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Abstract
The outbreak of the novel corona virus disease (COVID-19) in December 2019 has led to global crisis around the world. 
The disease was declared pandemic by World Health Organization (WHO) on 11th of March 2020. Currently, the outbreak 
has affected more than 200 countries with more than 37 million confirmed cases and more than 1 million death tolls as of 10 
October 2020. Reverse-transcription polymerase chain reaction (RT-PCR) is the standard method for detection of COVID-
19 disease, but it has many challenges such as false positives, low sensitivity, expensive, and requires experts to conduct the 
test. As the number of cases continue to grow, there is a high need for developing a rapid screening method that is accurate, 
fast, and cheap. Chest X-ray (CXR) scan images can be considered as an alternative or a confirmatory approach as they 
are fast to obtain and easily accessible. Though the literature reports a number of approaches to classify CXR images and 
detect the COVID-19 infections, the majority of these approaches can only recognize two classes (e.g., COVID-19 vs. nor-
mal). However, there is a need for well-developed models that can classify a wider range of CXR images belonging to the 
COVID-19 class itself such as the bacterial pneumonia, the non-COVID-19 viral pneumonia, and the normal CXR scans. 
The current work proposes the use of a deep learning approach based on pretrained AlexNet model for the classification of 
COVID-19, non-COVID-19 viral pneumonia, bacterial pneumonia, and normal CXR scans obtained from different public 
databases. The model was trained to perform two-way classification (i.e., COVID-19 vs. normal, bacterial pneumonia vs. 
normal, non-COVID-19 viral pneumonia vs. normal, and COVID-19 vs. bacterial pneumonia), three-way classification (i.e., 
COVID-19 vs. bacterial pneumonia vs. normal), and four-way classification (i.e., COVID-19 vs. bacterial pneumonia vs. 
non-COVID-19 viral pneumonia vs. normal). For non-COVID-19 viral pneumonia and normal (healthy) CXR images, the 
proposed model achieved 94.43% accuracy, 98.19% sensitivity, and 95.78% specificity. For bacterial pneumonia and normal 
CXR images, the model achieved 91.43% accuracy, 91.94% sensitivity, and 100% specificity. For COVID-19 pneumonia 
and normal CXR images, the model achieved 99.16% accuracy, 97.44% sensitivity, and 100% specificity. For classification 
CXR images of COVID-19 pneumonia and non-COVID-19 viral pneumonia, the model achieved 99.62% accuracy, 90.63% 
sensitivity, and 99.89% specificity. For the three-way classification, the model achieved 94.00% accuracy, 91.30% sensitiv-
ity, and 84.78%. Finally, for the four-way classification, the model achieved an accuracy of 93.42%, sensitivity of 89.18%, 
and specificity of 98.92%.
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Abbreviations
AI  Artificial Intelligence
ARDS  Acute respiratory distress syndrome
BN  Batch normalization
CAP  Community-acquired pneumonia
CNN  Convolutional neural network
CO2  Carbon dioxide
CONV  Convolution
CT  Computerized tomography
CXR  Chest X-ray
DL  Deep learning
FCL  Fully connected layers
FM  Feature map
GPU  Graphical processing unit
HIV/Aids  Human immunodeficiency virus/

acquired immune deficiency 
syndrome

ILSVRC  ImageNet Large Scale Visual Recog-
nition Challenge

MERS  Middle East Respiratory Syndrome
ML  Machine learning
O2  Oxygen
RAM  Random access
ReLu  Rectified linear unit (ReLu)
RSV  Respiratory syncytial virus
RT-PCR  Reverse-transcription polymerase 

chain reaction
SAR-CoV-1 and 2  Severe acute respiratory syndrome 

coronavirus 1 and 2
TL  Transfer learning
WHO  World Health Organization

Introduction

Pneumonia is a common disease caused by different micro-
bial species such as bacteria, virus, and fungi. The word 
“Pneumonia” comes from the Greek word “Pneumon” 
which translates to the lungs. Thus, the word pneumonia is 
associated with lung disease. In medical terms, pneumonia 
is a disease that causes inflammation of either one or both 
lung parenchyma [1]. However, other causes of pneumonia 
include food aspiration and exposure to chemicals. Based 
on infection, pneumonia occurs as a result of inflammation 
caused by pathogens which lead the lung’s alveoli to fill up 
with fluid or pus and thereby leading to decrease of carbon 
dioxide  (CO2) and oxygen  (O2) exchange between blood and 
the lungs, making it hard for infected persons to breathe. 
Some of the symptoms of pneumonia include the shortness of 
breath, fever, cough, chest pain, etc. Moreover, the people at 
risk of pneumonia are elderly people (above 65 years), chil-
dren (below the age of 5 years), and people with other com-
plications such as HIV/AIDS, diabetes, chronic respiratory 

diseases, cardiovascular diseases, cancer, hepatic disease, 
etc. [2–5]. Table 1 presents a classification of pathogens that 
causes pneumonia.

Diagnosis and Treatment of Pneumonia

There are different approaches for the diagnosis of pneu-
monia, some of these approaches include chest X-rays and 
CT scan (which form the basis of our contribution), sputum 
test, pulse oximetry, thoracentesis, blood gas analysis, bron-
choscopy, pleural fluid culture, complete blood count, etc. 
Mostly, pneumonia infection is treated based on the causa-
tive pathogen. For bacterial pneumonia, antibiotics are used; 
for viral pneumonia such as influenzas, SARS and MERS, 
antiviral drugs are used while antifungal drugs are used for 
fungal pneumonia [6–8].

COVID‑19 and Pneumonia

COVID-19 is an extremely contagious disease caused by 
severe acute respiratory syndrome coronavirus 2 (SAR-
CoV-2) which is the recent disease that is caused by one of 
the family members of Coronaviridae family. In the past, two 
members of this family known as SARS-CoV-1 and Middle 
East Respiratory Syndrome Coronavirus (MERS-CoV) have 
caused a global epidemic. The first case of COVID-19 was 

Table 1  Classification of pneumonia based on pathogens

Pathogen Specie

Bacterial Streptococcus pneumoniae
Legionella pneumophila
Mycoplasma pneumoniae
Chlamydophila pneumoniae

Viruses Influenza virus
Severe acute respiratory syn-

drome coronavirus (SAR-CoV-1 
and 2)

Middle East Respiratory Syn-
drome (MERS) Coronavirus

Respiratory Syncytial virus (RSV)
Adenovirus
Hantavirus
Rhinovirus
Varicella-zoster virus
Human metapneumovirus
Enteroviruses

Fungi Pneumocystis jirovecii
Aspergillus spp.
Mucoromycetes
Histoplasmosis
Coccidioidomycosis
Cryptococcus
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reported in Wuhan, Hubei province of mainland China on 
the 31st December 2019. The virus spread from city to city 
and from one country to another leading to a global health 
crisis. However, it was not until March 11, 2020 that WHO 
declared it as pandemic [8–10].

COVID-19 can be transmitted through respiratory drop-
lets that are exhaled or secreted by infected persons. Coro-
naviruses invade the lung’s alveoli (an organ responsible for 
exchange of  O2 and  CO2), thereby causing pneumonia. The 
symptoms of COVID-19 include dry cough, fatigue, fever, 
septic shock, organ failure, anorexia, dyspnea, myalgias, 
sputum secretion severe pneumonia, acute respiratory dis-
tress syndrome (ARDS), etc. [11–14]. The pandemic caused 
by SAR-CoV-2 is alarming due to the fact that there is no 
approved drug or vaccine [15].

In order to curb further spread of the virus, governments 
of various countries and states impose city lockdowns [56, 
57], flight cancellations, border restrictions, closure of work-
places, restaurants, postponement of sport, religious, cul-
tural, and entertainment event and activities, wearing of face 
mask, social distancing of 1–2 m, and creating awareness 
on hygiene. Many countries are facing challenges regarding 
the number of reported cases of COVID-19 as a result of 
the lack of RT-PCR test kit and delay in the test kit. This 
delay is detrimental as it leads to more cases due to interac-
tion between the infected patients waiting for result with a 
healthy population [16, 17].

SARS‑CoV1 and MERS‑CoV

The first pandemic of the coronavirus family started in 
China’s South Eastern part and Hong Kong in the year 
2002 due to the discovery of pathogenic virus known as 
SARS-CoV-1. The disease spread globally due to air travel 
of patients from one country to another leading to SARS 
pandemic. According to WHO 2004, more than 8000 con-
firmed cases of SARS-CoV and 774 associated deaths were 
recorded globally. The outbreak has caused both public and 
economic burdens with estimated losses of billions of dol-
lars [18]. The second pandemic of coronavirus is caused by 
β-CoVs in 2012 in Saudi Arabia; unlike SARS-CoV, MERS 
is caused by MERS-CoV which was firstly identified in a 
patient sputum sample of a 60-year-old Saudi Arabian man. 
According to WHO reports, there were more than 1850 con-
firmed cases of MERS-CoV with 30% mortality rate [19]. 
And up until November 2019, there are closed to 2500 cases 
of MERS-CoV resulting in 858 deaths.

Identification of Drugs, Development of Vaccines, 
and Prediction of COVID‑19 using AI‑Driven Models

Currently, there is no exact cure for COVID-19 disease. 
However, scientists are sprinting to develop a vaccine which 

is the most effective way to contain and prevent the spread 
of the virus. There are multiple technologies which are 
under evaluation such as inactivated virus, protein subunit, 
nucleic acid, and replicating and non-replicating viral vector. 
To speed up the process, scientist must overcome so many 
challenges which include developing a viable immunogen, 
development of successful animal model, clinical trials, viral 
mutations, time constraints, and funding [20, 21]. Recently, 
Russia has approved a vaccine based on adenovirus vector 
developed by the Gamaleya National Center of Epidemiol-
ogy and Microbiology Moscow. However, scientists around 
the world have criticized the efficiency of the vaccine, the 
phases it undergoes, and the lack of published results related 
to the earlier trial stages [22].

Apart from vaccines, there is ongoing research by differ-
ent companies and laboratories on repurposing existing anti-
viral drugs such as remdesivir, ritonavir, and lopinavir. To 
generate potential drugs against COVID-19, scientist turned 
to artificial intelligence and machine learning approach for 
efficient identification of potent drugs. A study carried out 
by Beck et al. [23] using pretrained deep learning model 
identified “Atazanavir” an antiretroviral drug that is used 
for the prevention of HIV as the potential potent COVID-19 
drug among all the commercially available antiviral drugs. 
On the other hand, Li et al. [24] identified Nelfinavir, Bict-
egravir, Tegobuv, and Prulifloxacin as potential drugs for 
COVID-19 after screening 8000 approved and experimental 
molecules and compounds obtained from Drugbank.

Medical experts (e.g., epidemiologists) are facing chal-
lenges such as the need for accurate data collection, analy-
sis and precise estimation, and forecasting of the number 
of cases related to pandemics and epidemics. Recently, 
AI-driven models have proven to be valuable in terms of 
prediction and classification of medical data. Since the out-
break of COVID-19, data analyst and medical practitioners 
adopted the use of AI models for prediction and forecasting 
of COVID-19 cases [25]. The first company to report the use 
AI for prediction of COVID-19 and sent warning alerts to its 
customers prior to 2020 is the BlueDot AI-based company. 
However, other scientists have reported the use of AI models 
such as the use of model-free methods by Zeng et al. [26] for 
the prediction of inter-provincial transmissions of COVID-
19 in mainland China. Hu et al. [27] utilized AI-driven meth-
ods for real-time forecasting of COVID-19 outbreak within 
China based on lengths, size estimations, and ending time of 
the outbreak based on data obtained from WHO (collected 
between 19 January 2020 and 16 February 2020).

Deep Learning and Transfer Learning

Deep learning (DL) is a branch of machine learning (ML), 
a subset of artificial intelligence (AI) inspired by the make-
up of the human brain. It is termed as a sub-field of ML 
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that works similar to the biology of human brains by taking 
data and processing the data through neural networks. Many 
biomedical health issues such as cancer (brain tumor and 
breast cancer) detections are using computer-aided diagnosis 
based on AI models. Precisely, DL models can detect hid-
den features in images which are not apparent or cannot be 
detected by medical experts. In terms of DL, convolutional 
neural network (CNN) is the leading DL tool that is popu-
larly used in different sub-field of healthcare system due 
to their ability to extract features and learn to distinguish 
between different classes (i.e., positive and negative, infected 
and healthy, cancer and non-cancer, etc.). Transfer learning 
(TL) has provided easier approach to quickly retrain neural 
networks on selected datasets with high accuracy [28, 29].

AlexNet

AlexNet model is a DL model proposed by Alex Krizhevsky 
which utilize rectified linear unit (ReLu) in place of Sigmoid 
function which is used in traditional neural networks [58]. 
The model achieved 84% accuracy in 2012 ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC). It contains 
five convolution (CONV) blocks or layer with convolutional 
filter size 3 × 3 without padding and 2 × 2 window size of 
max pooling operation. The last three layers are two fully 
connected layers (FCL) and the output layer as shown in 
Fig. 1. Other terms include batch normalization (BN) and 
feature map (FM). SoftMax activation function is utilized in 
the output layer for classification [30, 31].

The standard input size for AlexNet model is 
227 × 227 × 3. The model consists of overall eight layers, 
five are convolutional layers, and three fully connected lay-
ers. The first two convolutional layers are made of three 
operations, which include convolution, pooling, and nor-
malization. AlexNet uses ReLU as an activation function, 
unlike Tanh and sigmoid functions that are used in tradi-
tional machine learning. ReLU converts negative numbers 
to zeros and helps models learn non-linear functions [30].

Max pooling is the most common pooling methods in 
which its main function is to down sample or to reduce 
image size by pooling most important feature or by pool-
ing out the number with a highest pixel value. The next two 
layers are mainly convolution layers without pooling and 
normalization and the final convolution layer consists of 
only convolution and pooling without normalization. The 
first two fully connected layers are dropout layers in which 
its main function is to reduce overfitting by reducing the 
number of neurons. The final fully connected layer is known 
as classification layer [32].

Challenges

As the number of COVID-19 patients grows exponentially, 
there is a high need for massive detection, which is critical 
for prevention and control. Medical practitioners all over the 
world require a sophisticated system to accurately diagnose 
COVID-19 disease. Different approaches are currently in 
use for detection of different types of pneumonia. However, 
detection of different strains of pathogens using molecular 
testing is still not up to standard of point of care diagnostics. 
Instead, specimens are collected from site of infections and 
transfer to a fully equipped or specialized laboratories for 
diagnosis using RT-PCR sequencing approach which is the 
current gold standard [33]. This method is deemed expen-
sive and often lead to false results. Moreover, underdevel-
oped countries and remote areas with limited testing kit and 
unequipped hospitals with few or zero number of ventilators 
have become the epicenter of the disease. Thus, there is a 
high need for developing an alternative approach which is 
fast, cheap, simple, and reliable. The use of X-ray has proven 
to be an alternative; however, this method is sometimes tedi-
ous for qualified radiologist [34]. These challenges can be 
addressed by computer-aided detection method using the DL 
approach, which is accurate, fast, and precise.

The majority of research in the literature only classified 
two classes (such as COVID-19 vs normal). However, few 
researches addressed multi classes and classified each class 

Fig. 1  AlexNet architecture
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from another. Moreover, the current articles in the state-
of-the-art only addressed three-way classification. In this 
article, we present four-way classification (three types of 
pneumonia and normal CXR images). We also compare each 
type with another which is also missing in the majority of 
the literature.

Contribution

Accordingly, our contributions have been summed up as 
follows.

• We suggested the use of Pretrained (transfer learning) 
AlexNet model to detect COVID-19 pneumonia non-
COVID-19 viral pneumonia, bacterial pneumonia and 
normal/healthy patients using CXR image.

• We trained the models separately to discriminate 
between: 

• COVID-19 pneumonia vs normal/healthy patients
• Non-COVID-19 Viral pneumonia vs normal/healthy 

patients
• Bacterial pneumonia vs normal/healthy patients
• COVID-19 pneumonia vs non-COVID-19 viral 

pneumonia patients
• COVID-19 pneumonia vs bacterial pneumonia vs 

normal/healthy patients
• COVID-19 pneumonia vs non-COVID-19 viral 

pneumonia, bacterial pneumonia, and normal/
healthy patients

• We assessed the performance of the network based on 
accuracy, sensitivity and specificity.

Related Work

The last decade has seen an exponential rise in the applica-
tion of DL in the healthcare system. Different studies have 
shown that DL models can be used for classification of 
pathological cancer images, diabetic retinopathy, CT scans 
of pneumonia, and tuberculosis as well as microbial slide 
images. In the field of pathology, pathologist, computer sci-
entist, and radiologist have been working together to detect 
diseases such as cancer, pneumonia, and tuberculosis using 
computer-aided diagnosis [35–37].

In terms of application of DL models for detection of 
pneumonia using CT scan and X-ray images, we presented 
a literature review based on studies that:

1. Classified/distinguished between COVID-19, non-
COVID-19 viral pneumonia, and healthy CXR images or 
between COVID-19, bacterial pneumonia, and healthy 
images (i.e., four-way and three-way classifications).

2. Classified/distinguished between COVID-19 and non-
COVID-19 viral pneumonia, COVID-19 and healthy 
CXR images, non-COVID-19 viral pneumonia, and 
healthy CXR images, bacterial pneumonia, and healthy 
CXR images (i.e., binary classification).

Chest scans based on chest X-ray or CT scan are an 
approach radiologist used to distinguish between patient 
suffering from pneumonia and healthy person. The differ-
ence is based on the presence of white hazy patches known 
as “Ground-glass opacity” in infected patient which is absent 
in healthy persons. However, as a result of scarcity of test 
for diagnosing COVID-19 as well as the high cost (120–130 
USD), time consuming, low sensitivity, laborious of RT-
PCR method, scientist turns to chest scan such as CT scans 
and X-rays as an alternative approach for diagnosis of severe 
pneumonia caused by SAR-CoV-2 and bacterial pneumonia 
[38]. Moreover, this approach has its own challenges such 
as shortage of expert (i.e., radiologist) that can interpret 
the result and the tediousness of interpreting thousands of 
CT scan and CXR images. These challenges are addressed 
by AI-driven models which have shown high efficiency in 
assisting medical expert in classification and prediction of 
disease [39, 40].

Many studies have reported the use of CXR and CT scans 
along with DL models in order to achieve automated detec-
tion of COVID-19 pneumonia and other types of pneumonia 
such as non-COVID-19 viral pneumonia and bacterial pneu-
monia. Moreover, many studies have shown the viability of 
using TL models which are deep networks pretrained on 
the ImageNet database for classification of pneumonia from 
healthy CT scans [41–43].

Classification of Multiclass Pneumonia Using AI‑Driven 
Models

The approach of TL in DL is utilized by Chowdhury 
et al. [17] to differentiate between COVID-19 and viral 
pneumonia based on a dataset acquired from a public 
database. The models were trained using 423 COVID-
19, 1458 viral pneumonia, and 1579 normal chest X-ray 
images based on (i) augmentation and (ii) without aug-
mentation. The models achieved higher accuracies, sen-
sitivities, and specificities. A multi-dilation CNN is uti-
lized by Mahmud et al. [44] to classify COVID-19 and 
other types of pneumonia. The study utilized a deep CNN 
as COVXNet with modifications based on varying dila-
tion rates for feature extraction, optimization, stacking 
algorithms, and gradient-based discriminative localiza-
tion to train dataset containing 1493 non-COVID-19 viral 
pneumonia, 305 COVID-19 pneumonia, and 2780 bac-
terial pneumonia. The model achieved 97.4% accuracy 
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for COVID-19 vs normal, 96.9% for COVID-19 vs non-
COVID-19 viral pneumonia, 94.7% for COVID-19 vs 
bacterial pneumonia, and 90% for multi-class.

In order to show the difference between COVID-19 
and community-acquired pneumonia (CAP), Li et  al. 
[45] utilized a three-dimensional DL framework known 
as COVID-19 detection neural network (COVNet) using 
4352 CT scans (1292 of COVID-19, 1735 of CAP, and 
1325 normal CT scans). The models achieved 90% sensi-
tivity and 96% specificity for detection of COVID-19 and 
87% sensitivity and 92% specificity for detection of CAP. 
Apostolopoulos et al. [41] utilized TL approach on data-
sets that contain 1427 X-ray images (504 normal X-ray 
images, 700 bacterial pneumonia, and 224 COVID-19 
X-ray images). The model was able to achieve 96.78% 
accuracy, 96.46% specificity, and 98.66% sensitivity.

Classification of COVID‑19 and Normal X‑ray 
Images Using AI‑Driven Models

Abbas et al. [46] utilized a CNN model know as Decom-
pose, Transfer, and Compose (DeTraC) for the classi-
fication of COVID-19 using chest X-ray images. The 
study utilized multiple datasets acquired from different 
hospitals around the world. The model achieved 95.12% 
accuracy, 97.91% sensitivity, and 91.87% specificity. 
Two deeper models are utilized by Narin et  al. [42] 
for the classification of COVID-19 and normal CXR 
images obtained from public domain. The study utilized 
100 images (50:50) and the models achieved 97% accu-
racy for InceptionV3 and 87% accuracy for Inception-
ResNetV2). Moreover, an inception migration-learning 
model is used by Wang et al. [47] for the classification 

Table 2  Detection of different types of pneumonia (multiclass) using AI-driven tools

Ac accuracy, BP bacterial pneumonia, Sv sensitivity, Sf specificity, VP viral pneumonia

Reference Type of pneumonia Dataset Result

[45] COVID-19 and community-acquired 
pneumonia (CAP)

4352 CT scans (1292 of COVID-19, 1735 
of CAP, and 1325 normal CT scans)

The models achieved 90% SV and 96% SF 
for detection of COVID-19 and 87% SV 
and 92% SF for detection of CAP

[17] COVID-19 and non-COVID-19 VP 423 COVID-19, 1458 viral pneumonia, 
and 1579 normal chest X-ray images

The models achieved higher accuracies, 
sensitivities and specificities

[44] COVID-19, non-COVID-19 VP, BP 1493 non-COVID-19 viral pneumonia, 
305 COVID-19 pneumonia, 2780 bacte-
rial pneumonia

The model achieved 97.4% AC for COVID-
19 vs normal, 96.9% for COVID-19 Vs 
non-COVID-19 VP, 94.7% for COVID-19 
vs BP, and 90% for multi-class

[48] Non-COVID-19 VP and BP (strains not 
specified)

5856 chest X-ray The model achieved Ac of 96.2% accuracy 
for BP and 93.6% for non-COVID-19 VP

Table 3  Classification of CXR images (two classes) using AI-driven models

Ac accuracy, Sv sensitivity, Sf specificity, BP bacterial pneumonia, VP viral pneumonia

Reference Type of pneumonia Dataset Result

[42] COVID-19 50 COVID-19 and 50 normal CXR images The models achieved 97% accuracy for 
InceptionV3 and 87% accuracy for Incep-
tion-ResNetV2

[49] Non-COVID-19 VP (strain not specified) 5856 X-ray images The model achieved average Ac of 94.81% 
for training and 93.01% for validation

[50] Non-COVID-19 VP 453 CT scan images The models achieved validation AC of 
82.9%, SV of 84% and SF of 80.5%, 
testing AC of 73.1%, SV of 74%, and SF 
of 67%

[51] Non-COVID-19 VP 5863 Chest X-ray images The model achieved AC of 95.30%
[52] VP (COVID-19, Influenza-A) 618 CT scan images The model achieved AC of 86.7%
[46] COVID-19 185 normal CXR images and 11 COVID-

19
The model achieved 95.12% accuracy, 

97.91% sensitivity, and 91.87% specific-
ity

[47] COVID-19 453 COVID-19 CXR images The model achieved external testing accu-
racy of 73.1%, sensitivity of 74%, and 
specificity of 67%
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of 453 confirmed cases of COVID-19 with previously 
diagnosed typical pneumonia. The model achieved exter-
nal testing accuracy of 73.1%, sensitivity of 74%, and 
specificity of 67%.

The summary of the application of AI for detection of 
pneumonia such as COVID-19, bacterial pneumonia, non-
COVID-19 viral pneumonia, and normal X-ray images is 
presented in Tables 2 and 3 based on binary classifications 
and multiclass, respectively (see Table 4).

Methodology

In this section, we presented the proposed approach 
procedures and its main assumptions. The workflow of 
the proposed approach is schematically shown in Fig. 2. 
CXR images are used to train the network using pre-
trained AlexNet model for classification of (i) COVID-
19 and normal (healthy) CXR scans, (ii) bacterial and 
normal CXR scans, (iii) viral pneumonia and normal 
CXR scan, (iv) COVID-19 and bacterial CXR scans, 
(v) COVID-19, bacterial pneumonia, and normal CXR 
scans, and (vi) COVID-19, bacterial pneumonia, viral 
pneumonia, and normal CXR scans. TL on DL models 
has shown to perform efficiently even with small amount 
of dataset compared with DL models built from scratch 
which requires large amounts of dataset to reach opti-
mum performance [53].

Dataset

Even though there are more than 30 million confirmed cases 
of COVID-19 globally, the amount of CT scan images that 
are available online are very few and limited. As shown in 
Fig. 3, we obtained COVID-19 pneumonia, non-COVID-19 
viral pneumonia, bacterial pneumonia, and normal CXR 
images from the following website:

1. 153 images from GitHub (https ://githu b.com/ieee8 023/
covid -chest xray-datas et)

2. 219 images from Kaggle (https ://www.kaggl e.com/ 
tawsi furra hman/covid 19-radio graph y-datab ase). We 
removed 1 image due to low contrast, making the total 
number of images 371. We also obtained 1341 normal 
X-ray images, 1345 non-COVID-19 viral pneumonia

3. 1341 normal, non-COVID-19 viral pneumonia, 4274 
bacterial pneumonia from https ://www.kaggl e.com/
sudal airaj kumar /novel -coron a-virus -2019-datas et

4. We obtained CXR images made available by Kermany 
et al. [54]. The dataset contains three folders (training, 
validation, and testing with a total number of 5856 posi-
tive and negative cases). In each folder, there is a sub-
folder with names pneumonia and normal folders. The 
dataset description is based on X-ray images collected 
from retrospective pediatric patients between the age of 
1 and 5. The number of each CXR images used is pre-
sented in Table 4.

Model Training

For training of datasets, we employed Matlab installed 
on personal computer with 64-bit window, 8 GB Random 
Access Memory (RAM), with an intel ® Core i7-3537U and 
Graphical Processing Unit (GPU). Seventy percent of the 
datasets are used for training and 30% for testing (evaluat-
ing the model performance) as shown in Table 5. Pretrained 
AlexNet model is employed due to its high accuracy in 

Table 4  Dataset description

Type of dataset Number of 
dataset

COVID-19 pneumonia 371
Non-COVID-19 viral pneumonia 4237
Bacterial pneumonia 4078
Healthy (i.e., normal) 2882

Fig. 2  The complete workflow of the proposed method

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
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carrying out feature extraction and image classification. For 
default settings based on the stochastic gradient descent with 
momentum, the epoch count has been set to be 20 at most 
with an initial learning rate of 0.0001 according to [59].

Evaluation and Confusion Matrix

To evaluate the performance of the trained models, three 
parameters are considered: accuracy, sensitivity, and speci-
ficity. Accuracy is termed as the ratio of correctly classified 
images over the total number of images; it is also termed 
as the sum of sensitivity and specificity. For evaluating the 
accuracy and loss of a model, the following formulas are 
utilized:

(1)Loss = −
1

n

n
∑

i=1

logPC

(2)Accuracy = −
C

N

Confusion matrix is the common approach used for evalu-
ation of model performance based on true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN). 
TPs are the number of samples that are correctly identified 
by the model as positive cases or number of cases that are 
actually positive (i.e., pneumonia) according to each model. 
TNs are the number of samples that are correctly identified by 
the model as negative cases or number of cases that are actu-
ally healthy (normal) and classified as negative according to 
each model. FPs are the number of samples that are incorrectly 
classified as negative by the model or number of cases that are 
actually negative (normal or healthy) but classified as positive 
(pneumonia) according to each model. FNs are the number of 
samples that are incorrectly classified as positive (pneumonia) 
by the model or number of cases that are actually positive but 
classified as normal or healthy according to each model as 
shown in Table 6.

True positive rate (sensitivity) is the proportion of posi-
tive image samples that are correctly identified as positive 
sample (i.e., it shows the percentage of positive samples that 
are correctly identified as positives).

Fig. 3  CXR scans. 1 COVID-19, 2 non-COVID 19 viral pneumonia, 3 normal CXR scan, 4 bacterial pneumonia

Table 5  The dataset split

BP bacterial pneumonia, VP viral pneumonia

Model Training 70% Testing (30%)

Non-COVID-19 VP and 
healthy

Non-COVID 19 VP Healthy Non-COVID 19 VP Healthy
2966 2017 1271 965

BP and healthy Bacterial Healthy Bacterial Healthy
2853 2017 1225 965

COVID-19 and healthy COVID-19 Healthy COVID-19 Healthy
260 2017 111 965

COVID-19 and non-
COVID-19 VP

COVID 19 Non-COVID-19 VP COVID-19 Non-COVID-19 VP
260 2966 111 1271

COVID-19, BP and 
healthy

COVID-19 BP Healthy COVID-19 BP Healthy
260 2853 2017 111 1225 965

COVID-19, non-
COVID-19 VP, BP, 
and healthy

COVID-19 BP Non-COVID-19 VP Healthy COVID-19 BP Non-COVID-19 VP Healthy
260 2853 2966 2017 111 1225 1271 965
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False positive rate (FPR) also known as specificity is the 
proportion of positive samples that are incorrectly identified 
as positive samples (i.e., it shows the percentage of negative 
samples that are incorrectly identified as positives).

Performance Evaluation

The binary classification of COVID-19 vs healthy CXR 
images, COVID-19 vs non-COVID-19 viral pneumo-
nia, non-COVID-19 viral pneumonia vs healthy CXR 
images, bacterial pneumonia vs healthy CXR images, 
three-way classification (COVID-19 vs bacterial pneu-
monia and healthy CXR images), and four-way classifica-
tion (COVID-19 viral pneumonia, bacterial pneumonia, 
non-COVID-19 viral pneumonia, and healthy CXR) are 
presented in Table 7 and Fig. 4. Moreover, comparison 
between some of the state-of-the-art approaches with our 
models is presented in Tables 8 and 9.

Results

The datasets are divided into two: 70% used in training and 
30% used for testing. The performances of the models are 
evaluated based on testing accuracy, sensitivity, and speci-
ficity. Initially, a pilot study was carried out using 371 CXR 

(3)Sensitivity = −
TPs

TPs + FNs

(4)Specificity = −
TNs

TNs + FPs

images each for COVID-19, non-COVID-19, bacterial pneu-
monia, and healthy images. We obtained low accuracy, sen-
sitivity, and specificity due to low number of datasets. We 
carried out this study to analyze the linearity of the dataset 
by using same amount training and testing dataset due to the 
fact that we have only 371 COVID-19 CXR images. Before 
we carried out a multiclass classification, we trained each 
type of pneumonia with healthy (non-pneumonia or non-
infected) CXR images. For non-COVID-19 viral pneumonia 
and healthy datasets, we achieved 94.43% testing accuracy, 
98.19% sensitivity, and 95.78% specificity. In terms of bac-
terial pneumonia and healthy datasets, we achieved 91.43% 
testing accuracy, 91.94% sensitivity, and 100% specificity. 
This shows that the model has learned to classify negative 
images (non-infected/healthy) accurately compared with 
positive CXR images (bacterial pneumonia). Moreover, the 
majority of the recent studies focused on COVID-19 pneu-
monia and non-infected CXR dataset. Our model trained 
based on COVID-19 pneumonia and non-infected (healthy) 
CXR images achieved high performance with 99.16% test-
ing accuracy, 97.44% sensitivity, and 100% specificity. The 
CXR scan images of different types of viral pneumonia 
are similar, making it hard for radiologist to distinguish 
COVID-19 with other viral pneumonia. This limitation can 
lead to misdiagnosis and at the same time can lead to non-
COVID-19 viral pneumonia misdiagnosed as COVID-19 
pneumonia [17]. To address this limitation, we trained our 
model to distinguish between COVID-19 pneumonia and 
non-COVID-19 viral pneumonia. The model achieved 99.62 
testing accuracy, 90.63% sensitivity, and 99.89% specificity.

For multiclass dataset, before we train the whole classes, 
we examine the performance of the model based on three-
way classification (COVID-19, bacterial pneumonia, and 
healthy) to see how the model will perform before integrat-
ing non-COVID-19 viral pneumonia. The model achieved 
low accuracy compared with models trained to distinguish 
between binary classifications with 94.00% testing accuracy, 
91.30% sensitivity, and 84.78% specificity. Based on this 
result, we hypothesized to achieve lower performance based 
on four-way classification (COVID-19, non-COVID-19 viral 

Table 6  Confusion matrix

Actual

Predicted True positive ( +) False negative ( −)
True positive True + False + 
False negative False − True − 

Table 7  Performance evaluation

S/N Dataset Training accu-
racy (%)

Testing accuracy 
(%)

Sensitivity (%) Specificity (%)

I Non-COVID-19 viral pneumonia and healthy 96.43 94.05 98.19 95.78
II Bacterial pneumonia and healthy 95.28 91.96 91.94 100.00
III COVID-19 and healthy 99.71 99.16 97.44 100.00
IV COVID-19 and non-COVID-19 viral pneumonia 99.57 99.62 90.63 99.89
V COVID-19, bacterial pneumonia, and healthy 97.40 95.00 91.30 84.78
VI COVID-19, non-COVID-19 viral pneumonia, bacterial 

pneumonia, and healthy
94.18 93.42 89.18 98.92
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pneumonia, bacterial pneumonia, and healthy). However, 
the model (i.e., trained based on four-way classification) 
achieved a lower accuracy compared with three-way clas-
sification in terms of testing accuracy (93.42%) and sensitiv-
ity (89.18%) while it achieved a higher specificity (98.92%) 
compared with three-way classification as shown in Table 7 
and Fig. 4.

Comparison with the State‑of‑the‑Art

As shown in Tables 8 and 9, the performances of pretrained 
AlexNet models are compared with other proposed models. 
Compared with our work, the study carried out by Li et al. 
[45] grouped viral and bacterial pneumonia as community-
acquired pneumonia (CAP). However, our study disputes 
this approach; COVID-19 as a viral disease resembles other 
viral pneumonia. The result we achieved when comparing 
COVID-19 and other viral pneumonia has shown lower sen-
sitivity and specificity (90.63% and 99.89%, respectively) 
in comparison with COVID-19 and healthy which achieved 
97.44% sensitivity and 100% specificity. Our claim is also 
supported by Chowdhury et al. [17] who stated that “mod-
els performed extremely well when used for classifying 
COVID-19 and normal images compared to COVID-19 and 
other viral pneumonia.” Both Bai et al. [55] and Narin et al. 
[42] have also reported high degree of similarity between 
COVID-19 and other viral pneumonia when considering 
physiological and clinical prospective.

With regards to the classification of COVID-19 and nor-
mal CXR images, it can be observed that our model provides 

significantly a better performance in comparison with stud-
ies that utilized a small number of datasets such as [42, 44, 
46, 47] and models developed from scratch such as [29]. 
However, [46] achieved higher sensitivity (i.e., 97.91%) 
compared with our model (with sensitivity of 97.44%). The 
impressive performance of the model is attributed to the 
use of TL based on pretrained models with higher number 
of layers which have shown to perform efficiently with less 
amount of data in comparison with models designed from 
scratch. In terms of classification between non-COVID-19 
viral pneumonia and healthy CXR images, several studies 
utilized same datasets made available by Kermany et al. 
[54]. The majority of these studies achieved higher perfor-
mance of above 90% accuracy such as studies carried out by 
Stephen et al. [49], Saravia et al. [51], and Rajaraman et al. 
[48]. However, our model achieved result within the same 
range with 94.43% accuracy.

Conclusion

This work presents the use of deep neural network based on 
the TL approach (known as a pretrained AlexNet model) 
for automatic detection of COVID-19 pneumonia, non-
COVID-19 viral pneumonia, and bacterial pneumonia. The 
models were trained based on two binary classes and multi-
class (three and four classes). For two binary classifications, 
each of COVID-19, non-COVID-19 viral pneumonia, and 
bacterial pneumonia are classified along with healthy CXR 
images. For multiclass, the models are trained based on (1) 

Fig. 4  Performance evaluation 
of the models under study based 
on accuracy, sensitivity, and 
specificity
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three-way classification (COVID-19, bacterial pneumonia, 
and healthy CXR images) and (2) four-way classification 
(COVID-19, non-COVID-19 viral pneumonia and bacterial 
pneumonia and healthy CXR images). The models were 
evaluated based on accuracy, sensitivity, and specificity. 

However, the result has shown that for classification of 
for non-COVID-19 viral pneumonia and healthy datasets, 
the model achieved 94.43% testing accuracy, 98.19% sen-
sitivity, and 95.78% specificity. For bacterial pneumonia 
and healthy datasets, the model achieved 91.43% testing 

Table 8  Comparison between our result (based on binary classification) with the state-of-the-art

Ac accuracy, Sv sensitivity, Sf specificity, P pneumonia, VP viral pneumonia, BP bacterial pneumonia, CXR chest X-ray

Class Reference Dataset Result

Ac Sv Sf

COVID-19 and non-COVID-19 
VP

[44] 305 COVID-19 P and 1493 non-
COVID-19 VP

96.9% - -

Our model (COVID-19 and non- 
COVID-19 VP)

371 COVID-19 and 4237 non-
COVID-19 VP

99.62% 90.63% 99.89%

Non-COVID-19 VP and healthy 
datasets

[49] 5856 CXR images 93.01% - -
[50] 453 CXR images 73.1%, 74% 67%
[51] 5863 CXR images 95.30% - -
[51] 618 CXR images 86.7% - -
[48] 5856 CXR 96.2% for BP and 

93.6% for Non-
COVID-19 VP

- -

Our model (Non-COVID-19 VP 
and healthy datasets

4237 non-COVID-19 VP and 
2882 healthy datasets

94.43% 98.19% 95.78%

COVID-19 and healthy datasets [42] COVID-19 50 COVID-19 and 50 
normal CXR images

97% for Incep-
tionV3 and 87% 
for Inception-
ResNetV2

- -

[44] 305 COVID-19 P 97.4% - -
[46] 185 normal CXR images and 11 

COVID-19
95.12% 97.91% 91.87%

[47] 453 COVID-19 CXR images 73.1% 74.00% 67.00%
Our model (COVID-19 and 

healthy datasets
371 COVID-19 and 2882 healthy 

datasets
99.16% 97.44% 100%

Table 9  Multiclass comparison between our result with the state-of-the-art

Ac accuracy, Sv sensitivity, Sf specificity, P pneumonia, VP viral pneumonia, BP bacterial pneumonia, CXR chest X-ray

Reference Dataset Result

Ac Sv Sf

[45] 4352 CT scans (1292 of COVID-19, 1735 of CAP and 1325 normal CT scans) - 90% for 
COVID-19

87% for CAP

96% for 
COVID-
19

92% for 
CAP

[17] 423 COVID-19, 1458 VP, and 1579 normal chest X-ray images - - -
[44] 1493 non-COVID-19 VP, 305 COVID-19 P, 2780 BP 90% - -
Our model 

(three-way 
classification)

371 COVID-19, 4078 BP, and 2882 healthy 94.00% 91.30% 84.78%

Our model 
(four-way clas-
sification)

371 COVID-19, 4237 non-COVID-19 VP, 4078 BP, and 2882 healthy 93.42% 89.18% 98.92%
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accuracy, 91.94% sensitivity, and 100% specificity. In terms 
of COVID-19 pneumonia and healthy CXR images, the 
model achieved 99.16% testing accuracy, 97.44% sensi-
tivity, and 100% specificity. For classification of COVID-
19 pneumonia and non-COVID-19 viral pneumonia, the 
model achieved 99.62 testing accuracy, 90.63% sensitivity, 
and 99.89% specificity. For multiclass datasets, the model 
achieved 94.00% testing accuracy, 91.30% sensitivity, and 
84.78% specificity for three-way classification (COVID-19, 
bacterial pneumonia, and healthy) and testing accuracy of 
93.42%, sensitivity of 89.18%, and specificity of 98.92% 
for four-way classification (COVID-19, non-COVID-19 viral 
pneumonia, bacterial pneumonia, and healthy).

The higher performance achieved for classification of 
COVID-19 pneumonia and non-COVID-19 viral pneumonia 
and COVID-19 pneumonia with healthy CXR images has 
shown that computer-aided detection approach can be used 
as an alternative or a confirmatory approach against RT-PCR 
method which has shown to be less sensitive, time consuming, 
and laborious. One of the limitations of this research is the 
fact that we used a small dataset of COVID-19 pneumonia. 
This challenge makes it difficult to generalize our result. In the 
future, we hope to acquire more dataset and to train the images 
using deeper neural networks such as pretrained GoogleNet 
and ResNet. With the relative amount of dataset, cross valida-
tion approach can be carried out to evaluate the performance 
of the model. Moreover, hybrid models have shown to per-
form better when compared with single models. Combining 
CNN models with support vector machine (SVM) and support 
vector regression (SVR) can also improve performance of the 
model.

Compliance and Ethical Standards 

Ethical Approval This article does not contain any studies with human 
participants performed by any of the authors.
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