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Foreign nucleic acids, the essential signature molecules of
invading pathogens that act as danger signals for host
cells, are detected by endosomal nucleic acid-sensing toll-
like receptors (TLRs) 3, 7, 8, 9, and 13. These TLRs have
evolved to recognize ‘non-self’ nucleic acids within endo-
somal compartments and rapidly initiate innate immune
responses to ensure host protection through induction of
type I interferons, inflammatory cytokines, chemokines,
and co-stimulatory molecules and maturation of immune
cells. In this review, we highlight our understanding of the
recognition of pathogen-associated nucleic acids and acti-
vation of corresponding signaling pathways through endo-
somal nucleic acid-sensing TLRs 3, 7, 8, 9, and 13 for an
enormous diversity of pathogens, with particular emphasis
on their compartmentalization, intracellular trafficking,
proteolytic cleavage, autophagy, and regulatory programs.
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Introduction

As a universal and ancient form of host defense against in-
vading pathogens, the innate immune system has developed
a wide variety of germ-line encoded host sensors known
as pattern-recognition receptors (PRRs). PRRs recognize
danger signals that are essential, structure-conserved, and
specific signature molecules of a diverse array of patho-
gens, which are called pathogen-associated molecular pat-
terns (PAMPs), and danger/damage-associated molecular
patterns that are molecules released from intracellular
stores of damaged or stressed host cells. This recognition
triggers the secretion of a large amount of inflammatory
cytokines and antiviral cytokines, such as type I interferons

(IFNs), for effective host defense by eradicating infectious
pathogens and for the development of long-lasting
pathogen-specific adaptive immunity through B and T cells
[1–3].

Toll-like receptors (TLRs) are evolutionarily conserved
germ-line encoded PRRs thought to be the primary sensors
of infective pathogens. As an important family of type I
transmembrane (TM) glycoprotein receptors, all TLRs are
composed of an ectodomain (ECD) containing multiple
leucine-rich repeats (LRRs) directly involved in the recog-
nition of PAMPs, a TM domain required for the subcellular
localization of TLRs, and an intracellular domain with a
conserved cytoplasmic signaling region called the Toll/IL-1
receptor (TIR), which is required for transduction of down-
stream signaling [1–4].

A total of 10 TLRs in humans and 12 TLRs in mice
have been identified to date. TLRs 1, 2, 4, 5, 6, and 10 are
primarily expressed on the surface of immune cells and
mainly recognize bacterial and fungal cell wall components
and viral envelope proteins, as well as protozoal compo-
nents [1,2,5]. In contrast, the nucleic acid-sensing TLRs,
which include TLRs 3, 7, 8, 9, and 13 (only expressed in
mice), are completely localized within the endosomal com-
partments of immune cells and recognize double stranded
RNA (dsRNA), single stranded RNA (ssRNA) and DNA
derived from viruses, bacteria, fungi, and parasites, respect-
ively. Upon recognition of respective foreign nucleic acids,
signal transduction through these receptors is initiated by
the recruitment of myeloid differentiation factor 88
(MyD88) or the TIR domain-containing adapter molecule
(TRIF) (also known as the TIR domain containing adapter
molecule 1, TICAM1) that results in the activation of
IFN-regulatory factor 3 (IRF3), IRF7, activator protein 1
(AP-1), and nuclear transcription-kB (NF-kB) and tran-
scription of inflammatory cytokines, type I IFNs, chemo-
kines, and antimicrobial peptides and innate immune
response genes (Table 1) [1–5]. However, recognition of
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‘self’-nucleic acids by the nucleic acid-sensing TLRs contri-
butes to the pathology associated with several autoimmune
or autoinflammatory diseases under certain pathological
conditions. In this review, we discuss the recent progress in
studies of pathogen-associated nucleic acid recognition and
signaling pathways within endosomal compartments, and
the individual functions of TLRs 3, 7, 8, 9, and 13 in
innate immunity. In addition, we discuss the compartmen-
talization, intracellular trafficking, proteolytic cleavage,
autophagy, and regulatory programs of these TLRs in
innate immunity.

Distribution, Subcellular Localization and
Regulation of TLRs 3, 7, 8, 9, and 13

Distribution of TLRs 3, 7, 8, 9, and 13
The expression of TLRs 3, 7, 8, 9, and 13 is distinct in dif-
ferent cell types of human and murine origins. TLR3 is
observed in the human myeloid DCs (mDCs), macro-
phages, natural killer cells, and B cells [6,16]. TLR3 mRNA
has also been detected in epithelial cells of many different
organs including airway, uterine, corneal, vaginal, biliary,
and intestinal organs because the mucous membranes of
these organs act as efficient innate barriers to infection
from the respiratory tract, and gastrointestinal and urogeni-
tal systems [6,16]. Surprisingly, higher expression level of
TLR3 is also observed in neurons, astrocytes, and micro-
glia, suggesting a specific function in response to encepha-
litogenic viruses of the central nervous system [6,17,18].
TLRs 7 and 9 are predominantly expressed in plasmacytoid
DCs (pDCs) in humans and are involved in strong IFN-a
induction, but TLR8 tends to be detected in human

monocytes and mDCs, and predisposes the induction of in-
flammatory cytokines [1,19–23]. In mice, TLR7 is highly
expressed in pDCs, while TLR8 is expressed in all four
splenic DC subsets including CD4þ DCs, CD8þ DCs,
CD42 CD82 DCs, and pDCs. The precise function of
murine TLR8 remains to be elucidated [1,19–23].
Expression of TLR9 is detected in murine B cells, pDCs,
monocytes/macrophages, and conventional DCs (cDCs)
[1,19–23]. Unlike it in mouse, TLR9 expression in human
is restricted to pDCs and B cells [1,19–23], reflecting pos-
sible species-specific differences in the expression of TLRs
7, 8, and 9 between mouse and human. Interestingly, a
recent report showed that virus-induced signaling adaptor
(VISA) regulates B cell expression of TLR7 and CD23
[24], suggesting an unexpected link between TLRs and ret-
inoic acid-inducible gene I (RIG-I)-like receptors (RLRs).
In addition, TLR13 is a novel functional TLR that is pre-
dominantly expressed in cDCs and macrophages [13,14].

Compartmentalization and regulation of TLRs 3, 7, 8,
9, and 13
TLRs 3, 7, 8, 9, and 13 are localized in intracellular com-
partments, such as endosomes, lysosomes, multivesicular
bodies, and endoplasmic reticulum (ER) [1,2,5,25,26].
However, they are only activated within acidified endoso-
mal compartments, because TLRs 3-, 7-, 8-, 9-, and
13-induced responses to foreign nucleic acids are sup-
pressed by some endosomal acidification inhibitors, such as
chloroquine, ammonium chloride or bafilomycin A1
[1,2,5,25,26]. Upon stimulation, nucleic acid-sensing TLRs
are translocated directly from the ER to endosomes via the
conventional secretory pathway through the Golgi [25–27].

Table 1 Summary of the signaling pathways of TLR3, 7, 8, 9, and 13

Type Subcellular

localization

Natural and synthetic ligand Adaptor Transcription

factor

Effector cytokines References

TLR3 Endosomes dsRNAs, siRNAs, poly(I:C) TRIF NF-kB, AP-1,

IRF3

Inflammatory

cytokines, type I

interferons

[1,2,5–7]

TLR7 Endosomes ssRNAs, ORNs, siRNAs,

imidazoquinolines

MyD88,

PACSIN1

NF-kB, AP-1,

IRF3/7

Inflammatory

cytokines, type I

interferons

[1,2,5,7–11]

TLR8 Endosomes ssRNAs, ORNs, siRNAs,

poly(A)/T, DNA,

imidazoquinolines

MyD88 NF-kB, AP-1,

IRF3/7

Inflammatory

cytokines, type I

interferons

[1,2,5,7,9,12]

TLR9 Endosomes CpG DNAs, CpG ODNs MyD88,

PACSIN1

NF-kB, AP-1,

IRF3/7

Inflammatory

cytokines, type I

interferons

[1,2,5,7–11]

TLR13 Endosomes 23S rRNA MyD88 NF-kB, AP-1,

IRF3/7

Inflammatory

cytokines, type I

interferons

[13–15]
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After pathogens are internalized, the endosomal nucleic
acid-sensing TLRs enable them to recognize nucleic acids
delivered to the endosomal compartments [14,25–27]. By
contrast, cellular nucleic acids presented outside endosomes
are rapidly degraded by nucleases and are not detected by
endosomal nucleic acid-sensing TLRs. Therefore, the com-
partmentalization of these receptors appears to be a key
regulatory mechanism to modulate ligand binding and to
distinguish ‘self’ nucleic acids from ‘non-self’ nucleic
acids [1,2,5,25–28]. Accordingly, the compartmentalization
of nucleic acid-sensing TLRs is regulated by multiple regu-
latory mechanisms, including trafficking, proteolysis and
autophagy, and involves the TM region of these TLRs.
Failure to maintain a physical separation between ‘self’
nucleic acids and endosomal nucleic acid-sensing TLRs
is frequently associated with autoimmune disorders
[1,2,5,25–27,29–31].

Importance of the TM region of TLRs 3, 7, 8, 9, and 13. As
described above, the TM domain of TLRs mediates their
subcellular localization. Domain analysis using chimeric
nucleic acid-sensing TLRs has revealed that the endosomal
TLR3 is determined by the linker region between its TM
and TIR domains, whereas the endosomal localization of
TLRs 7, 8, and 9 is determined by their TM domains
[28,31,32]. Interestingly, a tyrosine-based internalization
motif in the cytosolic tail of human TLR9 or the TM
a-helix of mouse TLR9 is required to target it to the endo-
somal compartments, but mutation of structural motifs of
TLR9 results in its redistribution to the cell surface [33].
Surprisingly, cell-surface expression of a mutant form of
TLR9 (TLR9TM-MUT) in TLR9-deficient myeloid cells
resulted in more MyD88 recruitment to TLR9 in response
to cytidine-phosphate-guanosine DNA (CpG-DNA) or
self-DNA than that caused by expression of wild-type
TLR9, even after inhibition of proteolytic processing [34].

Trafficking regulation of TLRs 3, 7, 8, 9, and

13. Trafficking and processing of nucleic acid-sensing
TLRs in intracellular compartments are tightly regulated by
a series of regulatory molecules to prevent the ‘self’ nucleic
acids recognition. The heat shock protein glycoprotein 96
(gp96, also known as grp94) not only is required for
folding and mobilization of cell surface TLR, but also regu-
lates the intracellular trafficking of nucleic acid-sensing
TLRs [35,36]. In the absence of gp96, TLR7 and TLR9
remain in the ER and gp96-deficient macrophages fail to
respond to agonists of TLR7 and TLR9 [35,36]. Another
chaperone proteins known as protein associated with TLR4
(PRAT4A, also known as Cnpy3) is required for trafficking
of nucleic acid-sensing TLRs from the ER to endosomes
and of cell-surface TLRs from the ER to the plasma mem-
brane. Interestingly, PRAT4A associates with and

translocates TLRs 7 and 9 rather than TLR3 from the ER
to the endosomes, indicating that trafficking of TLRs 3, 7,
and 9 is differentially regulated [37,38]. Therefore, gp96
and PRAT4A are critical for both TLR9 egress from the
ER and for the conformational stability and function of
these receptors in the endosomal compartments. In addition
to gp96 and PRAT4A, regulatory molecules solute carrier
family 15 member 4 (Slc15a4), adapter-related protein
complex-3 (AP-3), hermansky-Pudlak syndrome proteins of
the biogenesis of lysosome-related organelle complex
(BLOC)-1 and BLOC-2 groups, phospholipid scramblase
1 (PLSCR1), and hepatocyte growth factor-regulated tyro-
sine kinase substrate (HRS) are essential for TLR7 and/or
TLR9-mediated specialized membrane trafficking in pDCs
[39–41].

In addition, Unc93b1, an ER resident protein with 12
membrane-spanning domains, acts as a chaperone in associ-
ation with TLRs 3, 7, 8, 9, and 13, and controls the trans-
location of these TLRs from the ER to endosomal
compartments [42–44]. Unc93b1 is also required for cyto-
kine production, up-regulation of co-stimulatory molecules,
and efficient cross-presentation of exogenous antigens via
MHC class I and class II molecules [42–44]. Although the
precise mechanism by which Unc93b1 controls each TLR
trafficking is yet to be elucidated, it is known that Unc93b1
is essential for the activation of TLRs 3, 7, 8, 9, and 13,
and efficient translocation of each TLR from the ER to
endosomes [42–44]. Unc93b1 with an H412R mutation
cannot exit the ER and overexpression of Unc93b1
increases trafficking of TLRs 3, 7, 8, and 9 to endosomes
[45]. Furthermore, TLRs 7 and 9, but not TLR3, compete
with each other for association with Unc93b1. Under
normal circumstances, Unc93b1 physically associates with
TLR9, and overexpression of TLR9 inhibits TLR7 signal
transduction, resulting in a weaker TLR7 response to RNA.
However, a D34A mutation in Unc93b1 has been found to
up-regulate ligand-induced trafficking of TLR7 and down-
regulate that of TLR9, leading to systemic lethal inflamma-
tion [46–49]. This indicates that physical association
between UNC93B and nucleic acid-sensing TLRs is essen-
tial and, specifically, Unc93B1 controls homeostatic TLR7
activation by balancing trafficking of TLR9 and TLR7 to
protect host from the initiation of autoimmune diseases.
Thus, the compartmentalization of nucleic acid-sensing
TLRs is regulated by ER-resident molecules, such as gp96,
PRAT4A, and Unc93b1.

Proteolytic regulation of TLRs 3, 7, 8, 9, and

13. Proteolytic cleavage of the ECDs of nucleic acid-
sensing TLRs is important for the binding of DNA and/or
RNA, recruitment of MyD88 or TRIF, and initiation of
signal transduction within endosomes (Fig. 1). Three re-
search groups have independently shown that TLR9 ECD is
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proteolytically cleaved and removed at its flexible loop
between LRR 14 and 15 by multiple acid-dependent pro-
teases within endosomal compartment, generating the re-
sultant half ECD, as well as the TM and the cytosolic TIR
domain. The TIR domain forms a functional signaling
complex with MyD88 to directly mediate DNA recognition
and initiate signal transduction [50–52]. Surprisingly, full-
length TLR9 is found only in the ER, whereas the cleaved,
functional TLR9 is restricted to within endosomal compart-
ment [50–52]. Proteases involved in TLR9 cleavage
include cathepsins, such as cathepsin B, cathepsin S, cathe-
psin L, cathepsin H, and cathepsin K, and asparagine endo-
peptidase (AEP) [53–55]. However, the structural basis for
recognition of CpG DNA by functional cleavage of TLR9
remains unclear so far. Interestingly, specific deletion of
LRR in TLR9 renders it unresponsive to CpG DNA,

mutations in the positively charged N-terminal region of
TLR9 cannot affect its binding toCpG DNA, indicating the
importance of multiple LRRs in TLR9 activation [55–57].

Recently, it has been shown that compartmentalized pro-
teolytic cleavage of nucleic acid-sensing TLRs is a multi-
step process. The majority of the TLR9 ECD is to be
removed and can be performed by AEP or multiple cathe-
psins, and then a trimming event mediated solely by cathe-
psin is required for optimal receptor signaling of functional
TLR9 [55]. In addition, similar processing of TLR3 and
TLR7 also occurs in murine RAW264.7 macrophages and/
or human retinal epithelial cell line RPE1, implying that re-
ceptor proteolysis is a general regulatory strategy for
restricting the capacity of all nucleic acid-sensing TLRs to
signals only from the endosomal compartments where they
sense nucleic acids [55,58,59].

Figure 1 Overview of nucleic acid-sensing TLRs 3, 7, 8, 9, and 13 signaling pathways, compartmentalization, trafficking, and regulation
mechanism Diagram showing the stimulation of TLR3, 7, 8, 9, and 13 by dsRNA, ssRNA, and CpG DNA, leading to the translocation of TLR3, 7, 8,

9, and 13 from the ER to endosomal compartments and activation of the MyD88- and TRIF-dependent signaling pathways, respectively. Upon

stimulation, TLR3 recruits TRIF, which in turn recruits a set of adaptor molecules lead to the formation of a complex and the activation of IRF3, NF-kB,

and AP-1. However, TLRs 7, 8, 9, and 13 interact with the TIR domain of MyD88 to recruit a set of adaptor molecules lead to the formation of a complex

and the activation of IRF7, NF-kB, and AP-1. To achieve a balanced output, TLR3, 7, 8, 9, and 13 signaling pathways are positively and negatively

regulated by modulatory molecules, such as A20, deubiquitinating enzyme A, SARM, SHP-2, Nrdp1, and Ubc5.
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Autophagy in regulation of TLRs 3, 7, 8, 9, and

13. Autophagy is an evolutionary and fundamental cellu-
lar homeostatic process involved in cell survival during
starvation and in maintaining quality control of intracellular
organelles [30,31,60–63]. The importance of autophagy in
the regulation of innate immune recognition of pathogens
in phagosomes or autophagosomes has been revealed by a
number of recent studies. Autophagy is important for the
regulation of nucleic acid-sensing TLRs, especially TLR7
[30,31,60–63]. A subset of nucleic acid-sensing TLR
ligands, including synthetic nucleic acid-analogs, bacteria,
viruses, fungi, and protozoa, can induce autophagy.
Synthetic nucleic acid-analogs and pathogens are able to
induce the formation of phagolysosomes or autolysosomes
via fusion of double-membrane vesicles (phagosomes or
autophagosomes) with late endosomes or lysosomes, which
are highly acidifying environments containing abundant
degradation enzymes. The ligands are then delivered to
endosomal compartments where recognition by nucleic
acid-sensing TLRs occurs in pDCs, macrophage cells, and
B cells [30,31,60–63]. Although host ssRNAs can also be
taken up by macrophages or pDCs during phagocytosis of
necrotic cells/infected cells, they rarely reach the endosomal
compartments. Several essential components of the autop-
hagic machinery, such as autophagy-related proteins
(ATGs) and Beclin, are required for phagolysosome or
autolysosome formation, endosomal maturation, and activa-
tion of signaling pathways downstream of nucleic acid-
sensing TLRs after ligand stimulation [30,31,64].

It has been reported that the engagement of TLR7
induces autophagy and promotes the elimination of Bacillus
Calmette-Guerin (BCG) in autolysosomes [65,66]. In add-
ition to this role in bacteria, the role of autophagy in
defense against viruses in pDCs has been demonstrated,
especially in the innate recognition of viral replication
products, such as those of vesicular stomatitis virus (VSV)
[60], Sendai virus (SeV) [60], herpes simplex virus (HSV)
[60], influenza A virus (IAV), Dengue virus (DENV) [67],
Poliovirus [68], coronaviruses [69], Coxsackie B virus
(CBV) [70], foot and mouth disease virus (FMDV) [71],
and hepatitis C virus (HCV) [72]. Two different ligands of
TLR7, ssRNA and imiquimod, are able to induce the for-
mation of autophagosomes via the TLR7-MyD88-depend-
ent signaling pathway in macrophages, characterized by
microtubule-associated light chain 3-green fluorescent
protein (LC3-GFP) puncta formation for the elimination of
BCG, and both Atg5 and Beclin are required for the induc-
tion of autophagy [65]. In the case of IAV, the virus inter-
nalizes into endosomes to be recognized by TLR7, but
VSV and SeV replication intermediates formed during
virus infection are required for recognition, and autophago-
somes are necessary for host cells to respond to VSV and
SeV infection via TLR7 [60]. In addition, pDCs take

advantage of an autophagic process in which ‘self’ nucleic
acids are degraded inside double-membrane vesicles called
autophagosomes [60]. In the absence of ATG5 in pDCs,
type I IFNs cannot be induced in response to CpG-DNA
and HSV-1 infection [60]. It suggests that cytoplasmic
virions are engulfed by autophagosomes, which then fuse
with lysosomes. Autophagy may therefore control either the
endosomal maturation required for CpG-DNA sensing.
Alternatively, autophagy may regulate the TLR9-MyD88-
IRF7 signaling pathways in pDCs to induce type I IFNs.

In addition, polyinosine-polycytidylic acid [poly(I:C)] can
induce autophagy formation, as evidenced by GFP-LC3
puncta formation and increased proteolysis of long-lived pro-
teins in murine RAW264.7 macrophages, and by LC3-II
conversion in BMMs [56]. However, further studies are
needed to ascertain if TLR3 is involved in induction of
autophagy, as poly(I:C) can also activate RIG-I and melan-
oma differentiation-associated protein 5 (MDA-5). Although
significant advances have been made in the molecular ma-
chinery underlying autophagy, our understanding of the rela-
tionship or interaction between TLRs and autophagy, and
whether TLR ligand-induced autophagy is a general phe-
nomenon that promotes trafficking of pathogenic nucleic
acids to endosomal nucleic acid-sensing TLRs remained
limited. Further studies are needed to elucidate the molecular
mechanism by which TLR signaling activates autophagy.

Recognition of Foreign Nucleic Acids
by TLRs 3, 7, 8, 9, and 13

Recognition of dsRNA by TLR3
TLR3 is one of the endosomal nucleic acid-sensing TLRs
responsible for the recognition of synthetic RNA analogs
poly(I:C) and polyinosine [poly(I)], as well as viral dsRNA
(Fig. 1 and Table 2). TLR3 was originally identified as a
receptor that recognizes poly(I:C). Subsequently, numerous
reports have shown that TLR3 also acts as a sensor in the
host response to the genomes of dsRNA viruses such as
reovirus [73], or to the replication intermediates formed
during infection by ssRNA viruses, such as respiratory syn-
cytial virus (RSV) [74], West Nile virus (WNV) [75],
DENV [76], IAV [77], encephalomyocarditis virus (EMCV)
[78], lymphocytic choriomeningitis virus (LCMV) [79],
Semliki Forest virus (SFV) [80], Coxsackievirus group B
serotype 3 (CVB3) [81], poliovirus [82], Punta Toro virus
(PTV) [83], Epstein-Barr virus (EBV) [84], HCV [85], and
Kaposi’s sarcoma-associated herpes virus (KSHV) [86]. In
addition, TLR3 also recognizes viral dsRNAs found in the
products of transcription intermediates of DNA viruses, in-
cluding vaccinia virus (VACV) [87], HSV [88], and mouse
cytomegalovirus (MCMV) [89] (Table 2).

TLR3 is involved in the recognition of small interfering
RNA (siRNA) in a sequence-independent manner, resulting
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in the production of IL-12 and IFN-g [136]. Interestingly,
RNA-binding capsid proteins (CPs) from two positive-
strand RNA viruses, Ross River virus (RRV) and Brome
mosaic virus (BMV), and the hepadnavirus hepatitis B
virus (HBV) were demonstrated to be potent enhancers of
TLR3 signaling by poly(I:C) or viral dsRNAs [137].
Deletion of an arginine-rich RNA-binding domain from the

Table 2 List of pathogens recognized by TLR3, 7, 8, 9, and 13

Receptors Pathogens References

TLR3 Viruses

Reovirus [73]

Respiratory syncytial virus [74]

West Nile virus [75]

Dengue virus [76]

Influenza A virus [77]

Encephalomyocarditis virus [78]

Lymphocytic

choriomeningitis virus

[79]

Semliki forest virus [80]

Coxsackievirus group B

serotype 3

[81]

Poliovirus [82]

Punta Toro virus [83]

Epstein-Barr virus [84]

Hepatitis C virus [85]

Kaposi’s sarcoma-associated

herpesvirus

[86]

Vaccinia virus [87]

Herpes simplex virus [88]

Mouse cytomegalovirus [89]

Protozoa

Schistosoma mansoni [90]

Fungus

Aspergillus fumigatus [91]

TLR7 and/or

TLR8

Viruses

Vaccinia virus [12]

Modified VV Ankara [12]

Human immunodeficiency

virus

[92]

Influenza A virus [93]

Sendai virus [94]

Vesicular stomatitis virus [94]

Coxsacki B virus [95]

Human parechovirus 1 [96]

Foot and mouth disease virus [97]

Newcastle disease virus [98]

Dengue virus [99]

Hepatitis C virus [100]

Mouse hepatitis virus [101]

Pneumonia virus of mice [102]

Mouse mammary tumor virus [103]

Murine leukemia virus [103]

Bacteria

Borrelia burgdorferi [104]

Helicobacter pylori [105]

Mycobacterium bovis [104]

Escherichia coli [104]

Group B Streptococcus [106]

Table 2. Continued

Receptors Pathogens References

Protozoa

Trypanosoma cruzi [107]

Fungus

Candida spp. [108]

Saccharomyces cerevisiae [109]

TLR9 Viruses

Human papillomavirus [2]

Herpes simplex virus 1/2 [110,111]

Mouse cytomegalovirus [112]

Adenovirus [113]

Baculovirus [114]

Epstein-Barr virus [115]

Human herpesvirus type 6B [116]

Varicella-zoster virus [117]

Murine gammaherpesvirus 68 [118]

Ectromelia virus [119]

Bacteria

Salmonella typhimurium [120]

Streptococcus suis [121]

Mycobacterium tuberculosis [122]

Streptococcus pneumoniae [123]

M1T1 group A

Streptococcus

[124,125]

Propionibacterium acnes [126]

Protozoa

Trypanosoma cruzi [127]

Trypanosoma brucei [128]

Leishmania major [129]

Plasmodium falciparum [130,131]

Fungus

Aspergillus fumigatus [132]

Candida albicans [109]

Saccharomyces cerevisiae [109]

Malassezia furfur [109,133]

Cryptococcus neoformans [109,133]

TLR13 Viruses

Vesicular stomatitis virus [13]

Bacteria

Streptococcus aureus [14,134]

Streptococcus pyogenes [135]
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HBV CP abolished its enhancement effect on TLR3 signal-
ing [137], demonstrating that several viral RNA-binding
proteins can enhance the dsRNA-dependent innate immune
response initiated by TLR3. In addition, anti-microbial
peptide LL37, the only known human member of the cathe-
licidin family of antimicrobial peptides, enhances poly(I:C)
or rhinovirus infection-induced TLR3 signaling, and
enables the recognition of viral dsRNAs by TLR3 in a
human bronchial epithelial cell line (BEAS2B) and human
peripheral blood mononuclear cells (PBMCs) [138].

The physiological function of TLR3 in antiviral immunity
was studied in TLR3-/- mice, showing that TLR3-/- mice are
more susceptible to reovirus, LCMV, MCMV, and VSV
infections, compared with wild-type mice [73,79,89].
However, TLR3 may support viral growth or pathogenesis
rather than protect mice from infection by viruses. For
example, TLR3-/- mice were found to have stronger resist-
ance to WNV infection, as WNV could disrupt the blood–
brain barrier leading to the enhancement of virus entry into
the brain via TLR3-mediated induction of peripheral inflam-
matory cytokines [75]. TLR3 has a synergetic function with
RIG-I and MDA5 in the restriction of DENV in cultured
human cells [76]. Additionally, studies of wild-type mice
with IAV infection have shown that TLR3 is essential for
mediating inflammatory response to host morbidity and
lethality [77]. In addition, TLR3 also senses dsRNA derived
from protozoa and fungi, such as Schistosoma mansoni, and
Aspergillus fumigatus [90,91]. Taken together, the various
known functions of TLR3 reflect the complexity of its roles
in the regulation of host immune response.

Recognition of ssRNA by TLRs 7, 8, and 13
TLRs 7 and 8 are responsible for the recognition of ssRNA
from the genomes of ssRNA viruses, and specific bacteria,
synthetic ssRNA, imidazoquinolines, guanine analogs and
siRNA (Fig. 1 and Table 2). Human TLRs 7 and 8, and
mouse TLR7 recognize imidazoquinolines and initiate
immune response, whereas mouse TLR8 is thought not to
be activated by imidazoquinolines or ssRNA due to a five
amino-acid deletion in the ECD [139,140]. Nevertheless,
mouse TLR8 could be activated by poly(dT)17 oligodeox-
yribonucleotides (ODNs) combined with the 3M-002,
leading to the induction of TNF-a [141], suggesting that
mouse TLR8 may be functionally active in the detection of
DNA viruses. In support of this, a previous study showed
that vaccinia virus (VACV) as well asvaccinia viral
poly(A)/T-rich DNA could activate pDCs in a TLR8-
dependent manner [12], suggesting that mouse TLR8 may
regulate innate immunity against VACV infection.
Interestingly, mouse TLR8 was found to inhibit TLR7-
sensing of 3M-001 in HEK293 cells, and mouse TLR82/2

DCs showed increased responses to various TLR7 ligands
and NF-kB activation, indicating that TLR8 may directly

modulate TLR7 function [142]. In addition, guanine
analogs, such as 7-allyl-8-oxoguanosine (loxoribine) and
gardiquimod, and pyrimidine analog bropirimine can
induce the production of various cytokines via TLR7 in
humans and mice [139,140], suggesting the possibility of
exploiting imidazoquinolines and nucleoside analogs as
adjuvants for therapy, vaccination, and anti-tumor response
in humans and animals.

TLRs 7 and 8 also recognize guanosine (G)/uridine
(U)-rich synthetic ssRNA derived from ssRNA viruses.
Adenosines (A)/U or G/U-rich synthetic ssRNA (RNA40)
derived from the U5 region of human immunodeficiency
virus (HIV) and polyU RNA of IAV are sensed by TLR7 in
mice and by TLR7 and TLR8 in humans [92,93]. More spe-
cifically, GU-rich synthetic ssRNAs may be responsible for
TLR7-mediated IFN-a production, and AU-rich synthetic
ssRNA for the induction of inflammatory cytokines in a
TLR8-dependent manner [92,93,143]. In addition to HIV
and IAV, GU-rich ssRNAs derived from a variety of
viruses, such as SeV [94], VSV [94], CBV [95], human par-
echovirus 1 [96], FMDV [97], Newcastle disease virus
(NDV) [98], DENV [99], HCV [100], and mouse hepatitis
virus (MHV) [101], have been identified as natural ligands
for TLR7 and/or TLR8 (Table 2). TLR7 could also recog-
nize mouse pneumonia virus, mouse mammary tumor
virus, and murine leukemia virus (MuLV) via the
TLR7-MyD88-dependent signaling pathway [102,103].
Interestingly, the dsRNA bluetongue virus induces the pro-
duction of a significant amount of type I IFNs and inflam-
matory cytokines in pDCs via a MyD88-dependent but
TLR7/8-independent signaling pathway [144]. pDCs do not
express TLR3 and do not use the RIG-1/MDA5 signaling
pathway, however, it is still not known how pDCs respond
to dsRNA virus infection [144]. These data indicate
that dsRNA viruses may induce the secretion of type I IFNs
and inflammatory cytokines in pDCs via a novel
TLR-independent and MyD88-dependent pathway.

Modifications of ssRNAs, such as 5-methylcytosine
(m5C), N6-methyladenosine (m6A), 5-methyluridine (m5U),
20-O-methyl groups, 20-thiolated uridine (s2U) or pseudo-
uridine, are commonly found in endogenous RNAs of
the host [30,145]. These modified ssRNAs are usually not
recognized by TLRs 7 and 8. However, as viral RNA also
contains these modifications in infected cells and purified
‘self’ mRNA or DNA can induce TLR7-and TLR9-
mediated signaling [30,145,146], it suggests that the struc-
ture, sequence or modification of RNA/DNA may be a
minor factor in discriminating ‘self’ and ‘non-self’ by TLRs
7, 8, and 9, and any endogenous RNA/DNA sequence may
result in activation of these TLRs, but the compartmentaliza-
tion of nucleic acid-sensing TLRs and nucleic acid-based
regulatory programs are keys for distinguishing ‘self’ from
foreign nucleic acids. Surprisingly, CD14 is dispensable for
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viral uptake but is required for triggering MyD88-dependent
induction of inflammatory cytokines via TLRs 7, 8, and 9
by stimulatory ssRNA/CpG DNA and various types of
VSV [147,148]. This suggests that CD14 not only promotes
the selective uptake of nucleic acids, but also acts as a
co-receptor for endosomal TLR activation.

TLR7 and TLR8 also recognize dissociated ssRNA
derived from certain siRNA in endosomes [149], and detect
Borrelia burgdorferi, Mycobacterium bovis, Helicobacter
pylori and RNAs from Escherichia coli and group B
Streptococcus (GBS) in the endosomes by phagolysosomes
or autolysosomes, but cannot detect other bacteria such as
Listeria monocytogenes and Group A Streptococcus (GAS)
(Table 2) [104–106]. Although Trypanosoma cruzi is
likely to be sensed by TLR7, the recognition of parasite
RNA mediated by TLRs 7 and 8 is much less documented
[107]. Recent studies also showed that IFN-a/b is induced
by Candida spp. and Saccharomyces cerevisiae RNA/DNA
by a mechanism that involves endosomal recognition of
fungal RNA and DNA by TLR7 and TLR9, respectively,
and absolutely requires MyD88 [108,109].

A novel endosomal nucleic acid-sensing TLRs called
TLR13 appears to be able to recognize VSV and induce the
production of type I IFNs through the activation of NF-kB
and IRF7 in a MyD88- and transforming growth factor-
activated protein kinase 1 (TAK1)-dependent manner.
However, it is currently unknown if ssRNA derived from
VSV can be acted as a ligand for TLR13 [13]. Recent
studies have identified a conserved 23S rRNA sequence
‘CGGAAAGACC’ derived from Streptococcus aureus as a
natural ligand for TLR13 [14,134]. Interestingly, the rRNA
sequence recognized by TLR13 is bound by certain antibio-
tics, and bacterial strains that have evolved to resist these
antibiotics cannot be detected by TLR13 [14,134]. We
speculate that widespread ancient antibiotic resistance has
subverted TLR13-driven antibacterial immune resistance,
and may explain why TLR13 expression has been lost in
certain mammalian species (including humans). The func-
tion of TLR13 might be replaced by an RNA-sensing PRR
in humans that can still recognize erythromycin resistance-
forming RNA modifications. In addition, TLR13 has also
been shown to activate NF-kB in response to bacterial
RNA or Streptococcus pyogenes in an RNA-specific
manner [135].

Recognition of CpG DNA by TLR9
TLR9 induces the production of both inflammatory cyto-
kines and type I IFNs by recognizing unmethylated
20-deoxyribo CpG motif-containing DNA from bacteria,
viruses, protozoa, fungi and synthetic ODNs (Fig. 1 and
Table 2). In the host, recognition of methylated CpG
motifs by TLR9 is severely suppressed and immune re-
sponse is normally not triggered.

Although TLR9 recognizes bacterial unmethylated
CpG DNA [150], the functions of TLR9 in fighting bacterial
infections have not been elucidated in detail. Collaboration
of several TLRs may be the key factor in host resistance to
Mycobacterium tuberculosis because TLR2-/--TLR4-/--
TLR9-/- mice showed markedly enhanced susceptibility to
Salmonella typhimurium, Streptococcus suis and M. tuber-
culosis infections [120–122]. TLR9 activation by pneumo-
coccal DNA was observed only in cells with live bacterial
infection [123]. A recent study reported that TLR9 was im-
portant in host defense against M1T1 GAS infections by in-
creasing macrophage hypoxia-inducible factor-1a levels,
and oxidative burst and nitric oxide production in response
to GAS, contributing to GAS clearance in vivo in both loca-
lized cutaneous and systemic infection models [124]. On the
other hand, the virulence factor DNase Sda1 of M1T1 GAS
has the ability to degrade bacterial DNA and suppress
TLR9-dependent INF-a and TNF-a induction [125]. Thus,
this is a novel mechanism of bacterial innate immune
evasion based on autodegradation of CpG-rich DNA by a
bacterial DNase. TLR9 was also shown to be critical for the
induction of type I IFNs signaling and the phosphorylation
of signal transducers and activators of transcription 1 in
DCs in response to S. aureus, illustrating an additional
mechanism through which S. aureus induces the innate
immune signaling during infection [126]. One possibility is
that bacterial DNA may be delivered to endosomal compart-
ments where acidic conditions (pH ¼ 5.5 to 6.2) lead to the
degradation of dsDNA containing multiple CpG motif
sequences which are recognized by TLR9. This suggests
again that the compartmentalization is a very important
element in TLR9 (as well as TLRs 3, 7, 8, and 13)
activation.

CpG motif-containing DNAs from human papilloma-
virus [2], HSV-1/2 [110,111], MCMV [112], adenovirus
(ADV) [113], baculovirus [114], EBV [115], human herpes-
virus type 6B (HHV-6B) [116], varicella-zoster virus
(VZV) [117], murine gammaherpesvirus 68 (MHV-68)
[118], and ectromelia virus (ECTV) are also sensed by
TLR9 and induce the secretion of robust type I IFNs and
inflammatory cytokines in pDCs [119] (Table 2). TLR9
was shown to be involved in VZV-induced IFN-a produc-
tion, which could be inhibited by inhibitory CpG ODN in
pDCs [117]. TLR9-mediated IFN-a response to HSV-1/2
was cell-type specific and limited to pDCs, because TLR9
could recognize live, or heat- or UV-inactivated HSV-1/2
and induced secretion of high levels of IFN-a in pDCs,
whereas macrophages produced IFN-a upon HSV infection
via a TLR9-independent mechanism [110,111].

TLR9 also senses CpG DNA derived from protozoa
and fungi (Table 2), including genomic DNA derived
from T. cruzi, Trypanosoma brucei, and Leishmania major
[127–129]. Unmethylated CpG motifs in A. fumigatus
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DNA stimulate mouse bone marrow-derived DCs
(BMDCs) and human pDCs to secrete inflammatory cyto-
kines in a TLR9-dependent manner [132], contributing to
the establishment of anti-fungi immune response states. In
addition to A. fumigatus, Candida albicans, S. cerevisiae,
Malassezia furfur, and Cryptococcus neoformans DNAs
are capable of triggering TLR9 recruitment, demonstrating
that TLR9 is compartmentalized selectively to fungal pha-
gosomes and negatively modulates macrophage antifungal
effector functions [108,109,133]. Interestingly, hemozoin, a
crystalline metabolite of hemoglobin produced by
Plasmodium falciparum, acts as an inducer of TLR9 and
potently activates macrophages and DCs to produce inflam-
matory cytokines and chemokines [130]. Notably, TLR9
recognizes P. falciparum DNA contained in purified hemo-
zoin, which appears to be a carrier that transports P. falcip-
arum DNA to endosomes [131], consistent with the
conclusion that ligand delivery is an essential condition for
intracellular TLR9 recognition. However, the role of hemo-
zoin in TLR9 activation needs to be more fully elucidated
in future studies.

Signaling Networks of TLRs
3, 7, 8, 9, and 13

TRIF signaling pathways of TLR3
TLR3 participates in the TRIF-dependent pathway (Fig. 1).
In this case, TRIF directly interacts with the TIR domain of
TLR3 to recruit a set of adaptor molecules, including TNF
receptor-associated factor 6 (TRAF6), TNF receptor-
associated death domain, Pellino1, and receptor interacting
protein 1 (RIP1) for the activation of TAK1 [1,2,7,8,151],
which in turn leads to the activation of IRF3, mitogen-
activated protein kinases (MAPKs), and NF-kB. On the
other hand, interactions of TLR3-TRIF with TRAF3, non-
classical NAK-associated protein 1 (NAP1), TBK1, and
IKKi (also called IKK1) lead to the formation of a complex
and the activation of IRF3, which then translocates to the
nucleus to induce the expression of IFN-b and
IFN-inducible genes [1–3,7,8,151].

MyD88-signaling pathways of TLRs 7, 8, 9, and 13
TLRs 7, 8, 9, and 13 induce the production of inflammatory
cytokines and type I IFNs through a MyD88-dependent sig-
naling pathway (Fig. 1 and Table 1). MyD88 is a specific
adaptor molecule containing a TIR domain in its C-terminal
region and a dead domain in its N terminal region. Upon
stimulation, TLRs 7, 8, and 9 interact with the TIR domain
of MyD88 to recruit signaling molecules IL-1 receptor-
associated kinases 4/1/2 (IRAK4/1/2) and interact with
TRAF3/6, Ubc13, and Uev1A, forming a signaling complex
[1–3,7–9,151]. This complex recruits TAK1 and TAK1-
binding proteins 1/2/3 (TAB1/2/3), and is activated by the

K63-linked polyubiquitin chain of TRAF6, phosphorylated
IKKb, and MAP kinase kinase 6 (MKK6). This phenom-
enon results in the activation of a classical IKK complex,
consisting of IKK1/a, IKK2/b, and IKK3/g (also called
NF-kB essential modulator, NEMO), which leads to IkB
degradation and thereby contributes to the activation of
NF-kB and MAPK signaling pathways to induce secretion
of inflammatory cytokines [1–3,7–9,151–153].

In pDCs, the TLR7 and TLR9 signaling pathways are
unique in that they both require MyD88 for the induction
of type I IFNs. TLR7 and TLR9 recruit MyD88 and
IRAK4, which then interact with TRAF6, TRAF3,
IRAK1, IKKa, osteopontin (OPN), and IRF7 to form a
super-molecular complex [1,2,7,8,151]. Ultimately, IRF7
is phosphorylated by IRAK1 and/or IKKa and translo-
cated to the nucleus to induce the transcription of type I
IFNs [1,2,7,8,151]. In addition, a phosphoinositol 3-OH
kinase (PI3K) mammalian target of the rapamycin
(mTOR)-p70S6K pathway is beneficial for the induction
of type I IFNs in MyD88-dependent activation of IRF7 in
pDCs [154]. IRF8 has an essential function in the induc-
tion of type I IFNs and inflammatory cytokines through
TLR9 in pDCs and cDCs [155]. However, in cDCs, secre-
tion of IFN-b and inflammatory cytokines in a TLR7-
and/or TLR9-MyD88-dependent manner is mediated by
IRF1 and IRF5 [10,11]. Interestingly, protein kinase C
and casein kinase substrate in neurons (PACSIN) 1 is spe-
cifically expressed in pDCs and represents a pDC-specific
adaptor molecule that plays an important role in TLR7-
and TLR9-mediated type I IFN responses in vitro and
in vivo [8].

TLR13, another intracellular nucleic acid-sensing TLR,
not only activates a MyD88- and TAK1-dependent TLR
signaling pathway to activate NF-kB but also induces type
I IFNs through IRF7, a characteristic similar to that of
TLRs 7, 8, and 9 [13–15]. However, the mechanism by
which TLR13 mediates recognition of foreign nucleic
acids, its associated signaling pathway and its regulation are
poorly understood.

Regulation of TLRs 3, 7, 8, 9, and 13 signaling
pathways
The TLR-signaling pathways are regulated by positive and
negative modulatory mechanisms to achieve a balanced
output (Fig. 1 and Table 3). In general, phosphorylation/
dephosphorylation, ubiquitination/deubiquitination, sumoy-
lation/desumoylation, acetylation/deacetylation, and com-
petitive effects of negative regulators are the principal
regulatory mechanisms that directly or indirectly regulate
the activation of signaling pathways associated with TLRs
3, 7, 8, 9, and 13.
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Table 3 List of regulatory molecules required for TLR3, 7, 8, 9, and 13 signaling pathways

Regulators Targets Regulatory mechanisms Effectors References

Positive

regulation

TRAF6 TRAF6, cIAP1/2,

IRAKs

Ubiquitination of targets Activation of TAK1, TBK1

and IKKi

[156]

Ubc5 IRF3 Ubiquitination of IRF3 Activation of IRF3 [157]

MARCH5 TANK Polyubiquitination of TANK Activation of IRF7 [158]

Viperin IRAK1, TRAF6 Polyubiquitination of IRAK1 Activation of IRF7 [159]

SUMO TANK SUMOylation of TANK Controls IKK1-TBK1

interactions

[160]

Nrdp1 TBK1 Ubiquitination of TBK1 Activation of TBK1 and IRF3 [161]

miR-181b-1 CYLD Inhibits CYLD production Activation of NF-kB [162–164]

Negative

regulation

Triad3A TLR9 Ubiquitination and proteolytic

degradation of TLR9

Inhibition TLR9 activation [156,165]

ST2L MyD88 Sequestration of MyD88 Inhibition TLR9 activation [7,156]

SIGIRR TRAF6, IRAK Inhibition of TRAF6 and IRAK Inhibition TLR9 activation [7,156]

PI3 p38, JNK, NF-kB Inhibition NF-kB and AP-1

activation

Inhibition of cytokine

production

[7,156]

TRIM30a TAB2, TAB3 Lysosome-related degradation of

TAB2 and TAB3

Inhibition NF-kB activation [166]

Nrdp1 MyD88 Proteosomal degradation of MyD88 Inhibition IRAK1, TAK1,

IKKb, MAPKs, and NF-kB

activation

[161]

A20 RIP1, TRAFs,

TRIF, cIAP1/2,

and IKK complex

Ubiquitination or deubiquitination of

targets, and disruption of protein–

protein interaction

Inhibition NF-kB and IRF3

activation

[167–169]

DUBA TBK1 Ubiquitination of TBK1 Inhibition of TRAF3 and IRFs [170]

CYLD TBK1 Ubiquitination of TBK1 Inhibition of TRAF3 and IRFs [171]

OTUB1,

OTUB2

TRAF3/6 Ubiquitination of TRAF3/6 Inhibition of NF-kB and IRF3

activation

[172]

TANK TRAF6 Ubiquitination of TRAF6 Inhibition of NF-kB and AP-1

activation

[173]

Atg16L1 TRIF Surpression of TRIF-dependent

pathway

Suppression of caspase-1

activation

[174]

SHP-2 TBK1 Phosphorylation of TBK1 Inhibition of cytokine

production

[175]

SHP-1 IRAK1, IRAK2 IRAK1 and IRAK2 Inhibition of cytokine

production

[176]

CD2AP Cbl Ubiquitination of Cbl Inhibition of TLR9-mediated

type 1 IFN production

[177]

sTLR9 TLR9 Sequestration of TLR9 Inhibition of TLR9-mediated

signaling activation

[178]

IRAKM IkBa, IRAK-1 Phosphorylation of IkBa, Inhibition

of IRAK-1

Inhibition of cytokine

production

[179]

MyD88s MyD88 Sequestration of MyD88 Inhibition of

MyD88-mediated signaling

activation

[180]

SARM TRIF Sequestration of TRIF Inhibition of TRIF-mediated

signaling activation

[181]

IRF4 IRF5 Sequestration of IRF5 Inhibition of TLR signaling

activation

[182]

Continued
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Positive regulation of TLRs 3, 7, 8, 9, and 13 signaling

pathways. TRAF3 and TRAF6, which act as E3 ubiquitin
ligases in the formation of K63-linked ubiquitin chain by
catalyzing itself sequentially, are important for the activa-
tion of downstream signaling molecules, such as TAK1,
TBK1 and IKKi [156]. An E2 ubiquitin ligase, Ubc5, is
required for IRF3 activation by catalyzing K63-type ubiqui-
tin chain formation [157]. Degradation of TRAF3 is respon-
sible for the activation of MAPKs and NF-kB, and the
production of inflammatory cytokines through proteasome-
dependent mechanisms [156]. Mitochondrial protein
MARCH5, a novel E3 ubiquitin ligase, catalyzes
K63-linked poly-ubiquitination of TANK and positively
modulates TLR7 signaling by attenuating TANK and inhi-
biting TRAF6 [158]. Viperin, an IFN-inducible antiviral
protein, interacts with IRAK1 and TRAF6 to recruit them
to lipid bodies and facilitates K63-linked ubiquitination of
IRAK1 to induce nuclear translocation of transcription
factor IRF7, thereby promoting TLR7- and TLR9-mediated
type I IFN production in pDCs [159]. Furthermore, modifi-
cation of TANK by the small ubiquitin-related modifier
(SUMO) is triggered by the kinase activity of IKK1 and
TBK1 after stimulation of TLR7 ligands, which in turn
weakens the interaction with IKK1 and thus relieves the
negative effect of TANK on signal propagation [160].

Negative regulation of TLRs 3, 7, 8, 9, and 13 signaling

pathways. Although activation of TLR signal transduction
is required for hosts to eliminate invading pathogens,
excessive activation of TLR-signaling pathways may disrupt
immune homeostasis, resulting in autoimmune, chronic
inflammatory and infectious diseases. Therefore, TLR-
associated signaling pathways and immune functions must
be under strict negative regulation to maintain immune
balance. Several negative regulators involved in suppressing

TLR-signaling pathways at multiple levels, including splice
variants of adaptors or their related proteins, ubiquitin
ligases, deubiquitinases, transcriptional regulators, tyrosine
phosphatases, kinases, signaling proteins, microRNAs, and
even viral proteins, have been described [156,161–185].

Several RING finger proteins have been identified to be
negative regulators of TLRs 3, 7, 8, 9, and 13 signaling
pathways. The first one is Triad3A, a RING finger protein
functioning as an E3 ubiquitin ligase, can enhance ubiquiti-
nation and proteolytic degradation of TLR9 [156,165]. The
second RING protein, tripartite motif protein 30a
(TRIM30a), functions as a negative regulator of
TLR-mediated NF-kB activation by targeting TAB2 and
TAB3 degradation in a ubiquitin-proteasome-independent
pathway [166]. The third RING protein, neuregulin
receptor degradation protein-1 (Nrdp1), functions as a
RING protein-containing E3 ligase and plays a different
function in regulating TLR signaling. It enhances the
TRIF-dependent activation of TBK1 and IRF3 via
K63-linked ubiquitination of TBK1 [161]. In contrast,
MyD88-dependent activation of IRAK1, TAK1, IKKb,
MAPKs, and NF-kB are inhibited by Nrdp1-mediated deg-
radation of MyD88 via K48-linked ubiquitination [161].

A number of deubiquitinating enzymes also play import-
ant roles in negative regulation of TLRs 3, 7, 8, 9, and 13
signaling pathways. A20, a cytoplasmic zinc finger protein,
is one of the deubiquitin enzymes (DUBs) of the ovarian
tumor (OTU) family. As a deubiquitinating enzyme A20
can remove K63-polyubiquitin chains from TRAF6 to turn
off the NF-kB signaling. A20 also has a unique E3 ligase
activity that allows it to catalyze K48-polyubiquitination to
degrade RIP1 in a proteasome-dependent manner after
cleavage of K63-polyubiquitin chains to restrict NF-kB ac-
tivation [167]. Another important function of A20 is to
disrupt the interaction of E3 ligases (TRAF6, TRAF2,

Table 3. Continued

Regulators Targets Regulatory mechanisms Effectors References

miR-146 TRAF6, IRAK1/2 down-regulates IRAK1/2 and TRAF6 Inhibition of the MyD88/

NF-kB signaling activation

[183]

miR-155 IKKi, IKKb,

TAB2, and MyD88

Inhibition of IKKi and IKKb Inhibition of NF-kB activation [184]

miR-9 p105, p50 Inhibition of p50/p52 mature Modulation of the NF-kB

pathway

[162–164]

miR-199a,

miR-214

IKKb down-regulates IKKb Inhibition of NF-kB activity [162–164]

miR-223,

miR-15,

miR-16

IKKa, NIK,

TRAF2, and p52

Inhibition of targets Inhibition of noncanonical

NF-kB pathway

[162–164]

DUBA, deubiquitinating enzyme A; CYLD, cyclindomatosis.
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TRAF3, IKK complex, and cIAP1/2) with E2 conjugating
enzymes (Ubc13 and Ubc5hc), which results in effective
downregulation of the NF-kB-signaling pathway [168].
Furthermore, A20 has also been reported to negatively
regulate IFN-b transcription by inhibiting IRF3 activation
[169]. Two other important deubiquitinating enzymes, deu-
biquitinating enzyme A and cyclindomatosis, are involved
in the negative regulation of IFN-b production by removing
a K63-polyubiquitin chain from TBK1 and inhibiting the
activation of TRAF3 and IRFs [170,171].

Two OTU family members OTUB1 and OTUB2, ori-
ginally identified as proteases, suppress IFN-b promoter
activity through cleavage of the K63-polyubiquitin chain
from TRAF3 and inhibit NF-kB signaling via deubiquiti-
nation of TRAF6 [172]. TANK may also act as a negative
regulator of TRAF6 ubiquitination in macrophages and B
cells [173], whereas Atg16L1 negatively regulates
TRIF-dependent pathways that lead to intestinal inflamma-
tion suppression and caspase-1 activation [174]. Src hom-
ology 2 domain-containing protein tyrosine phosphatase
(SHP)-2 inhibits cytokine production by suppressing the
phosphorylation of TBK1 [175], while SHP-1 inhibits
TLR-mediated production of inflammatory cytokines by
suppressing the function of IRAK1 and IRAK2 [176].
Interestingly, CD2-associated adaptor protein (CD2AP)
has the ability to positively regulate BDCA2/Fc1R1g sig-
naling via forming a complex with SHIP1 to inhibit the
E3 ubiquitin ligase Cbl and TLR9-mediated type I IFNs
production [177].

Several splice variants are also involved in negative regu-
lation of the signaling pathways associated with endosomal
nucleic acid-sensing TLRs by competing with various
adapters and transcription factors for binding sites, such as
soluble decoy TLRs (such as sTLR9), IRAKM, MyD88
short (MyD88s), Armadillo motif-containing protein
(SARM) and IRF4 [178–182]. In addition, a range
of miRNAs, including miR-9, miR-124, miR-155,
miR-218, miR-15, miR-16, miR-223, miR-199a,
miR-520h, miR-301a, and miR-181b-1, may also act as im-
portant negative regulators of those pathways, as they are
involved in the down-regulation of signaling proteins
related to innate immune response [162–164,183,184].
Thus, a complex network involving multiple regulatory
molecules and pathways are likely important for the recog-
nition of endosomal nucleic acid-sensing TLRs, which is
essential for preventing serious inflammatory disorders and
autoimmune diseases. In addition, nucleic acid-sensing TLR
signaling, especially some important adapters such as
NF-kB, TRIF, and IRFs, was negatively regulated by viruses
(such as VACV, HCV, and HIV and herpesviruses, polyoma-
viruses, ascoviruses, and adenoviruses), which encoded a
number of proteins and miRNAs to inhibit the production of
type I IFNs and inflammatory cytokine [186,187].

Concluding Remarks

Over the past decade, significant progress has been made in
our understanding of nucleic acid recognition. In particular,
the functions of endosomal nucleic acid-sensing TLRs 3, 7,
8, 9, and 13 in innate immunity, especially their restricted
expression/compartmentalization, ligand specificity, traf-
ficking, proteolysis, autophagy, signaling, and regulation
have been studied in detail. Several studies provided new
insights into the compartmentalization of endosomal
nucleic acid-sensing TLRs based on ligand recognition and
revealed a series of regulatory mechanisms that are key for
discrimination between ‘self’ and ‘non-self’. As previously
mentioned, ‘self’-derived nucleic acids are properly
degraded by extracellular and endosomal nucleases before
they can be sensed by nucleic acid-sensing TLRs within
endosomal compartments under normal conditions. In add-
ition, compartmentalization of nucleic acid-sensing TLRs is
important for avoiding contact with ‘self’-nucleic acids.
Furthermore, intracellular trafficking and proteolytic matur-
ation of nucleic acid-sensing TLRs, mediated in part
through their TM domains, is important for preventing in-
appropriate recognition of ‘self’-nucleic acids by leakage of
these receptors to the cell surface.

As discussed above, Unc93b1 acts as a chaperone for
the endosomal nucleic acid-sensing TLRs 3, 7, 8, 9, and
13, and controls the translocation of these TLRs from the
ER to endosomal compartments. Interestingly, another
member of the TLR family, a protein-recognizing receptor
TLR11, was also recently found to be expressed in the
ER along with UNC93B1, TLR11 regulates the activation
of DCs in response to protozoan parasite Toxoplasma
gondii profilin (PFTG) [188], suggesting that in addition
to nucleic acid-sensing TLRs, UNC93B1 also regulates at
least one protein-sensing TLR in intracellular compart-
ments. Although this knowledge is needed for our under-
standing of nucleic acid-sensing TLRs defense against
protozoan parasites, further studies are needed to dissect
whether TLR11 is trafficked from the ER to endosomal
compartments by UNC93B1 to detect foreign nucleic
acids, and the molecular mechanism of TLR11 activation
by PFTG and T. gondii or others protozoan parasites. A
surprising finding from recent experiments is that VACV
and its poly(A)/T-rich DNA motifs are potent inducers of
pDC-derived IFN-a in a TLR9-independent, and exclu-
sively TLR8-dependent pathway [12]. Although it is not
clear why the recognition of VACV/modified VACV
Ankara (MVA) and ECTV in pDC is mediated through
different TLRs and whether TLR8-mediated recognition of
VACV by non-pDCs is important in VACV control in
humans, these result may reflect differences between
VACV/MVA and ECTV in terms of their genetic
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compositions and endosomal trafficking pathways, and that
different pathogens have evolved to adopt different mechan-
isms to effectively activate the innate immune system.

It has been known for years that ‘self’-nucleic acids that
are modified or inappropriately localized can be recognized
as ‘non-self’ to induce autoimmune response. On the one
hand, ‘self’-derived nucleic acids form nucleic acid–protein
immune complexes (ICs) with a variety of endogenous pro-
teins such as autoantibodies, anti-microbial peptides, small
ribonucleoprotein (snRNPs), and high mobility group box 1
(HMGB-1), they may become resistant to nucleases and
reach endosomal nucleic acid-sensing TLRs, leading to auto-
immune reaction [1–3,189–190]. On the other hand, imbal-
ance between positive and negative regulators of the
TLR-associated may disrupt immune homeostasis, resulting
in autoimmune diseases. Interestingly, intracellular traffick-
ing of TLR7 and TLR9 from the ER to endosomes is also
induced by LPS, which may increase the possibility of auto-
immune diseases [186]. Furthermore, autophagy is not only
important for the degradation of intracellular pathogens,
cellular proteins, and organelles, but also for the regulation
of nucleic acid-sensing TLR-mediated recognition of patho-
gens in multiple ways. However, autophagy can be also
exploited by a diverse array of pathogens, which interfere
with autophagy-mediated degradation of intracellular patho-
gens and substrate recognition by nucleic acid-sensing TLR,
and suppress or escape the host’s antiviral innate immune
response. However, a detailed understanding of how such
pathogens achieve these feats will need to be elucidated in
future studies.

In addition to nucleic acid-sensing TLRs, other nucleic
acid-sensing PRRs, such as RLRs, nucleotide-binding oligo-
merization domain-like receptors (NLRs), absent in melan-
oma 2 (AIM2)-like receptors (ALRs), and DNA recognition
receptors (cytosolic sensors for DNA), also provide defense
against a wide range of pathogens [1–3]. However, very
little is known about possible crosstalk between nucleic acid-
sensing TLRs and these PRRs. Therefore, future studies
should aim to improve our understanding of innate immune
systems and immunobiology, including host-pathogen inter-
actions, crosstalk between immune networks and their influ-
ence on the development of adaptive immunity. Such studies
will likely also reveal information essential for the identifica-
tion and development of novel anti-pathogen targets, thera-
peutic strategies, and better adjuvant for vaccines.
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