 ◦C and magnetically stirred. Then, 8 mL
of MA were added to the gelatin solution and stirred at 50 ◦C for 2 h. The GelMA solution
was then diluted in pre-made DPBS to increase the volume by 5 times and terminate the
reaction. The GelMA solution was dialyzed against deionized water for 1 week at 40 ◦C in
a 12–14 kDA cutoff tube. Subsequently, the solution was freeze-dried for 5 days, and the
resulting GelMA was stored in a −20 ◦C freezer until further use.

2.2. Fabrication of Single and Double Crosslinking Hydrogels

The concentration of GelMA solution was fixed at 15% based on previous experi-
mental results [44]. The prepared GelMA foam was dissolved in deionized water at 50 ◦C
for 2 h. The hydrogel prepared by single crosslinking was prepared using low-temperature
crosslinking and light crosslinking.

A hydrogel using low-temperature crosslinking was prepared by dissolving 14% (w/v)
ammonium persulfate (APS) and 7% (w/v) tetramethylethylenediamine (TEMED). This
prepolymer solution was pipetted into cylindrical (1.5 mm diameter, 1 mm thickness)
polystyrene molds and placed in a freezer set to −20 ◦C. Low-temperature crosslinking
was allowed to proceed for 18 h, and the resulting hydrogel was thawed and hydrated in
dH2O prior to use.

For photo crosslinking, 1.88 (v/v) triethanolamine (TEA), 1.25 (w/v) Vinylcaprolactam
(VC), and 0.5 mM Eosin Y disodium salt were sequentially added to the prepared 15%
(w/t) GelMA solution and mixed, and then the prepolymer solution was pipetted into a
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cylindrical (1.5 mm diameter, 1 mm thick) polystyrene mold and exposed to visible light
for 120 s.

For double crosslinking, 14% (w/v) ammonium persulfate (APS) and 7% (w/v) tetra-
methylethylenediamine (TEMED) were sequentially added to the prepolymer solution used
for photo crosslinking and mixed. Then, low-temperature crosslinking was per-formed in
a freezer set at −20 ◦C. for 18 h, and then exposed to visible light for 120 s before thawing
to form a double crosslinked hydrogel.

2.3. Fabrication of Hydrogel Applied with TA

The fabricated hydrogel was immersed in the tannic acid (TA) solution of previously
pre-pared concentrations (10%, 50%, and 100% (w/v)), and shaken for 24 h on a shaker.
Then, the hydrogel was washed three times with deionized water to remove excess TA.
Hydrogels used for the experiment were fabricated with a 10 mm diameter and a 3 mm
height and were referred to as GelMA-S (low-temperature crosslinking), GelMA-V (photo
crosslinking), and GelMA-D (double crosslinking). Depending on the concentration of TA,
additional indicators, T10, T50, and T100, were used.

2.4. Fourier Transform Infrared Spectroscopy (FT-IR) Characterization

FT-IR analysis was used to investigate the intermolecular interactions between TA,
double crosslinking, and the GelMA Spectra that were obtained at room temperature using
a FT-IR spectrometer (Perkin Elmer, Waltham, MA, USA). FT-IR analysis was performed
within the wavelength 4000–500 cm−1 (KBr) using the attenuated total reflectance (ATR)
method.

2.5. Mechanical Tests

Mechanical properties of the hydrogel were measured using a universal testing ma-
chine (Instron 5569, Instron, Norwood, MA, USA). All the first compression tests were
performed on a cylindrical hydrogel at a 2 mm/min rate with up to 95% maximum load
of a 50 N load cell. After the first compression test, damaged samples were eliminated,
and the second compression test was conducted at a 0.5 mm/min rate and up to a 95%
maximum load of a 500 N load cell. The second compression test data were automatically
calculated using the Bluehill 2 software. The compressive modulus was calculated as the
slope of the linear region (0–20%) of the stress-strain curve. All samples were hydrated
during the test.

2.6. Swelling Ratio Tests

The prepared GelMA hydrogel was incubated at 37 ◦C for 24 h. After the sample was
removed from the solution and the residual liquid separated using Kimwipe, the weight,
Ws, was measured. The weight of the freeze-dried hydrogel was measured as Wd. The
swelling ratio was calculated according to Equation (1).

Swelling Ratio: SR = (Ws −Wd)/Wd (1)

2.7. FE-SEM Characterization

The freeze-dried hydrogel was placed on a wafer for platinum coating. The shape of
the hydrogel was observed using a FE-SEM (Hitachi, Tokyo, Japan).

2.8. Evaluation of In-Vitro Cell Proliferation

Osteoblast cells were used in this study, MC3T3-E1 (ATCC; American Type Culture
Collection), to evaluate their effect on bone formation. For the culture medium, a nutri-
ent component, 10% fetal bovine serum (Gibco Co., Waltham, MA, USA) containing an
antibiotic (penicillin), was added to an α-MEM (Gibco Co., Waltham, MA, USA) medium.
The cell culture was conducted in an incubator (Thermo Electron Corporation, Waltham,
MA, USA) in a 5% CO2 atmosphere at 37 ◦C. A water soluble tetrazolium (WST) assay was
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used to evaluate cell proliferation by placing samples in a 48-well plate and incubating the
MC3T3-E1 cells with a cell density of 1 × 104 cells mL−1 for 1, 3, and 7 days. Then, the
medium was removed, replaced with 400 µL of CCK-8 (Enzo Life Science Inc., Farmingdale,
NY, USA) reagent mixed with α-MEM medium, and stored in the incubator with 5% of
CO2. After 90 min, 100 µL were added to a 96-well plate, and the absorbance was measured
at 450 nm using the ELISA reader (Molecular devices, Silicon Valley, CA, USA).

2.9. Evaluation of Bone Regeneration and Mineral Activity In Vivo

The effect of bone remodeling was compared to the rat femur defect model applying
GelMA-P, GelMA-PT100, GelMA-VP, and GelMA-VPT100 groups (n = 3). Experiments
in this study were conducted under the protocols approved by the Institutional Animal
Care and Use Committee of the Chonbuk National University Laboratory Animal Center
(CBNU 2020-094) following the declaration of Helsinki. The prepared freeze-dried hydrogel
samples were implanted on the proximal femur from the outer side for each rat. Male
Sprague–Dawley rats (n = 16), used in this experiment, were about 8 weeks old with an
average weight of 280 g. The rats were purchased from Damul Science (Daejeon, Korea) and
used after a week’s adjusting period. For anesthesia, 0.6 mL/kg tiletamine and zolazepam
(Zoletil 50, Virbac Laboratories, Carros, France) and 0.4 mL/kg xylazine hydrochloride
(Rompun, Bayer Korea, Seoul, Korea) were intramuscularly injected into the leg of each rat.
The surgical site of the anesthetized rat was shaved, and an approximately 1 cm incision
was made on the femur after sterilization using povidone iodine. After raising the flap due
to the incision, a contra-angle handpiece (X-smart Endodontic Motor, Dentsply Maillefer,
Switzerland) equipped with a 1.6 mm pilot round head bur (H1.31-0.16, Lemgo, Germany)
was used to create a hole in the cortical bone. After the surgery, an antibiotic (Amikacin,
Samu Median Co., Ltd., Seoul, Korea) was subcutaneously injected (0.6 mL/kg). At 4 and
8 weeks after implanting the hydrogels, the rats were sacrificed to obtain the femoral bone
blocks containing the sample.

Fluorescence Staining

Alizarin complexone (red) and calcein (green) fluorescent materials were used to
observe the mineralized bones. To evaluate a bone-forming ability on the samples after 4
and 8 weeks, Alizarin complexone (red) solution (1.67 mL/ kg, body weight) was injected
at 0 and 4 weeks, and calcein (1.25 mL/kg, body weight) was injected into the peritoneum
at week 2 and week 6. After 4 and 8 weeks, the femoral bone blocks were obtained from the
sacrificed rats and were fixed in 10% formaldehyde solution to fabricate a resin-embedded
tissue slide. Then, all blocks were dehydrated using an increased concentration of ethanol,
and methyl methacrylate (MMA, JUSEI Chemical Co. Ltd., Tokyo, Japan) was inserted
into the bone. The bone blocks with penetrated MMA were embedded in an activated
MMA resin. The embedded blocks in the resin were sectioned along the longitudinal axis
of the embedded sample. The fluorescent-stained tissue slide of the sectioned sample was
observed using a Super Resolution Confocal Laser Scanning Microscope (Carl Zeiss AG,
Oberkochen, Germany). Histological images of bone staining with alizarin complexone
(red) and calcein (green) were obtained at 543 nm and 488 nm, respectively.

2.10. Statistical Processing

To evaluate the difference among groups, SPSS ver 21.0 (SPSS Inc., Chicago, IL, USA)
software was used. One-way ANOVA was used to assess three or more groups within
one factor, and Tukey’s postmortem analysis was used to evaluate the average. In all
experiments, if the p-value was < 0.05, it would determine significant differences in the
groups.
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3. Results and Discussion
3.1. Formation of GelMA and TA Treatment of GelMA Hydrogel

We prepared a hydrogel synthesized by single crosslinking and double crosslinking
according to the plan, and TA solutions with different concentrations were applied. As
shown in Figure 2a, it can be seen that GelMA-D has changed color under the influence
of Eosin Y. In addition, GelMA (15% w/v) hydrogel (cylindrical height 2 mm, diameter
10 mm) changed to opaque with a decrease in size after 24 h treatment of TA (10%, 50%,
100% w/v), which shows a real interaction between GelMA and TA.
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magnification was 150×, and the scale bar was 300 µm.

To confirm the interaction further, the Fourier Transform Infrared (FT-IR) study was
performed (Figure 2b). Spectra from the remaining groups except for GelMA-S generally
show that high transmittance at about 3100–3600 cm−1 is closely related to hydrogen
bonding, which is due to the shift of O-H groups by additional bonding [45,46]. In addition,
the peaks of the amide groups (I, II, III) characteristic of GelMA hydrogels were observed
at around 1612 cm−1, 1520 cm−1, 1436 cm−1 without appreciable changes in intensity
and frequency. These results show that covalent bonds are not present [47]. The peak at
1319 cm−1 is caused by the phenol group of TA. The peak at 1198 cm−1 is due to C-H,
and the vibration peak at 1100–1000 cm−1 is due to C-O and C-H deformation. The peak
in 550–900 cm−1, which is characteristic of TA, is based on the C-H bond of the benzene
ring [48].

Morphological analysis of the prepared GelMA and TA treatment of GelMA hy-
drogels was measured by FE-SEM (Figure 2c). For comparison, a hydrogel (GelMA-V)
formed by photo crosslinking was additionally observed. GelMA-V showed agglomerated
surfaces and partial cracks due to polymerization by radicals. The hydrogel formed by
low-temperature crosslinking (GelMA-S) had a porous microstructure as the ice crystals
formed by the APS/TEMED reaction were removed. The hydrogel formed by double
crosslinking (GelMA-D) was photo crosslinked after low-temperature crosslinking and
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showed a similar shape to GelMA-S. Although an increase in pore size was observed with
increasing TA concentration (10%, 50%, and 100%) in GelMA-V, the size did not increase
noticeably after 50% concentration. In GelMA-S, it was confirmed that the wall of the
porous structure was slightly thickened by the binding of TA, and in GelMA-D, more TA
binding than GelMA-P was observed. However, looking at the overall trend, no significant
difference in surface shape was observed between GelMA-S and GelMA-D groups.

3.2. Mechanical Properties of Htdrogel

Figure 3a shows a typical compressive stress-strain curve. In the case of the TA-treated
group, it was confirmed that the fracture stress was significantly improved. In particular,
the untreated and TA-treated hydrogel groups showed the same pattern and showed
stronger fracture stress in the double crosslinked group than in the single crosslinked
group.
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strain Curve for hydrogels, (b) Compressive Modulus through (0~20% slope), (c) Swelling ratio of
GelMA and GelMA-TA hydrogels. (Data are presented as mean ± SD, n = 3, * p < 0.05).

These results showed the same trend in the compressive stress (Figure 3b). The
compressive stresses of each group were GelMA-S: 46 kPa; GelMA-D: 62 kPa; GelMA-
ST100: 234 kPa; GelMA-DT100 showed 319 kPa, and it was confirmed that the improvement
was about 1.3 times between the single crosslinked and double crosslinked groups. In
addition, it was confirmed that there was a difference of about five times between the
untreated group and the TA group. TA bound to the hydrogel strengthened the bond
with the GelMA network through hydrogen bonding and hydrophobic force, and showed
improvement in mechanical strength [49]. Mechanical properties can be affected by the
water content of the hydrogel. Therefore, the GelMA-S, GelMA-D, GelMA-ST100, and
GelMA-DT100 groups were immersed in PBS and then cultured in an incubator at 37 ◦C
for 24 h.
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The smoothing behavior of the hydrogel was then characterized and shown in Figure 3c.
The swelling behavior of GelMA-S and GelMA-D showed similar results, and no significant
difference was observed. Similarly, no significant difference was observed in the swelling
behavior of GelMA-ST100 and GelMA-DT100. However, a significant difference was
observed when comparing the untreated group and the TA treated group. It could be
confirmed that the TA-treated group was significantly restricted in swelling behavior
compared to the untreated group. The low swelling behavior of the TA-treated group
showed that the interaction of H-bonds between TA and GelMA could compress the
structure of the hydrogel and limit water absorption [43]. As a result, it was confirmed
that the low swelling ratio of the TA-treated hydrogel group indicates a higher mechanical
strength.

3.3. Cytocompatibility of Hydrogel

We investigated the cellular compatibility of GelMA and GelMA-TA hydrogels. Pro-
osteoblasts (MC3T3-E1) were cultured in flat 48-well plates with or without hydrogels.
According to previously known research results, the differentiation of MC3T3-E1 cells
showed better cell activity in soft materials than in hard materials [50]. The single and
double crosslinked hydrogels used in the study have soft matrix properties, whereas the
TA-treated GelMA hydrogels have more rigid matrix properties. Our experiments also
showed similar results. Cell viability was confirmed using quantitative detection of cck8
at 1, 3, and 7 days after seeding (Figure 4). UV absorbance increased with increasing
incubation time for days 1–3 due to cell proliferation, but there was no statistical difference
in cell viability in all groups. However, on day 7, there was a change between each group.
GelMA-D showed better UV absorbance, and a significant difference occurred compared
to other groups.

Polymers 2021, 13, x FOR PEER REVIEW 8 of 13 
 

 

was observed when comparing the untreated group and the TA treated group. It could be 
confirmed that the TA-treated group was significantly restricted in swelling behavior 
compared to the untreated group. The low swelling behavior of the TA-treated group 
showed that the interaction of H-bonds between TA and GelMA could compress the struc-
ture of the hydrogel and limit water absorption [43]. As a result, it was confirmed that the 
low swelling ratio of the TA-treated hydrogel group indicates a higher mechanical 
strength. 

3.3. Cytocompatibility of Hydrogel 
We investigated the cellular compatibility of GelMA and GelMA-TA hydrogels. Pro-

osteoblasts (MC3T3-E1) were cultured in flat 48-well plates with or without hydrogels. 
According to previously known research results, the differentiation of MC3T3-E1 cells 
showed better cell activity in soft materials than in hard materials [50]. The single and 
double crosslinked hydrogels used in the study have soft matrix properties, whereas the 
TA-treated GelMA hydrogels have more rigid matrix properties. Our experiments also 
showed similar results. Cell viability was confirmed using quantitative detection of cck8 
at 1, 3, and 7 days after seeding (Figure 4). UV absorbance increased with increasing incu-
bation time for days 1–3 due to cell proliferation, but there was no statistical difference in 
cell viability in all groups. However, on day 7, there was a change between each group. 
GelMA-D showed better UV absorbance, and a significant difference occurred compared 
to other groups. 

 
Figure 4. The proliferation of cells measured by CCK8 assays (WST) on days 1, 3, and 7. (Data are 
presented as mean ± SD, n = 3, * p < 0.05). 

The group treated with TA showed lower absorbance than the existing GelMA 
group, but there was no significant difference except for the GelMA-D group. These re-
sults also suggested that the hydrogel can be applied to in vivo use. A high concentration 
of TA treatment continuously released an excess of TA in the hydrogel, and it was con-
firmed that the released TA affects cell activity. Although the exact mechanism of the ef-
fect of TA on cellular activity is unknown, it may be due to the presence of galloyl groups 

Figure 4. The proliferation of cells measured by CCK8 assays (WST) on days 1, 3, and 7. (Data are
presented as mean ± SD, n = 3, * p < 0.05).



Polymers 2021, 13, 2535 9 of 13

The group treated with TA showed lower absorbance than the existing GelMA group,
but there was no significant difference except for the GelMA-D group. These results also
suggested that the hydrogel can be applied to in vivo use. A high concentration of TA
treatment continuously released an excess of TA in the hydrogel, and it was confirmed
that the released TA affects cell activity. Although the exact mechanism of the effect of
TA on cellular activity is unknown, it may be due to the presence of galloyl groups in TA.
A galloyl group of tannic acid interacts with proteins through hydrophobic bonding and
electrostatic and hydrophobic interactions [51]. The electrostatic interaction induced by
tannic acid at 7.4 pH is relatively weaker than the hydrogen bonding and fails to stabilize
proteins in their native form [52]. This interaction of tannic acid suggests the adhesion
prevention of osteoblasts. Nevertheless, these results suggest that the hydrogel may be
applicable for in vivo use.

3.4. In Vivo Osteoinduction

In vivo experiments were conducted with GelMA-S, GelMA-D, GelMA-ST100, and
Gel-MA-DT100 groups. Osteoinduction and biodegradation were observed by implanting
a hydrogel sample prepared in the form of a rod into the femur of a rat. After 4 and 8 weeks,
mice were sacrificed and the results of new bone formation according to osteoinduction
in the hydrogel are shown in Figure 5 through fluorescence images. Alizarin complexon
(red) and calcein (green) staining was performed every 2 weeks to observe bone formation.
After 4 weeks of sample transplantation, most of the staining intervals of alizarin red and
calcein green were consistent, and there was no significant difference in the rate of new
bone formation.
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However, 8 weeks after implantation, different types were observed for each group.
In GelMA-S and GelMA-ST100, the hydrogel morphology and osteoinductive reaction
were not confirmed. On the other hand, it was confirmed that the formation of new
bone and the concentration of calcein green increased in GelMA-D and GelMA-DT100.
In particular, in GelMA-D, it was confirmed that many of these minerals were generated
inside the hydrogel and maintained its shape. In the process of bone remodeling, bones
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are synthesized by osteoblasts, and small mineral crystals are deposited between collagen
molecules. Over the next few days, these crystals fill the space occupied by water, resulting
in bone mineralization [53]. For hydrogel samples, it is important to have adequate strength
to retain their shape and the ability to absorb moisture. GelMA-D showed that many of
the main minerals were settled in the hydrogel before the hydrogel was decomposed and
replaced with the degradation (Figure 5b). However, in the hydrogel treated with TA,
water absorption was inhibited, and it was confirmed that the main mineral was deposited
only on the outside (Figure 5d). These morphologies tend to be consistent with Villanueva
Osteochrome Staining (Figure 6).
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GelMA-S did not adhere to the bone 4 weeks after transplantation, and it was con-
firmed that rapid degradation occurred (Figure 6a). On the other hand, in GelMA-D,
osseointegration was successfully achieved 4 weeks after transplantation, and it was con-
firmed that the external bone mineral penetrated into the sample. In addition, it was
observed that the bone mineral formed in the sample was gradually converted into the new
bone after 8 weeks. It is judged that the induction reaction for bone remodeling occurred
smoothly only in GelMA-D (Figure 6b). After 4 weeks of implantation of GelMA-ST100
and GelMA-DT100 treated with TA, the shape of the sample was maintained, but it did not
adhere to the bone and there was no osteoinductive reaction (Figure 6c,d). The location
where mineral crystals are deposited between collagen fibers, one of the components of
bone, and where mineralization begins, is called the hole zone [52]. This region is the first
to deposit calcium and phosphorus in the inter-molecular space created when collagen
molecules move out of position when forming fibers [54].

GelMA-S can be exchanged smoothly in body fluids through its porous structure, but
it has a disadvantage in that rapid degradation can occur because the reaction range by the
enzyme is large. Double crosslinking solved these shortcomings. The improved strength
provided a favorable environment for calcium and phosphorus deposition and new bone
formation before being degraded by enzymes. On the other hand, TA treatment gave
high mechanical strength but did not provide a suitable environment for the formation of
new bone by osteoinduction. In addition, although the exact mechanism of TA has not
been elucidated, it cannot be ruled out that the adhesion of progenitor cells is hindered by
the nature of TA, which does not stabilize the natural protein in the environment of pH
7.4 [55,56].
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4. Conclusions

In this study, it was evaluated whether a hydrogel produced by double crosslinking
using GelMA, a natural polymer, was suitable for improving bone induction and showed
better results when additionally combined with TA.

As a result, the double crosslinked group showed improved mechanical strength
and better cell compatibility than the single crosslinked group. In addition, the single
crosslinked group transplanted into the rat femur showed no osteoinduction response due
to rapid degradation after 4 and 8 weeks, but the double crosslinked group showed bone
mineral binding and osteoinduction. The hydrogel group treated with a high concentration
of TA showed a significant improvement in mechanical strength through H-bonding.
However, cell adhesion and proliferation were limited compared to the untreated group,
and osteoinduction was not observed in the TA-treated single and double crosslinked
groups.

In conclusion, it was found that double crosslinking is a suitable method for improving
the strength and bone induction of hydrogels compared to single crosslinking. Conversely,
it was confirmed that the binding of high-concentration TA significantly improved me-
chanical strength, but delayed bone remodeling by limiting water absorption. In future
research, it is expected that the development of functional hydrogels that can be used
for bone tissue engineering by supporting bioactive substances or drugs on the double
crosslinked hydrogel is expected.
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