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Abstract: A complete mitogenome of Trachys auricollis is reported, and a mitogenome-based
phylogenetic tree of Elateriformia with all protein-coding genes (PCGs), rRNAs, and tRNAs is
presented for the first time. The complete mitochondrial genome of T. auricollis is 16,429 bp in size
and contains 13 PCGs, two rRNA genes, 22 tRNA genes, and an A + T-rich region. The A + T content
of the entire genome is approximately 71.1%, and the AT skew and GC skew are 0.10 and −0.20,
respectively. According to the the nonsynonymous substitution rate to synonymous substitution
rates (Ka/Ks) of all PCGs, the highest and lowest evolutionary rates were observed for atp8 and cox1,
respectively, which is a common finding among animals. The start codons of all PCGs are the typical
ATN. Ten PCGs have complete stop codons, but three have incomplete stop codons with T or TA.
As calculated based on the relative synonymous codon usage (RSCU) values, UUA(L) is the codon
with the highest frequency. Except for trnS1, all 22 tRNA genes exhibit typical cloverleaf structures.
The A + T-rich region of T. auricollis is located between rrnS and the trnI-trnG-trnM gene cluster,
with six 72-bp tandem repeats. Both maximum likelihood (ML) and Bayesian (BI) trees suggest
that Buprestoidea is close to Byrrhoidea and that Buprestoidea and Byrrhoidea are sister groups of
Elateroidea, but the position of Psephenidae is undetermined. The inclusion of tRNAs might help to
resolve the phylogeny of Coleoptera.

Keywords: Buprestoidea; Byrrhoidea; Elateroidea; Scirtoidea; Elateriformia; mitochondrial
genome; phylogeny

1. Introduction

The Buprestoidea superfamily comprises two families: Buprestidae and Schizopodidae.
Schizopodidae is a small family with only seven species in three genera [1], whereas Buprestidae is the
eighth largest family in Coleoptera, with approximately 15,000 species in 522 genera [2,3]. Thus far,
only six mitogenome sequences of Buprestoidea have been submitted to the NCBI database, with four
genera of Buprestidae and no record of Schizopodidae [4]. The genus Trachys F. belongs to the tribe
Tracheini (Elateriformia: Buprestoidea: Buprestidae: Agrilinae), with 637 species in the Afrotropical,
Australasian, Oriental, and Palaearctic regions [3]. The tribe Tracheini contains mainly small and
cuneiform leaf- or stem-mining beetles [5,6]. Trachys auricollis Saunders 1873 includes two synonym
species: T. sauteri Kerremans 1912 and T. freyi Théry 1942. T. auricollis is widely distributed in Asia [3,7],
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and damage due to either larval mining or adult feeding can lead to a reduction in plant photosynthesis
and growth [8]. As a specialist herbivore, the leaf-mining beetle is also the most promising biocontrol
agent for kudzu [9], a seriously invasive plant in the USA [10]. There are no bioinformatic studies on
the mitogenome of T. auricollis to date.

With highly specialized larvae and adults, Buprestoidea is problematic about its monophyly [11].
Moreover, there are different views regarding the phylogenetic relationship of Buprestoidea with
other Elateriformia superfamilies such as Byrrhoidea, Elateroidea, and Dascilloidea (Figure 1) [11–13].
In contrast to the traditional placement of Scirtoidea in Elateriformia [13–15], Scirtoidea/Scirtiformi
is now treated as one basal group of Polyphaga [16–18]. Nosodendridae is occasionally placed in
Elaterioformia [16,18]. The relationship between Buprestoidea, Byrrhoidea, and Elateroidea is the
focus of our study. Some taxonomists have argued that Buprestoidea is a monophylum with a position
either inside or outside byrrhoid lineages, with Elateroidea being a sister clade to Buprestoidea and
Byrrhoidea (Figure 1) [12–14,19–22]. However, several recent studies have indicated that Byrrhoidea
and Elateroidea have a close relationship and that Buprestoidea is located outside their group [17,23,24].
Conversely, according to Duan et al. (2017), Buprestoidea is the basal Polyphaga branch and is isolated
from all other Elateriformia superfamilies [25].

Figure 1. Nine gene-based topologies among four superfamilies of Elateriformia. Topologies are
derived from: T1 refs. [16,17], T2 ref. [26], T3 ref. [27], T4 ref. [26], T5 refs. [28–30], T6 ref. [18], T7 ref. [26],
T8 ref. [31], and T9 refs. [23–25].

Insect mitogenomes are closed-circular molecules of approximately 16 kb in length, with 37 genes
and a noncoding A + T-rich region [32–36]. Mitogenomes have been widely utilized to analyze
population genetics, phylogeography, and molecular phylogenetics at different taxonomic levels [37–40].
Furthermore, mitochondrial protein-coding genes (PCGs), rRNAs, tRNAs, and their combinations
have been adopted to explore species differentiation and phylogenetic problems [41–43]. tRNAs are
traditionally considered to be inappropriate phylogenetic markers because of their short length,
duplication, horizontal transfer, or even change in specificity [44]. However, the overall set of tRNAs
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in each complete genome could reflect a stable phylogeny [44]. tRNA sequence and structure might
provide additional useful information to solve phylogenetic problems, especially at higher taxonomic
levels [44–46]. The inclusion of tRNAs has improved phylogenetic resolution in several insect groups
including Diptera, Orthoptera, Neuropterida, and Lepidoptera [43,47–49]. Thus far, however, there has
been no adoption of tRNAs to resolve the Elateriformia phylogeny (Table 1). This is the first report that
uses all PCGs, rRNAs, and tRNAs to dissect phylogenetic relationships in Elateriformia, especially the
complicated relationship among Buprestidae, Elateroidea, and Byrrhoidea. Our findings will contribute
to further studies on the identification, phylogeny, and evolution of leaf-mining jewel beetles.

Table 1. Molecular phylogenetic studies assessing the relationship of Buprestoidea with other
Elateriformia superfamilies.

Taxonomic
Level Elateriformia Groups Used * Genes Used References

Coleoptera
4 superfamilies + Scirtoidea

30 families
704 species

rRNA: 18S, 28S
mtDNA: rrnl, cox1(cox1-5, cox1-3’) [28]

Coleoptera
4 superfamilies + Scirtoidea

33 families
59 species

rRNA: 18S, 28S
nuclear: AK, AS, CAD, EF1a,

PEPCK, WG
[16]

Coleoptera
4 superfamilies

7 families
34 morphospecies

mtDNA: 1–13 PCGs [31]

Coleoptera
4 superfamilies + Scirtoidea

29 families
564 species

rRNA:18S, 28S
mtDNA: rrnl, cox1

Transcriptomes: 4220 orthologs
[29]

Coleoptera
4 superfamilies + Scirtoidea

27 families
85 species

nuclear: 95 PCGs [17]

Coleoptera
4 superfamilies
46 subfamilies

189 species

rRNA: 18S
mtDNA: rrnl, cox1 [18]

Coleoptera
3 superfamilies

8 families
12 species

mtDNA: 12 or 13 PCGs [25]

Elateriformia
4 superfamilies + Scirtoidea

28 families
112 species

rRNA: 18S, 28S
mtDNA: rrnl, cox1 [27]

Elateriformia
4 superfamilies

17 families
27 species

mtDNA: 12 PCGs or cob-nad6 [26]

Elateriformia
4 superfamilies + Scirtoidea

31 families
488 species

rRNA: 18S, 28S
mtDNA: rrnl, cox1 [30]

Elateriformia 3 superfamilies + Scirtoidea
19 species mtDNA: all 13 PCGs [23]

Elateriformia 3 superfamilies + Scirtoidea
18 species mtDNA: all 13 PCGs [24]

Elateriformia
3 superfamilies + Scirtoidea

18 families
31 species

mtDNA: all 13 PCGs, rrnl, rrnlS, 22
tRNA this study

* Elateriformia are treated as the four-superfamily system, including Buprestoidea, Byrrhoidea, Elateroidea,
and Dascilloidea [11–13].
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2. Materials and Methods

2.1. Sampling and DNA Extraction

Specimens of T. auricollis were collected on 18 August 2017, at Jiulianshan, Jiangxi Province,
China (geographic coordinates: 24◦34’11.99”N, 114◦26’24”E). Adults were stored in 100% ethanol
at −80 ◦C. Samples were cataloged in the voucher collection of the Leafminer Group, School of
Life Sciences, Gannan Normal University. T. auricollis specimens were sent to Shanghai Personal
Biotechnology Co., Ltd. for mitogenome sequencing on 22 August 2017. Total genomic DNA was
extracted from the head tissue of a single specimen using the CTAB method. DNA was preserved
at −20 ◦C and used for sequencing. The mitogenome sequence (MH638286) was submitted to the
GenBank on 17 July 2018, as Submission2134492.txt.gz.

2.2. Genome Sequencing and Analyses

The total mitogenome of T. auricollis was obtained by next-generation sequencing using the
whole-genome shotgun (WGS) strategy based on the Illumina MiSeq platform. Genomic DNA
libraries were prepared using the Rapid Plus DNA Lib Prep Kit for Illumina. We then acquired and
checked the raw data, including library insert fragments (approximately 400 bp); paired-end reads
(2 × 251 bp), approximately 16,429 bp in length were obtained. The read numbers and total bases for
T. auricollis are 5,331,476 bp and 1,418,148,881 bp, respectively, with approximately 485 bp of missing
sequence. The contigs and scaffolds of highly qualified sequences were determined using A5-miseq
v20150522 [50] and SPAdesv3.9.0 [51]. Sequences with high sequencing depth were then compared
with the NCBI nt library using BLASTN (BLAST v2.2.31+) [4] to select mitochondrial sequences
resulting from different assemblies. MUMmer v3.1 [52] was used to perform collinear analysis, confirm
the contig positions, and fill the gaps between contigs. Pilon v1.18 [53] was applied to correct the
results and obtain the final mitochondrial sequences (*.fasta). The mitogenome was annotated on the
MITOS web server (http://mitos.bioinf.uni-leipzig.de/index.py), and coding regions were manually
verified by comparison against the NCBI database. All tRNA gene structures were predicted and
determined by tRNA scan-SE or MITOS. Two rRNAs and all PCGs were annotated by alignment
with homologous genes from another unpublished Trachys mitochondrial sequence (Table 2) using
Geneious R11 [54]. Tandem repeats in the putative control region were assessed by Tandem Repeats
Finder (http://tandem.bu.edu/trf/trf.html). MEGA version 7.0 [55] was employed to calculate the
A + T content, the nonsynonymous substitution rate to synonymous substitution rate (Ka/Ks) ratio,
and the relative synonymous codon usage (RSCU) for PCG analysis. Genome organization and base
composition, PCGs, codon usage, transfer RNAs, ribosomal RNAs, A + T-rich region, intergenic spacers,
and overlapping regions of the mitogenome were compared between T. auricollis and T. troglodytiformis.
The document ‘linear_order.txt’ obtained from the PhyloSuite was used to check gene rearrangement
through the CREx website (http://pacosy.informatik.uni-leipzig.de/crex/) [56].

2.3. Phylogenetic Analyses

Phylogenetic analyses were performed based on the concatenated nucleotide sequences of all
13 PCGs, both rRNAs and 22 tRNAs for Elateriformia species, with Scirtoidea species used as outgroups.
All available Buprestoidea species, Byrrhoidea species, Scirtoidea species, and Elateroidea families
were covered. Because of the high abundance available mitogenomes for Elateroidea, we selected one
representative species for each Elateroidea family. The representatives should be annotated as VERIFIED
species, with the largest mitogenome sequence length. All mitogenomes chosen were complete or
nearly complete in order to obtain all 37 genes. With seven buprestoid species, nine byrrhoid species,
eight elateroid species, and five scirtoid species (Table 2), the number of species in each superfamily
was similar and thus were balanced for topological construction.

The mitogenomes were obtained on 24 September 2019, from NCBI GenBank (Available online:
http://www.ncbi.nlm.nih.gov). All mitogenome sequences were imported and standardized in

http://mitos.bioinf.uni-leipzig.de/index.py
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PhyloSuite [57]. All PCGs, tRNAs, and rRNAs were extracted and aligned with MAFFT [58].
The concatenation of multiple alignments was performed, and a partition file was prepared;
the partitioning scheme was obtained with PartitionFinder [59]. A greedy algorithm was adopted with
the criterion of AICc to select the best-fit substitution model: GTR + G for the maximum likelihood
(ML) tree and GTR + I + G for the Bayesian (BI) tree. ML tree was constructed with the IQ-Tree
method [60] and BI tree with MrBayes methods [61]. Bootstrap analysis in IQ-Tree for each node was
calculated using 1000 replications, with the MCMC setting in MrBayes for Generations for 2,000,000
times and a sampling frequency of 1000 replications. The phylogenetic trees were drawn using the
software FigTree v1.4.3 [62].
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Table 2. List of taxa used for the phylogenetic analysis in this study.

Superfamily Family Species* GenBank NO. Size (bp) Total A + T% AT% of all PCGs References

Buprestoidea Buprestidae Acmaeodera sp. FJ613420 16,217 68.4 66.2 [63]
Buprestoidea Buprestidae Agrilus planipennis KT363854 15,942 71.9 70.1 [25]
Buprestoidea Buprestidae Agrilus sp. JX412834 16,210 70.1 68.4 [64]
Buprestoidea Buprestidae Chrysochroa fulgidissima NC012765 15,592 69.9 68.6 [38]
Buprestoidea Buprestidae Trachys auricollis MH638268 16,429 71 69.3 This study
Buprestoidea Buprestidae Trachys troglodytiformis KX087357 16,316 74.6 73.6 [65]
Buprestoidea Buprestidae Agrilinae sp. MH789732 16,173 72.5 70.3 [31]
Byrrhoidea Limnichidae Byrrhinus sp. JX412827 16,812 72.4 70.3 [64]
Byrrhoidea Callirhipidae Horatocera niponica KX035160 16,107 75.5 73.4 [66]
Byrrhoidea Dryopidae Dryops ernesti KX035147 15,672 73 71 [67]
Byrrhoidea Dryopidae Dryops luridus KT876888 16,710 72.9 71.1 [68]
Byrrhoidea Heteroceridae Heterocerus parallelus KX087297 15,845 74 72.5 [65]
Byrrhoidea Limnichidae Limnichidae sp. JQ034416 14,388 74.6 73.5 [26]
Byrrhoidea Psephenidae Psephenidae sp. KX035154 16,312 78.1 75.6 [66]
Byrrhoidea Ptilodactylidae Ptilodactylidae sp. MH789727 15,991 74.8 72.1 [31]
Byrrhoidea Chelonariidae Chelonarium sp. KX035150 15,095 75.6 72.9 [67]
Elateroidea Cantharidae Chauliognathus opacus FJ613418 14,893 76.8 76.2 [63]
Elateroidea Cerophytidae Cerophytidae sp. KX035161 15,741 80.4 79 [67]
Elateroidea Elateridae Limonius minutus KX087306 16,727 76.7 74.8 [65]
Elateroidea Lampyridae Pyrocoelia rufa AF452048 17,739 77.4 76.3 [69]
Elateroidea Lycidae Platerodrilus sp. KU878647 16,394 76.9 76 [70]
Elateroidea Phengodidae Phrixothrix hirtus KM923891 18,919 78 77.9 [34]
Elateroidea Rhagophthalmidae Rhagophthalmus lufengensis NC010969 15,982 79.6 78.1 [35]
Elateroidea Eucnemidae Eucnemidae sp. MH923241 16,170 78.3 76.2 [31]
Scirtoidea Scirtidde Cyphon sp. NC011320 15,919 75.2 72.8 [71]
Scirtoidea Scirtidde Contacyphon variabilis KT876886 15,901 75.9 71.1 [68]
Scirtoidea Scirtidde Elodes minuta KX087288 17,043 76.8 72.8 [65]
Scirtoidea Eucinetidae Eucinetus haemorrhoidalis NC036278 17,954 81 78.4 [67]
Scirtoidea Scirtidae Scirtes orbicularis KX087343 13,944 76.5 75.4 [65]

* The mitogenome sequence of a Scirtidae sp. (KT696212) was not included because it was close to Staphylinoidea species and far from other Scirtoidea species when blast-searched in NCBI.
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3. Results and Discussion

3.1. Genome Organization and Base Composition

The complete mitogenome of T. auricollis (GenBank: MH638286) is 16,429 bp in size, with an A + T
content of 71.1%. As with other beetle mitogenomes, the nucleotide composition of the T. auricollis
mitogenome has an obvious A + T bias. In general, the A + T content of Buprestoidea is lower than
that of other superfamilies (Table 2).

The mitogenome consists of 37 genes (13 PCGS, 22 tRNAs, and two rRNAs) and an A + T-rich
region. Twenty-three genes (9 PCGs and 14 tRNAs) are located on the major strand (N-strand) and
14 genes (4 PCGs, 8 tRNAs, and 2 rRNAs) on the minor strand (J-strand) (Figure 2 and Table 3).
The gene arrangement and orientation are similar to the typical beetle mitochondrial genome [38,72].

Figure 2. Circular map of the mitochondrial genome of T. auricollis. Genes outside the circle are
transcribed in a clockwise direction, whereas those inside the circle are transcribed counterclockwise.
Protein-coding genes (PCGs) are in blue, tRNA genes are in red, and rRNA genes are in purple.
The second circle shows the GC content, and the third shows the GC skew. The GC content and GC
skew are plotted as the deviation from the average value of the entire sequence.
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Table 3. Summary of the mitogenome of T. auricollis.

Feature Strand Position Length (bp) Initiation Codon Stop Codon Anticodon IGN

trnI N 1–67 67 GTA −3
trnQ J 65–133 69 TTG
trnM N 134–202 69 CAT 39
nad2 N 242–1222 981 ATG TAA 5
trnW N 1228–1300 73 TCA −8
trnC J 1293–1352 60 GCA
trnY J 1353–1417 65 GTA −8
cox1 N 1410–2954 1,545 ATT TAA −5
trnL2 N 2950–3014 65 TAA
cox2 N 3015–3696 682 ATA T(AA) −3
trnK N 3694–3764 71 CTT −2
trnD N 3763–3824 62 GTC
atp8 N 3825–3983 159 ATT TAA −7
atp6 N 3977–4651 675 ATG TAA −1
cox3 N 4651–5437 787 ATG T(AA)
trnG N 5438–5499 62 TCC
nad3 N 5500–5883 354 ATA TAG −2
trnA N 5852–5914 63 TGC −1
trnR N 5914–5980 67 TCG −1
trnN N 5980–6044 65 GTT
trnS1 N 6045–6111 67 TCT
trnE N 6112–6173 62 TTC −1
trnF J 6173–6235 63 GAA −20
nad5 J 6216–7934 1,719 ATT TAG 18
trnH J 7953–8015 63 GTG −30
nad4 J 7986–9321 1,336 ATG T(AA) 23
nad4l J 9345–9632 288 ATG TAA 2
trnT N 9635–9697 63 TGT −1
trnP J 9697–9762 66 TGG −8
nad6 N 9755–10252 498 ATT TAA −1
cob N 10252–11397 1,146 ATG TAA −2

trnS2 N 11396–11462 67 TGA 23
nad1 J 11486–12412 927 ATT TAA 25
trnL1 J 12438–12502 65 TAG −23
rrnL J 12480–13773 1,294 −19
trnV J 13755–13824 70 TAC
rrnS J 13825–14582 758 1847
CR - 14582–16429 1,846
Genome Size 16429 0

J and N refer to the major and minor strands, respectively. Position numbers refer to positions on the majority
strand. CR = the control region is also named the A + T-rich region. IGN = intergenic nucleotides.

The AT and GC skews of the complete mitogenome of T. auricollis were calculated, and the highest
AT skew and GC skew values were found in the control region (CR) (0.04) and rrnL (−0.15). The AT
skew and GC skew values of all PCGs in T. auricollis range from −0.35 (nad1) to 0.041 (atp8) and −0.31
(nad3) to 0.27 (nad5), respectively. Compared with all PCGs of T. troglodytiformis, some differences in
the AT skew and GC skew values for cox1 and nad3 were observed (Table S1, Figure S1). The base
composition might influence the values of AT skew and GC skew [73]. Related studies have suggested
that for substitution models incorporating strand bias, mitochondrial replication might influence the
GC skew in PCGs between the leading and lagging strands [74,75], and AT skew and GC skew have
been determined to be a signal of transformation between the leading and lagging strands [72].
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3.2. Protein-Coding Genes

All 13 PCGs of T. auricollis comprise 11,097 bp (Table 3), which can be translated into 3317
amino-acid-coding codons, excluding stop codons (33 bp). The A + T content of all PCGs in the
T. auricollis genome is 69.4%, ranging from 63.9% (cox1) to 77.4% (atp8). Compared with T. troglodytiformis
(11,134 bp), A + T bases account for approximately 73% of all PCGs, ranging from 68.8% (cox1) to
80.4% (nad6) (Table S1, Figure S1). However, compared to most other beetle groups [25,38], low A + T
contents are found in jewel beetles (Table 2).

All PCGs of T. auricollis initiate with the typical mitogenome ATN codon (Table 3); conversely,
for T. troglodytiformis PCGs, twelve genes started with ATN, but nad1 initiates with TTG. Although
most insect mitogenomes begin with ATN codons [73], the unusual initiation codon for the nad1
gene is also present in the mitogenomes of some other insects, such as Liriomyza trifolii (GTG) and
Agonita chinensis (TTG) [32,41]. The cox1 gene begins with an ATN codon and is considered to be a
characteristic of ancestral insects, although this still needs to be examined [71].

Complete stop codons (TAG and TAA) were found in 2 PCGs and 8 PCGs in T. auricollis, respectively.
The remaining three genes appear to end with T or TA; two of these are adjacent to tRNAs, and one
is located between nad4 and nad4l (Table 3). The incomplete stop codon may be converted into a
proper TAA stop codon by RNA polyadenylation [76], which is common in animal genomes and can
produce functional termination codons via polycistronic transcription cleavage and polyadenylation
mechanisms [77]. The same stop codons are utilized in other PCGs, except nad5, of both Trachys species.
The stop codon T located in nad5 of T. troglodytiformis is different from that of T. auricollis, which has a
TAG stop codon. These differences between the two species might result from the 20 bp overlapping
region between nad5 and trnF in T. auricollis; no such overlapping region exists in T. troglodytiformis.

Ka/Ks ratios are a powerful approach for testing the neutral evolution model [78]; these ratios
have been used to diagnose the form of sequence evolution [79]. Evaluation of the Ka/Ks ratios for
all PCGs of the two Trachys species revealed the atp8 and nad4l ratios to be larger than 1; atp8 has
the highest evolutionary rate, and cox1 the lowest (Figure S2). The lowest A + T content in the cox1
gene might reflect its high conservation [72]. Indeed, cox1 shows the lowest Ka/Ks value (i.e., lowest
evolutionary rate) in nearly all animals (e.g., crustaceans [80–82], insects [83–87], mollusks [88–90],
birds [91,92], and mammals [93]), indicating that this gene should be generally under the highest
purification/selection pressure and functional constraints [80]. cox1 is thus the best DNA barcode
for species identification and phylogenetic resolution in animals [89]. atp8 is one of the genes with
the highest Ka/Ks value (i.e., highest evolutionary rate) in many animals (e.g., crustaceans, [80–82],
insects [84–87], mollusks [88–90], birds [91,92], and mammals [93]), indicating that atp8 should be
generally under low purification/selection pressure and functional constraints, [80,88]. With a Ka/Ks
value of atp8 and nad4l > 1, the two genes would be considered representative of positive selection
with some advantageous mutations, though negative selection tended to be indicated for the other
genes [94].

3.3. Codon Usage

RSCU values for the PCGs in the mitochondrial genomes of the two Trachys species were analyzed,
with most differing from 1 (frequency at equilibrium). The five most frequently used codons in
T. auricollis are UUA(L), CGA(R), AUA(M), AAA(K), and GCU(A), and the first two most frequently
used codons are consistent with those of T. troglodytiformis (Figure S3). Previous research has indicated
that NNA and NNU (N represents A, T, C, G) codons can be used to express the frequency of A + T
bias in PCGs [39].

3.4. Transfer RNAs

The total length of the T. auricollis tRNAs is 1,444 bp, with each tRNA gene ranging in size from
60 bp (trnC) to 73 bp (trnW) (Table 3). The A + T content of the 22 tRNAs is 73.4%, ranging from 82.3%
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(trnD) to 63.7% (trnQ) (Table S1). Compared with T. troglodytiformis, T. auricollis has a larger total length
of tRNAs (1,450 bp) and a higher A + T content of tRNAs (76%).

In the T. auricollis mitogenome, all 22 tRNA genes show typical cloverleaf structures, except for
trnS1 (Figure S4). The same structures are found in T. troglodytiformis. For trnS1, the D-stem pairings
in the dihydrouridine (DHU) arm are absent, as in many insect species (Figure S5). Although the
trnS1 genes of both Trachys species are 67 bp in size and both UCUs are located in the anticodon
loop (AC-loop), apparent differences can be observed in their structure; the structure of UCUs in
the anticodon loop might be considered to be indicative of those of more ancient insect groups [95].
The D-loop of the T. troglodytiformis trnS1 gene contains six bases more than that of T. auricollis, which is
composed of the nonclassical base-pair A-U. For all other beetles, the D-loop, T-loop, and T-stem are
easily mutated, whereas the AC-loop maintains high conservation [72].

3.5. Ribosomal RNAs

The boundaries of rRNA genes are delineated based on the alignment of the two leaf-mining jewel
beetles. The large ribosomal RNA (rrnl) gene of T. auricollis is 1294 bp in length, with an A + T content
of 76.8%; the small rRNA (rrns) gene is 758 bp, with an A + T content of 75.2% (Table S1). The two
rRNA genes mapped between the trnL1 and trnV and the trnV and A + T-rich regions (Figure 2 and
Table 3). Compared with other jewel beetles, the two rRNA genes of T. troglodytiformis and Chrysochroa
fulgidissima have similar locations [38].

3.6. A + T-Rich Region

The A + T-rich region (CR) of T. auricollis is located between rrnS and the trnI-trnG-trnM gene
cluster (Figure 2 and Table 3). The CR of T. auricollis includes six 72 bp tandem repeats (14,795–14,865
bp), with approximately 10 bp of poly-A stretches, with 16 bp of poly-T stretches at the 3’ end of the
CR. This region shows a 73.4% A + T composition and a length of 1,847 bp, which is slightly longer
than that of T. troglodytiformis (1728 bp) (Figure S6), with an A + T content of approximately 78.9%.
The A + T-rich region is the longest sequence in the mitogenomes of T. auricollis and T. troglodytiformis;
however, the highest A + T content among all genes is not found in the A + T-rich region but rather in
the rrnL gene (Table S1). This A + T-rich region length is well within the range of those of other beetles,
displaying remarkable variability and spanning from 201 bp for Dryops sp. to 4,469 bp for Coccinella
septempunctata (Coccinellidae) [68,96].

In contrast, T. troglodytiformis harbors different repeated sequence regions (15,861–15,902 bp)
(Figure S7). Moreover, a conserved structural pattern was found in the two species. The size of the
A + T-rich region might influence variation among beetle mitochondrial genomes [97], and the CR
contains initiation sites for transcription and replication [98].

3.7. Intergenic Spacer and Overlapping Regions

Gene origin sites are almost immediately downstream of the 3’ end of the previous gene; however,
the overlap may occasionally occur at some initiation sites. The total length of the 20 overlapping
regions in the T. auricollis mitogenome is 147 bp, ranging from 1 bp to 30 bp (Table 3). The first three
longest overlap regions in the T. auricollis mitogenome are located between trnH and nad4 (30 bp),
trnL1 and rrnL (23 bp), and trnF and nad5 (20 bp). In addition to the largest CR, 135 bp of intergenic
nucleotides [99] are present in 7 spacers, ranging from 2 bp (nad4l and trnT) to 39 bp (trnM and nad2),
in T. auricollis.

In contrast, T. troglodytiformis harbors only 13 overlapping regions ranging from 1 bp to 8 bp
and five intergenic regions ranging from 1 bp to 26 bp. Additionally, these mitogenomes differ in
their longest overlapping and intergenic regions. Some of the overlapping regions in T. auricollis
consist of the intergenic regions present in the mitogenome of T. troglodytiformis, such as the intergenic
regions of nad2-trnW (5 bp) and nad4-nad4l (23 bp), which are present at the overlapping regions in
T. troglodytiformis at 1 bp and 7 bp, respectively.
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3.8. Phylogenetic Analyses

Phylogenetic relationships were established based on the concatenated amino acid sequences
of all PCGs, all rRNAs, and all tRNAs for all available Elateriformia species using Scirtoidea as the
outgroup and applying both ML and BI methods (Table 2 and Figures 3 and 4). The log-likelihood
(-LnL) value of the ML tree is 251,072, and the harmonic mean log-likelihood (-HMLi) value of the BI
tree is 251,499.

Figure 3. Maximum likelihood (ML) tree of evolutionary relationships between T. auricollis (solid red
circle) and 27 other beetles based on all PCGs, all rRNAs, and all tRNAs. Red stars indicate inconsistent
placement, as shown in Table 2. ML bootstrap values are shown at each node. The bar represents the
number of substitutions per site.
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Figure 4. Bayesian (BI) tree of evolutionary relationships between T. auricollis (solid red circle) and
27 other beetles based on all PCGs, all rRNAs, and all tRNAs. Red stars indicate inconsistent placement,
as shown in Table 2. Posterior probabilities are shown at each node. The bar represents the number of
substitutions per site.

In this study, the topologies of both trees were stable at the superfamily level. Both trees show
that Buprestoidea (Buprestidae only, without Schizopodidae) and Byrrhoidea (excluding Psephenidae)
are reciprocally monophyletic groups; Elateroidea clusters as a sister to a clade of Byrrhoidea and
Buprestoidea, but Psephenidae (of Byrrhoidea) is located within the Scirtoidea group. Our phylogenetic
results support that Buprestoidea is a monophylum that is close to Byrrhoidea [12,14,16,19,21,22,30];
Buprestoidea and Byrrhoidea cluster within a clade sister to Elateroidea [16,28,29,31], and the position
of Psephenidae is undetermined [30].

There might be two possible ways to increase the accuracy of phylogenetic topological structure:
one is to use more species, the other is to use more genes. The phylogenetic trees based on over
400 species all support that Buprestoidea and Byrrhoidea are very close, with Elateroidea located outside
them (Figure 1 and Table 1) [28–30]. Our analysis with all 37 mitogenomic genes, including 13 PCGS,
22 tRNAs, and two rRNAs, agreed with this topology. That is, the topology based on either abundant
species or abundant genes becomes consistent here. The inclusion of tRNAs might help to resolve the
phylogeny of Coleoptera, just as in Diptera, Orthoptera, Neuropterida, and Lepidoptera [43,47–49].
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However, due to the absence of complete mitogenomes for the Dascilloidea superfamily and
several families in other superfamilies (such as Schizopodidae in Buprestoidea; Cneoglossidae, Elmidae,
Eulichadidae, and Lutrochidae in Byrrhoidea; Artematopodidae, Brachypsectridae, Omalisidae,
Omethidae, Podabrocephalidae, and Throscidae in Elateroidea; and Clambidae and Decliniidae in
Scirtoidea), the placement of Buprestoidea in Elateriformia requires further verification. The Elateroidea
appeared to have less support for internal nodes in the ML tree (Figure 3). Perhaps adding two
representative species rather than one per family could help to stabilize the clustering pattern. However,
we focus mainly on the relationships among different superfamilies in this study. Too many species in
one superfamily might bias the topology. We hope that all the issues can be well solved when enough
mitogenomes are accumulated for Elateriformia species in the future.

4. Conclusions

The mitogenome of the leaf-mining jewel beetle T. auricollis is the largest among the reported
jewel beetle mitogenomes. The data obtained in this study reveal a typical closed-circular and
double-stranded DNA molecular structure. The AT skew, GC skew, base composition, Ka/Ks ratio,
and RSCU of the genes were calculated, and secondary cloverleaf structures for tRNA genes were
predicted. Initiation and stop codons, tandem repeated units, and intergenic spacer and overlapping
regions were analyzed. Our whole-mitogenome phylogenetic results support that Buprestoidea is
close to Byrrhoidea and that Buprestoidea and Byrrhoidea cluster within a clade sister to Elateroidea;
nonetheless, the position of Psephenidae remains undetermined. The inclusion of tRNAs might help
to resolve the phylogeny of Coleoptera.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/12/992/s1,
Figure S1: The base composition of protein-coding genes and two rRNAs in the mitochondrial genomes of
T. auricollis and T. troglodytiformis, Figure S2. Ka/Ks ratios of 13 protein-coding genes. Ka is the nonsynonymous
substitution rate, and Ks is the synonymous substitution rate, Figure S3. Relative synonymous codon usage
(RSCU) for protein-coding genes of T. auricollis and T. troglodytiformis mitochondrial genomes. Codon families are
provided on the x-axis, Figure S4. Predicted secondary structures of the 22 typical tRNA genes of the T. auricollis
mitochondrial genome, Figure S5. Predicted secondary cloverleaf structure for the trnS1 genes of T. auricollis
and T. troglodytiformis, Figure S6. Alignment of the conserved structural elements of the control regions (CRs)
of T. auricollis and T. troglodytiformis, Figure S7. Partial A + T-rich regions of T. auricollis and T. troglodytiformis.
The underlined sequences are perfectly repeated sequences in the A + T-rich region. The position refers to the
length of the first repeated sequence, Table S1: Length, A + T content (%), AT skew, and GC skew for T. auricollis
and T. troglodytiformis.
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