

Diethyl Malonate-Based Turn-On Chemical Probe for Detecting Hydrazine and Its Bio-Imaging and Environmental Applications With Large Stokes Shift

Jianbo Qu, Zhi-Hao Zhang, Haitao Zhang, Zhen-Tao Weng and Jian-Yong Wang*

School of Light Industry and Engineering, Qi Lu University of Technology, Shandong Academy of Sciences, Jinan, China

Diethyl malonate-based fluorescent probe $NE-N_2H_4$ was constructed for monitoring hydrazine (N₂H₄). The novel probe $NE-N_2H_4$ exhibits good properties, such as large Stokes shift (about 125 nm), good selectivity, and low cytotoxicity. This sensing probe $NE-N_2H_4$ can be operated to detect hydrazine in living HeLa cells. Especially after soaking in probe solution, the thin-layer chromatography (TLC) plate could detect the vapor of hydrazine. Therefore, the probe $NE-N_2H_4$ might be used to monitor hydrazine in biosamples and environmental problem.

OPEN ACCESS

Edited by:

Zhenzhong Guo, Wuhan University of Science and Technology, China

Reviewed by:

Xiangzhi Song, Central South University, China Kun Li, Sichuan University, China

> *Correspondence: Jian-Yong Wang wjy@qlu.edu.cn

Specialty section:

This article was submitted to Analytical Chemistry, a section of the journal Frontiers in Chemistry

Received: 02 September 2020 Accepted: 14 December 2020 Published: 18 March 2021

Citation:

Qu J, Zhang Z-H, Zhang H, Weng Z-T and Wang J-Y (2021) Diethyl Malonate-Based Turn-On Chemical Probe for Detecting Hydrazine and Its Bio-Imaging and Environmental Applications With Large Stokes Shift. Front. Chem. 8:602125. doi: 10.3389/fchem.2020.602125 Keywords: fluorescent probe, hydrazine, Stokes shift, gas detection, cell imaging

INTRODUCTION

Hydrazine (N_2H_4) and its substituted derivatives are usually applied in the aerospace industry as rocket propellant due to the distinctive properties of flammability and explosion (Serov and Kwak, 2010). This molecule N_2H_4 has also been employed as a catalyst, corrosion inhibitor, and reducing agent in many different fields including pharmaceutical, agricultural, and applied chemical industries (Kean et al., 2006; Khaled, 2006; Rosca and Koper, 2008). Due to its high toxicity, it is also considered as a terrible pollutant to creatures and humans, which could make the lungs, livers, and kidneys cancerous (Garrod et al., 2005). Hence, 10 ppb is the upper line (CDC, 1988). That is why it is important to develop good methods for sensing N_2H_4 in real-time detection and environmental pollution.

In modern times, chromatography-mass spectrometry, titrimetric, and electrochemical methods have been reported for monitoring N_2H_4 (Karimi-Maleh et al., 2014; McAdam et al., 2015). During the past few years, molecular probes have been developed for biological imaging with good properties of high sensitivity, large Stokes shift, good selectivity, good biocompatibility, and real-time detection, etc., which were regarded as the most practical method (Lakowicz, 2006; Li et al., 2014; Tang et al., 2015; Zhou X. et al., 2015).

During the last few decades, a series of turn-on probes were applied to detect N_2H_4 in living biosamples (Cui et al., 2014; Goswami et al., 2014a, b, 2015; Liu et al., 2014, 2019; Qian et al., 2014; Qu et al., 2014; Raju et al., 2014; Sun et al., 2015; Xiao et al., 2014; Jin et al., 2015; Nandi et al., 2015; Yu et al., 2015; Zhang et al., 2015; Zhou J. et al., 2015; Dai et al., 2016; Reja et al., 2016; Chen et al., 2017; Li et al., 2017, 2018, 2019; Ma et al., 2017; Mahapatra et al., 2017; Jung et al., 2019; Paul et al., 2019; Shi et al., 2019; Xing et al., 2019; Fang et al., 2020; Han et al., 2020; Na et al., 2020), a few of which were constructed by cleavage of C = C bond

1

(Sun et al., 2014; Reja et al., 2016; Li et al., 2017, 2018, 2019; Liu et al., 2019; Hou et al., 2020). Many examples were developed by the deprotection group from the fluorescent group (Cui et al., 2014; Goswami et al., 2014a, 2015; Liu et al., 2014; Qian et al., 2014; Qu et al., 2014; Raju et al., 2014; Jin et al., 2015; Sun et al., 2015; Yu et al., 2015; Zhang et al., 2015; Zhou J. et al., 2015; Chen et al., 2017; Ma et al., 2017; Mahapatra et al., 2017; Shi et al., 2019; Xing et al., 2019; Fang et al., 2020; Vijay and Velmathi, 2020). Additionally, the rest of the fluorescent molecules were used to monitor N₂H₄ using the property of special nucleophilicity of N₂H₄ (Goswami et al., 2014; Xiao et al., 2014; Nandi et al., 2020). That is why it is necessary to construct a powerful molecule for monitoring N₂H₄ by the way of cleavage of C = C bond.

In this report, a novel fluorescent probe, NE-N₂H₄, has been constructed to monitor N₂H₄ with improved properties including good selectivity, low cytotoxicity, and large Stokes shift over other analytes by cleavage of C = C bond (Scheme 1). The probe NE-N₂H₄ was applied to imaging N₂H₄ in living HeLa cells. Besides, the probe NE-N₂H₄ could monitor vapor of N₂H₄ by way of thin-layer chromatography (TLC) plate after soaking in solution of probe NE-N₂H₄. Therefore, this novel probe NE-N₂H₄ could be regarded as a powerful pool for monitoring N₂H₄ in biosystems and environmental pollution.

EXPERIMENT

Synthesis of Probe NE-N₂H₄

Here, 6-hydroxy-2-naphthaldehyde (1.0 mmol, 172.0 mg) and diethyl malonate (1.2 mmol, 192.2 mg) were added to EtOH (5.0 ml). Then, piperidine (1.2 mmol, 102.2 mg) was added to the above solution. After reacting at 25° C for 12 h, distilled H₂O

(10.0 ml) was added to the above reaction, which was extracted with dichloromethane (DCM) (50 ml) 3 times. All the extracts were washed with saturated aqueous sodium chloride solution and dried over MgSO₄. The solid residue was dealt with flash column chromatography. The probe NE-N₂H₄ was obtained (83% yield). ¹H NMR (400 MHz, CDCl₃): 7.86 (s, 1H), 7.81 (s, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.40 (dd, $J_1 = 2.0$ Hz, $J_2 = 8.8$ Hz, 1H), 7.09–7.04 (m, 2H), 4.41 (dd, $J_1 = 6.8$, $J_2 = 14.0$, 2H), 4.33 (dd, $J_1 = 7.2$, $J_2 = 14.0$, 2H), 1.37–1.32 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): 167.5, 164.5, 155.3, 142.7,

FIGURE 1 | Fluorescence spectra of NE-N₂H₄ (10 μ M) in pH 7.4 phosphate buffered saline (PBS)/dimethyl sulfoxide (DMSO0 (v/v = 1/1) in the absence or presence of N₂H₄.

135.6, 131.2, 130.7, 128.3, 128.0, 127.0, 125.9, 124.4, 118.8, 109.5, 61.9, 61.7, 14.2, 14.0; high-resolution mass spectrometry (HRMS) [electrospray ionization (ESI)] m/z calcd for $C_{18}H_{18}O_5$ (M+H)⁺: 315.1230; found 315.1228.

Vapor Gas Detection

TLC plates were soaked in the probe $NE-N_2H_4$ solution [0.1 mM, in dimethylsulfoxide (DMSO)]. After the $NE-N_2H_4$ probeloaded TLC plates were dried over air-blast drying box, the plates were put onto a series of flasks with different concentrations of N_2H_4 for 10 min. Then, the color of probe-loaded TLC plates was observed under UV light of 365 nm.

Cell Imaging

HeLa cells were grown in modified Eagle's medium (MEM) replenished with 10% fetal bovine serum (FBS) with the atmosphere of 5% CO₂ and 95% air at 37°C for 24 h. The HeLa cells were washed with phosphate buffered saline (PBS) three times when used. HeLa cells were treated with NE-N₂H₄ (20.0 μ M) for 30 min, then with N₂H₄ (200.0 μ M) for 30 min at 37°C. The ideal fluorescence images were acquired with a Nikon A1MP confocal microscopy with the equipment of a CCD camera.

RESULTS AND DISCUSSION

Design and Synthesis of Probe NE-N₂H₄

As we all know, aldehyde group was easily reacted with nucleophile to construct C=C bond. Therefore, the simple compound of 6-hydroxy-2-naphthaldehyde was modified simply as the fluorescent group. The turn-on probe NE-N₂H₄ was developed by modifying a novel recognition site of diethyl malonate with functional aldehyde group in Scheme 2. The structure of the NE-N₂H₄ was characterized by ¹H, ¹³C NMR, and HRMS (Supplementary Figures 8-10).

The Spectral Property of Probe NE-N₂H₄

This developed probe $NE-N_2H_4$ was applied to measure spectral properties with the addition of N_2H_4 including absorption spectroscopy and fluorescence spectroscopy. The probe $NE-N_2H_4$ exhibited no fluorescence under excitation at 320 nm without addition of N_2H_4 (**Supplementary Figure 1**, **Figure 1**). In contrary, strong fluorescence emission appeared at 445 nm after adding N_2H_4 to the solution of $NE-N_2H_4$, with a quantum yield of 0.35. When the addition of N_2H_4 was up to 200 equivalent, the fluorescence enhancement emerged to the high point (**Figure 1**). Therefore, the probe $NE-N_2H_4$ was easy to respond to N_2H_4 , which was suitable for sensing N_2H_4 as a powerful pool with a large Stokes shift. The pH effect of PBS buffer was examined in **Supplementary Figure 2**. The fluorescent intensity increased from acid to basic rapidly. The

FIGURE 3 | The fluorescence intensity of **NE-N₂H₄** (10 μ M) in the presence of various analytes (10 equiv) in phosphate buffered saline (PBS) buffer [pH 7.4 PBS/dimethylsulfoxide (DMSO) (v/v = 1/1)]. 1: None; 2: SO₃²⁻; 3: NO₂⁻; 4: NO₃⁻; 5: I⁻; 6: Br⁻; 7: Fe²⁺; 8: H₂O₂; 9: NO; 10: Li⁺; 11: Zn²⁺; 12: Ni²⁺; 13: Cys; 14: GSH; 15: S²⁻; 16: N₂H₄.

main reason is that the nucleophilic substitution to the probe $NE\text{-}N_2H_4$ reacted easily in alkaline conditions.

Mechanism

The sensing mechanism was examined by adding N_2H_4 to the solution of probe NE-N₂H₄. The reaction solution was detected by HRMS. When probe NE-N₂H₄ (20 μ M) was treated with N₂H₄ (200 μ M), a peak at m/z 187.0879 emerged in HRMS spectrum in accordance with the predicted NE-N₂H₄adduct (Supplementary Figure 4). The NE-N₂H₄-adduct was constructed in one step easily characterized by ¹H NMR and HRMS (Supplementary Figures 5, 6). Additionally, the absortion spectra of NE-N₂H₄ (10 μ M) in absence or presence of N₂H₄ (10 equiv) and the synthetic NE-N₂H₄-adduct in pH 7.4 PBS/DMSO (v/v = 1/1) were listed in Supplementary Figure 3, which is consistent with the proposed mechanism (Scheme 1).

Response Rate and Selectivity of Probe $NE-N_2H_4$

The time course of probe NE-N₂H₄ was measured after the addition of N₂H₄ (10 equiv) (Figures 2A,B). Notably, the fluorescence enhancement was increased obviously as time goes on. That is to say, the sensing probe NE-N₂H₄ could be fit for imaging N₂H₄ in living cells. Another important factor is selectivity research of NE-N₂H₄ compared to other interfering species. It is very crucial whether the sensing molecule NE-N₂H₄ is suitable for cell imaging in the biosystem. The selectivity research was performed in Figure 3 over other competitive molecules. We find that fluorescence intensity showed almost no change after adding N₂H₄, when the solution of probe NE-N₂H₄ was added with other competitive molecules including SO₃²⁻, NO₂⁻, NO₃⁻, I⁻, Br⁻, Fe²⁺, H₂O₂, NO, Li⁺, Zn²⁺, Ni²⁺, Cys, GSH, S²⁻, and N₂H₄. In conclusion, the sensing probe NE-N₂H₄

could be suitable for the response to $\rm N_2H_4$ with good selectivity over other interfering molecules in the biosamples.

Application in Gas Detection

According to the above research data, the application of gas detection was operated. The free TLC plates were soaked in the solution of $NE-N_2H_4$ (0.1 mM, in DMF). The TLC plates loaded with probe $NE-N_2H_4$ were prepared to discriminate N_2H_4 (gas) in different concentrations after drying with a vacuum dryer. Distinctive fluorescence color changes of plates were obtained under UV 365 nm light (Figure 4) after exposing TLC plates to the N_2H_4 (gas) for 10 min. Obviously, no obvious change was exhibited in the distilled water (Figure 4a). The experimental result indicated that the sensing probe $NE-N_2H_4$ may be a practical method to detect N_2H_4 in industrial pollution.

Cytotoxicity and Imaging

Encouraged by the good fluorescent properties of probe NE- N_2H_4 including sensitive response, good selectivity, and large Stokes shift, a laser confocal microscope was applied to test the potential applications in cell imaging. The cytotoxicity of probe NE- N_2H_4 was tested for imaging MTT assays in living cells. The living HeLa cells were operated for imaging fluorescent experiments by means of confocal laser scanning microscopy.

MTT assays were operated on living HeLa cells incubated with probe NE-N₂H₄ (see **Supplementary Figure 4**). The data indicated that this probe NE-N₂H₄ at different concentrations was almost nontoxic to the living cells [>90% HeLa cells survived after 24 h with NE-N₂H₄ (10.0 μ M) incubation]. Therefore, this probe is fit for imaging N₂H₄ in living HeLa cells.

The probe $NE-N_2H_4$ was operated to incubate living HeLa cells for bioimaging of N_2H_4 due to the improved properties. Firstly, the solution of probe $NE-N_2H_4$ was used for incubating living HeLa cells for 30 min. No obvious fluorescence emerged in blue channel collected with Nikon A1MP confocal microscopy with a CCD camera (Figures 5a-c). Then, probe $NE-N_2H_4$ was used to incubate the living HeLa cells for 30 min and treated with N_2H_4 for another 30 min, obvious fluorescence exhibited in blue channel (Figures 5d-f). The experimental data indicated that the probe $NE-N_2H_4$ was fit for imaging N_2H_4 in living HeLa cells.

REFERENCES

- CDC (1988). Occupational Safety and Health Guideline for Hydrazine Potential Human Carcinogen. U.S Department of Health and Human Services; Centers for Disease Control.
- Chen, W., Liu, W., Liu, X. J., Kuang, Y. Q., Yu, R. Q., and Jiang, J. H. (2017). A novel fluorescent probe for sensitive detection and imaging of hydrazine in living cells. *Talanta* 162, 225–231. doi: 10.1016/j.talanta.2016.10.026
- Cui, L., Ji, C., Peng, Z., Zhong, L., Zhou, C., Yan, L., et al. (2014). Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine. *Anal. Chem.* 86, 4611–4617. doi: 10.1021/ac5007552
- Dai, X., Wang, Z. Y., Du, Z. F., Miao, J. Y., and Zhao, B. X. (2016). A simple but effective near-infrared ratiometric fluorescent probe forhydrazine and its application in bioimaging. *Sens. Actuators B* 232, 369–374. doi: 10.1016/j.snb.2016.03.159
- Fang, Q., Yang, L., Xiong, H., Han, S., Zhang, Y., Wang, J., et al. (2020). Coumarinocoumarin-based fluorescent probe for the sensitive and selective

CONCLUSION

In conclusion, an organic fluorescent probe has been constructed using diethyl malonate as a recognition site for sensing N_2H_4 with good selectivity and large Stokes shift (125 nm). This novel probe NE-N₂H₄ was developed for sensing N_2H_4 in living HeLa cells. In addition, this probe NE-N₂H₄ was applied for gas detection by probe-loaded TLC plate. The above results indicate that the probe NE-N₂H₄ may be powerful for monitoring N_2H_4 in biosystems and environmental problem.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Materials**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

J-YW: synthesize and characterize the dyes. JQ: supervise the project, review, and edit manuscript. HZ: supervise the project, review, and edit manuscript. Z-HZ and Z-TW: design, synthesize, characterize the dyes, write and edit manuscript, and manage the research project. All authors: contributed to the article and approved the submitted version.

FUNDING

This work was financially supported by the Natural Science Foundation of China (21801145), Shandong Provincial Key R&D Program/Major Science and Technology Innovation Project of Shandong Province (2019JZZY020230), and Natural Science Foundation of Shandong Province (ZR2017BB012).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem. 2020.602125/full#supplementary-material

detection of hydrazine in living cells and zebra fish. Chin. Chem. Lett. 31, 129-132. doi: 10.1016/j.cclet.2019.04.021

- Garrod, S., Bollard, M. E., Nicholls, A. W., Connor, S. C., Connelly, J., Nicholson, J. K., et al. (2005). Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. *Chem. Res. Toxicol.* 18, 115–122. doi: 10.1021/tx0498915
- Goswami, S., Aich, K., Das, S., Roy, S. B., Pakhira, B., and Sarkar, S. (2014a). A reaction based colorimetric as well as fluorescence "turn on" probe for the rapid detection of hydrazine. *RSC Adv.* 4, 14210–14214. doi: 10.1039/c3ra4 6663a
- Goswami, S., Das, S., Aich, K., Sarkar, D., and Mondal, T. K. (2014b). A coumarin based chemodosimetric probe for ratiometric detection of hydrazine. *Tetrahedron Lett.* 55, 2695–2699. doi: 10.1016/j.tetlet.2014. 03.041
- Goswami, S., Paul, S., and Manna, A. (2015). Fast and ratiometric "naked" eye detection of hydrazine for both solid, vapour phase sensing. *New J. Chem.* 39, 2300–2305. doi: 10.1039/C4NJ02220C

- Han, J., Yue, X., Wang, J., Zhang, Y., Wang, B., and Song, X. (2020). A ratiometric merocyanine-based fluorescent probe for detecting hydrazine in living cells and zebra fish. *Chin. Chem. Lett.* 31, 1508–1510. doi: 10.1016/j.cclet.2020.01.029
- Hou, J.-T., Wang, B., Wang, S., Wu, Y., Liao, Y. X., and Ren, W. (2020). Detection of hydrazine via a highly selective fluorescent probe: a case study on the reactivity of cyano-substituted C=C bond. *Dyes Pigm.* 178:108366. doi: 10.1016/j.dyepig.2020.108366
- Jin, X., Liu, C., Wang, X., Huang, H., Zhang, X., and Zhu, H. (2015). A flavonebased ESIPT fluorescent sensor for detection of N2H4 in aqueous solution and gas state and its imaging in living cells. *Sens. Actuators B* 216, 141–149. doi: 10.1016/j.snb.2015.03.088
- Jung, Y., Ju, I. G., Choe, Y. H., Kim, Y., Park, S., Hyun, Y. M., et al. (2019). Hydrazine exposé: the next-generation fluorescent probe. ACS Sens. 4, 441–449. doi: 10.1021/acssensors.8b01429
- Karimi-Maleh, H., Moazampour, M., Ensafi, A. A., Mallakpour, S., and Hatami, M. (2014). An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. *Environ. Sci. Pollut. Res. Int.* 21, 5879–5888. doi: 10.1007/s11356-014-2529-0
- Kean, T., Miller, J. H. M., Skellern, G. G., and Snodin, D. (2006). Acceptance criteria for levels of hydrazine in substances for pharmaceutical use and analytical methods for its determination. *Pharmeur. Sci. Notes* 2, 23–33.
- Khaled, K. F. (2006). Experimental and theoretical study for corrosion inhibition of mild steel in hydrochloric acid solution by some new hydrazine carbodithioic acid derivatives. *Appl. Surf. Sci.* 252, 4120–4128. doi: 10.1016/j.apsusc.2005.06.016
- Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. New York, NY: Springer. doi: 10.1007/978-0-387-46312-4
- Li, J., Cui, Y., Bi, C., Feng, S., Yu, F., Yuan, E., et al. (2019). Oligo(ethylene glycol)-functionalized ratiometric fluorescent probe for the detection of hydrazine *in vitro* and *in vivo*. Anal. Chem. 91, 7360–7365. doi: 10.1021/acs.analchem.9b01223
- Li, X., Gao, X., Shi, W., and Ma, H. (2014). Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. *Chem. Rev.* 114, 590–659. doi: 10.1021/cr300508p
- Li, Z., Ren, M., Wang, L., and Lin, W. (2018). Ethyl cyanoacetate based turnon fluorescent probe for hydrazine and its bio-imaging and environmental applications. *Anal. Methods* 10, 4016–4019. doi: 10.1039/C8AY01336E
- Li, Z., Zhang, W., Liu, C., Yu, M., Zhang, H., Guo, L., et al. (2017). A colorimetric and ratiometric fluorescent probe for hydrazine and itsapplication in living cells with low dark toxicity. *Sens. Actuators B* 241, 665–671. doi: 10.1016/j.snb.2016.10.141
- Liu, B., Liu, Q., Shah, M., Wang, J., Zhang, G., and Pang, Y. (2014). Fluorescence monitor of hydrazine *in vivo* by selective deprotection of flavonoid. *Sens. Actuators B* 202, 194–200. doi: 10.1016/j.snb.2014.05.010
- Liu, Y., Ren, D., Zhang, J., Li, H., and Yang, X. F. (2019). A fluorescent probe for hydrazine based on a newly developed 1-indanonefused coumarin scaffold. *Dyes Pigm*. 162, 112–119. doi: 10.1016/j.dyepig.2018.10.012
- Ma, J., Fan, J., Li, H., Yao, Q., Xia, J., Wang, J., et al. (2017). Probing hydrazine with a near-infrared fluorescent chemodosimeter. *Dyes Pigm.* 138, 39–46. doi: 10.1016/j.dyepig.2016.11.026
- Mahapatra, A. K., Karmakar, P., Manna, S., Maiti, K., and Mandal, D. (2017). Benzthiazole-derived chromogenic fluorogenic and ratiometric probes for detection of hydrazine in environmental samples and living cells. J. Photochem. Photobiol. A 334, 1–12. doi: 10.1016/j.jphotochem.2016.10.032
- McAdam, K., Kimpton, H., Essen, S., Davis, P., Vas, C., Wright, C., et al. (2015). Analysis of hydrazine in smokeless tobacco products by gas chromatographymass spectrometry. *Chem. Cent. J.* 9, 13–26. doi: 10.1186/s13065-015-0089-0
- Nandi, S., Sahana, A., Mandal, S., Sengupta, A., Chatterjee, A., Safin, D. A., et al. (2015). Hydrazine selective dual signaling chemodosimetric probe in physiological conditions and its application in live cells. *Anal. Chim. Acta* 893, 84–90. doi: 10.1016/j.aca.2015.08.041
- Paul, S., Nandi, R., Ghoshal, K., Bhattacharyya, M., and Maiti, D. K. (2019). A smart sensor for rapid detection of lethal hydrazine in human blood and drinking water. *New J. Chem.* 43, 3303–3308. doi: 10.1039/C8NJ06230G
- Qian, Y., Lin, J., Han, L., Lin, L., and Zhu, H. (2014). A resorufinbased colorimetric and fluorescent probe for live-cell monitoring of

hydrazine. Biosens. Bioelectron. 58, 282-286. doi: 10.1016/j.bios.2014. 02.059

- Qu, D. Y., Chen, J. L., and Di, B. (2014). A fluorescence "switch-on" approach to detect hydrazine in aqueous solution at neutral pH. *Anal. Methods* 6, 4705–4709. doi: 10.1039/C4AY00533C
- Raju, M. V. R., Prakash, E. C., Chang, H. C., and Lin, H. C. (2014). A facile ratiometric fluorescent chemodosimeter for hydrazine based on Ing-Manske hydrazinolysis and its applications in living cells. *Dyes Pigm.* 103, 9–20. doi: 10.1016/j.dyepig.2013.11.015
- Reja, S. I., Gupta, N., Bhalla, V., Kaur, D., Arora, S., and Kumar, M. (2016). A charge transfer based ratiometric fluorescent probe for detection of hydrazine in aqueous medium and living cells. *Sens. Actuators B* 222, 923–929. doi: 10.1016/j.snb.2015.08.078
- Rosca, V., and Koper, M. T. M. (2008). Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions. *Electrochim. Acta* 53, 5199–5205. doi: 10.1016/j.electacta.2008.02.054
- Serov, A., and Kwak, C. (2010). Direct hydrazine fuel cells: a review. Appl. Catal. B Environ. 98:1–9. doi: 10.1016/j.apcatb.2010.05.005
- Shi, X., Huo, F., Chao, J., Zhang, Y., and Yin, C. (2019). An isophorone-based NIR probe for hydrazine in real water sample and hermetic space. *New J. Chem.* 43, 10025–10029. doi: 10.1039/C9NJ01661A
- Sun, M., Guo, J., Yang, Q., Xiao, N., and Li, Y. (2014). A new fluorescent and colorimetric sensor for hydrazine and its application in biological systems. J. Mater. Chem. B 2, 1846–1851. doi: 10.1039/C3TB21753A
- Sun, Y., Zhao, D., Fan, S., and Duan, L. (2015). A 4-hydroxynaphthalimide-derived ratiometric fluorescent probe for hydrazine and its *in vivo* applications. *Sens. Actuators B* 208, 512–517. doi: 10.1016/j.snb.2014.11.057
- Tang, Y., Lee, D., Wang, J., Li, G., Yu, J., Lin, W., et al. (2015). Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging. *Chem. Soc. Rev.* 44, 5003–5015. doi: 10.1039/C5CS00103J
- Vijay, N., and Velmathi, S. (2020). Near-Infrared-Emitting probes for detection of nanomolar hydrazine in a complete aqueous medium with real-time application in bioimaging and vapor-phase hydrazine detection. ACS Sust. Chem. Eng. 8, 4457–4463. doi: 10.1021/acssuschemeng.9b07445
- Xiao, L., Tu, J., Sun, S., Pei, Z., Pei, Y., Pang, Y., et al. (2014). A fluorescent probe for hydrazine and its *in vivo* applications. *RSC Adv.* 4, 41807–41811. doi: 10.1039/C4RA08101C
- Xing, M., Wang, K., Wu, X., Ma, S., Cao, D., Guan, R., et al. (2019). A coumarin chalcone ratiometric fluorescent probe for hydrazine based on deprotection addition and subsequent cyclization mechanism. *Chem. Commun.* 55, 14980–14983. doi: 10.1039/C9CC08174G
- Yu, S., Wang, S., Yu, H., Feng, Y., Zhang, S., Zhu, M., et al. (2015). A ratiometric two-photon fluorescent probe for hydrazine and its applications. *Sens. Actuators B* 220, 1338–1345. doi: 10.1016/j.snb.2015.07.051
- Zhang, J., Ning, L., Liu, J., Wang, J., Yu, B., Liu, X., et al. (2015). Naked-eye and near-infrared fluorescence probe for hydrazine and its applications in *in vitro* and *in vivo* bioimaging. *Anal. Chem.* 87, 9101–9107. doi: 10.1021/acs.analchem.5b02527
- Zhou, J., Shi, R., Liu, J., Wang, R., Xu, Y., and Qian, X. (2015). An ESIPT-based fluorescent probe for sensitive detection of hydrazine in aqueous solution. Org. Biomol. Chem. 13, 5344–5348. doi: 10.1039/C5OB00209E
- Zhou, X., Lee, S., Xu, Z., and Yoon, J. (2015). Recent progress on the development of chemosensors for gases. *Chem. Rev.* 115, 7944–8000. doi: 10.1021/cr500567r

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Qu, Zhang, Zhang, Weng and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.