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Abstract: Pre-harvest sprouting is a critical phenomenon involving the germination of seeds in the
mother plant before harvest under relative humid conditions and reduced dormancy. As it results
in reduced grain yield and quality, it is a common problem for the farmers who have cultivated
the rice and wheat across the globe. Crop yields need to be steadily increased to improve the
people’s ability to adapt to risks as the world’s population grows and natural disasters become more
frequent. To improve the quality of grain and to avoid pre-harvest sprouting, a clear understanding
of the crops should be known with the use of molecular omics approaches. Meanwhile, pre-harvest
sprouting is a complicated phenomenon, especially in rice, and physiological, hormonal, and genetic
changes should be monitored, which can be modified by high-throughput metabolic engineering
techniques. The integration of these data allows the creation of tailored breeding lines suitable for
various demands and regions, and it is crucial for increasing the crop yields and economic benefits.
In this review, we have provided an overview of seed dormancy and its regulation, the major causes
of pre-harvest sprouting, and also unraveled the novel avenues to battle pre-harvest sprouting in
cereals with special reference to rice using genomics and transcriptomic approaches.

Keywords: abscisic acid; gibberellin; pre-harvest sprouting; growth hormones; rice; seed dormancy;
QTLs; transcriptomics

1. Introduction

The first crucial step in the life cycle of plants and the basis of agricultural production
is seed germination. In contrast, seed dormancy is an important agricultural trait in cereal
crops. Seed dormancy is an adaptive trait that allows seeds of many species to remain
dormant until conditions are ideal for germination. On the other hand, seed dormancy is a
complicated feature that is influenced by a variety of endogenous and external variables; it
is often referred to as one of the most poorly understood aspects of seed biology [1]. This
involves a complicated set of physiological and biochemical processes that are influenced
by both intrinsic seed dormancy and a variety of extrinsic environmental cues. The
plant hormones abscisic acid (ABA) and gibberellic acid (GA) are the major endogenous
regulators that antagonistically control the seed dormancy and germination in several
plant species [2,3]. The production of ethylene, nitric oxide, brassinosteroids, and reactions
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to light, temperature, and other external environmental factors all play a role in seed
dormancy and germination [4]. Prolonged seed dormancy can lead to overgrown plants or
weed problems in cultivated areas, while insufficient dormancy can result in premature
germination. The germination of seeds inside the kernel while the panicle is still attached to
the stem of the plant is a phenomenon known as pre-harvest sprouting [5]. It is a significant
cause of quality and productivity loss in a variety of food crops such as Zea mays, O. sativa,
and T. aestivum, especially in humid climates [6,7]. It also promotes starch hydrolysis
in endosperm, resulting in lower grain weight and creating a favorable environment for
saprophytic fungi [8]. In addition, selection for rapid, uniform germination over the
course of domestication and breeding has reduced seed dormancy and thus increased the
susceptibility of cereal plants to pre-harvest sprouting [9].

O. sativa L. is the primary and stable food source for more than half of the world’s
population. Food security therefore requires the maintaining of its production in the face
of global warming. In rice, ABA regulates seed dormancy mainly through the balance
of ABA/GA ratio [10]. The major key players of the ABA signaling pathway have been
analyzed in various plants: TaMFT and TaPHS1 in wheat [11]; ABI3, DOG1, and LEC2
in Arabidopsis [12]; VP1 in maize [13]; Sdr4, OsDSG1, OsAB13, OsAB15, PHS8, PHS9, Os-
NCED3, OsVP1, OsPDS, β-OsLCY, OsFbx352, OsMFT2, OsZDS, and OsCRTISO in rice [3].
These players associated with seed dormancy and germination are linked to the biosynthe-
sis, perception, catabolism, and signal transduction of ABA, revealing their crucial roles in
the control of seed dormancy [14]. Key enzymes responsible for catalyzing the cascading
reactions in the biosynthesis of GA, such as GA 3-oxidase (GA3ox) and GA 20-oxidase
(GA20ox), have been identified in rice (O. sativa L.), wheat (T. aestivum), Arabidopsis, and
barley (Hordeum vulgare) [15,16]. However, the exact regulatory mechanisms of these
players remain elusive. Environmental changes can also have a significant impact on rice
development and yield. For instance, prolonged rain and high humidity during rice matu-
ration can cause seed germination in rice panicles prior to harvest, resulting in significant
economic and productivity losses [17,18]. Due to the long period of rainy weather in early
summer and autumn in Southeast Asia, pre-harvest sprouting is widespread in rice [7].

Significant improvements in next-generation sequencing (NGS) have paved the way
for a promising generation of diverse omics approaches such as genomics, transcriptomics,
proteomics, metabolomics, ionomics, hormonomics, and phenomics, which have also been
well implemented in crops, especially rice [19,20]. These omics-based approaches, partic-
ularly transcriptomics with high-throughput techniques, will enable molecular analysis
of the precise systems regulating seed dormancy in rice and other crops. As a result,
comprehensive molecular processes of all components upstream or downstream of ABA
and GA signaling pathways in rice will need to be explored in the future using a blend of
genomic and genetic techniques. Keeping these lacunae in mind, in this review, we aimed
to provide an overview of seed dormancy and the role of hormones in the pre-harvest
sprouting in rice. Here, we also discuss the genes and quantitative trait loci (QTLs) and the
functional genomics of pre-harvest sprouting resistance genes with a focus on rice.

2. Seed Dormancy and Germination—A Game of Hormones

In the metabolism of plants, seed dormancy and germination are two separate bio-
chemical and physiological processes [21]. The principal physiological factors that deter-
mine the dormancy and germination of seeds are the plant hormones, predominantly ABA
and GA [22]. ABA affects dormancy formation and persistence favorably, whereas GA
increases germination. GA promotes germination by initiating embryo activity, overcoming
the mechanical restraints imposed by the aleurone or testa, and stimulating the growth of
the embryo [3]. Generally, in plants, the biologically active GA level is maintained by a bal-
ance between degradation and biosynthesis [15]. The regulatory mechanisms controlling
dormancy mitigation and seed germination are underpinned by an intricate balance in ABA
and GA metabolism and their antagonistic hormonal interactions, in which reactive oxygen
species and Ca2+-dependent signals serve as signal progenitors, integrators, or transducers.
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The ABA/GA ratio also regulates the status of dormancy in plants, whereas other hor-
mones (e.g., Jasmonates) are known to impact seed dormancy predominantly through their
effects on the ABA/GA ratio (Figure 1). During the dormancy, endogenous/exogenous
ABA levels are controlled by fine-tuning hormone production through disintegration of
carotenoid precursors and silencing by 80-hydroxylation in distinct seed tissues [23]. After
seedling establishment, ABA slows and increases sprouting over time by inducing an adap-
tive characteristic known as primary dormancy throughout seed maturity. The time period
of primary dormancy is significantly influenced by environmental variables throughout
seed development, particularly drought [24]. ABA breakdown anticipates the triggering
of seed germination besides GA following seed shedding, allowing dormancy to be lib-
erated. Evidence suggests that the ABA/GA ratio integrates environmental cues such as
daylight, temperatures, and ammonia—nitrogen, and works against embryo development
and endosperm thinning [25]. Soaking the O. sativa seeds with GA resulted in breaking the
seed dormancy [26], while the application of paclobutrazol (an antagonist of GA) delayed
dormancy in Sorghum bicolor [27].
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Figure 1. Regulatory phytohormone networks in seed dormancy and seed germination. Three major phytohormones,
including auxin, abscisic acid (ABA), and gibberellin (GA), are key players in seed dormancy and germination. Mature
seeds are dormant and contain a high level of ABA and a low level of GA. Several transcription factors (ABI4, DDF1,
OsAP2-39, AP2, and CHO1) are involved in the seed dormancy stage by positively regulating (+) the accumulation of
ABA and decreasing the GA content. While seed dormancy is broken, the seed becomes nondormant and the initiation of
germination can start. At this stage, the ABA/GA balance is kept by positive and negative regulation signals of almost all
other phytohormones, including ethylene (ET), brassinosteroids (BRs), jasmonic acid (JA), salicylic acid (SA), cytokinins
(CTKs), and strigolactones (SLs). Here, transcription factors including ARFs, MYB96, ABI3, ABI4, and ABI5 regulate ABA
biosynthesis by interacting with CYP707A1 and CYP707A2, while GA-negative regulation (-) is ensured by DELLA genes.
The balance is constantly maintained until the seed emergence step.



Int. J. Mol. Sci. 2021, 22, 11804 4 of 22

PYR-like/regulatory PYR-like/ABA receptor components are found in seeds and
vegetative organs, and they internalize and regulate protein phosphatase 2C when ABA
is present. This multigene family is involved in ABA sensing both in seeds and vegeta-
tive tissues. As protein phosphatase 2C is inactive, this permits SNF1-related kinase-2
to become activated, which then causes SNF1-related response elements to bind to their
promoter regions [28]. DELAY OF GERMINATION-1 (DOG-1) is a master regulator of
primary dormancy that acts in concert with ABA to delay germination [29]. In order for
DOG-1 to maintain primary dormancy, it needs protein phosphatase 2C, which is provided
by ABA. DOG-1 boosts ABA signaling through interacting with the protein phosphatase
2C ABA HYPERSENSITIVE GERMINATION, where DOG-1 (by using DOG1–heme com-
plex) inhibits its activity to elevate ABA sensitivity and imposes primary dormancy. Heat
stress during grain filling had almost no effect on OsDOG1-like gene expression in imbibed
embryos, but the genes OsNCED2 and OsABA8′OH3 play the most important roles in ABA
biosynthesis [30,31]. During early grain filling, the resistant cultivars slow the seed ger-
mination and are independent of primary dormancy release, though susceptible cultivars
generate greater grain chalkiness when subjected to heat stress [32]. DNA methylation
of ABA catabolism-related and alpha amylase gene promoters inhibits the germination
of heat-stressed embryos in plants toward abiotic stress, notably during the grain filling
process [31]. The functions of two new genes, viz. ABA-DEFICIENT-4 and NEOXANTHIN-
DEFICIENT-1, are uncharacterized and precludes neoxanthin production, which is essential
for ABA accumulation [33].

According to hormone balance theory, as ABA signaling drops significantly within
a week of seed maturation, GA signaling increases, which finally leads to seed germina-
tion [34]. Previous dormancy research in model crops and cereals have shown a clear link
among both ABA and GA signaling and seed dormancy and dormancy loss, laying the
groundwork for dormancy control in several other crops. Previous studies have impor-
tantly pointed out that: (i) during dormancy breakdown, ABA levels and/or sensitivity
decrease, whereas susceptibility to GA increases; (ii) GA-insensitivity is linked to a lack
of germination percentage in dormant seeds at seedling emergence, while GA stimulates
germination in nondormant seeds; (iii) dormancy is abandoned in cycles when dormant
seeds after-ripen, as shown by variations in sensitivity to ABA and/or GA [35,36]. For the
gene that controls transcription in the aleurone zones of H. vulgare, O. sativa, T. aestivum, as
well as other cereals, GAMYB promotes alpha amylase gene expression in a GA-dependent
approach [37]. Dormancy is sustained and rigorously modulated by hormonal signaling
networks that are controlled. Few investigations have proved that increased GA produc-
tion and hormone biosynthesis caused by GA20-Oxidase gene expression level lower ABA
sensitivity and enhance GA sensitivity after ripening, whereas as dormancy decreases,
the expression of GA2-oxidase, a GA catabolism gene, tends to decrease. In addition,
with after-ripening, the GA-INSENSITIVE DWARF-1 hormone receptor increases, and
when dormancy is lost, ABA hormone accumulation diminishes due to increased ABA
catabolism [36]. Additional hormones, also including jasmonic acid isoleucine, brassinos-
teroid, and indole-3-acetic acid (IAA), have lately been involved in seed dormancy and
consequently germination or premature germination on the spike [38].

During seed maturation, plant hormones positively regulate reserve accumulation,
inhibit embryo growth, and induce the desiccation tolerance and primary dormancy. Over
the last few decades, significant efforts have been undertaken to comprehend the plant
hormone communication pathways that govern dormancy and germination. Hormone
signaling pathways governing dormancy and germination have been intensively studied
only over the last few years. Thus, it is clear that additional research is needed to learn
about hormone transport and communication, as well as biophysical and mechanical
tissue characteristics, which all point to the importance of tissue-specific control and the
interaction of signals during this critical stage of seed dormancy and germination. Recent
studies in cereal genomics have opened the floodgates to unravel the key players involved
in ABA and GA signal transduction pathways and metabolism. Further, studies on ABA-
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GA cross-talks in cereal crops have been one of the novel avenues to dissect the molecular
dynamisms in the functionalities of seed germination and dormancy [3,39–41].

3. Pre-Harvest Sprouting

Cereals are the most important crops around the globe with an annual production
over 2788 million tons [42]. Thus, cereals and their production are major bottlenecks by the
large spectrum of environmental stressors, including the phenomenon of germination of
grains, soon after maturation in the mother plant under wet/humid conditions, referred to
as pre-harvest sprouting. It is often associated with severe yield losses and poor quality of
grains in a wide range of cereals such as rice, wheat, maize, barley, rye, and oats [41,43–45].
Pre-harvest sprouting is a massive worldwide agricultural issue that has now been docu-
mented in Australia, Canada, China, Europe, Japan, South Africa, and the United States
where it causes an annual economic penalty of one billion dollars on a global scale [46].
It occurs when the temperature and moisture levels are suitable for sprouting. Energy
is produced in the grain by the breakdown of the primary store components, starch and
protein, allowing the shoot to expand if the external environmental parameters for sprout-
ing are met [18,47]. In addition to that, pre-harvest sprouting is mainly directed by both
genetic and environmental factors, as well as interactions between these mentioned factors.
High-pre-harvest-sprouting-resistance breeding varieties have significant implications for
minimizing the yield loss and enhancing grain quality. The ever-increasing advancements
in the genomic repositories/databases of rice and other crops integrated with transcrip-
tomics and proteomics technologies have broadened our perspective for unravelling the
physiological and functional regulatory mechanism of pre-harvest sprouting resistance at
both transcriptomics and post-transcriptomics levels [45]. Further, pre-harvest sprouting
resistance is associated with diverse physiological, developmental, and morphological
features of grains on the spike, including pericarp color transparency, seed dormancy,
permeability, enzymatic activity such as α-amylase, and hormone levels such as ethylene,
ABA, and GA, all of which play a role during this process [48]. Several other factors, includ-
ing hairiness, waxiness, and germination inhibitory compounds, enveloping the grains and
ear morphology have also been associated with resistance to pre-harvest sprouting [49].
Among these, seed dormancy is the significant factor that controls the resistance. Therefore,
alternative strategies and much attention have been subjected to deciphering the molecular
cross-talks of seed dormancy as a means to enhance resistance in rice and other cereals
through breeding programs.

4. Factors Affecting Seed Dormancy and Pre-Harvest Sprouting

Agricultural production must be progressively raised to improve human adaptation
to hazards as the global population grows and natural disasters become more common.
Even though the shorter dormancy period is believed to have enhanced the commercial
productivity of cereals such as O. sativa, H. vulgare, T. aestivum, and Z. mays, the rapid
germination percentage has led to pre-harvest sprouting in places with more rainfall,
leading to economic consequences [46]. Pre-harvest sprouting, which occurs when embryos
with less or no dormancy are exposed to external variables (a rain event) before harvest
and germination on the spikelets, is an important evolving problem that impacts the end-
use quality among several cereals [34,50]. One of most common methods of describing
pre-harvest sprouting in model species and crops is the disruption of primary dormancy.
In many crops, the absence of dormancy has resulted in lower productivity because seeds
germinate too early before harvest, revealing a major knowledge gap in the control of
seed dormancy.

Environmental factors such as light, temperature, and hydration along with physio-
logical and biochemical characteristics influence not only the severity of primary dormancy,
but also the features of secondary dormancy and the time necessary for effective dormancy
emergence [51]. While certain plant species with dormant seeds have received the most
recognition, hundreds of others have no seed dormancy and sprout viviparously mostly on
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the mother plant or soon after distribution. Plant physiology has been linked to the preva-
lence of recalcitrance and vivipary in a variety of plant species. Such plants’ biochemical
and physiological properties are essential controls of seed physiology, which coordinate
behaviors of the seedling and maturing plant to respective environmental conditions [52].
Desiccation-intolerant embryos have developed several times in different genera and are
most prevalent in species that live in damp or flooded habitats. Natural selection in wet-
lands may not be able to remove certain seed varieties, or it may choose for abnormalities
in hormone physiology that impact both maternal and embryonic cells simultaneously.
The ratio of GA:ABA within the seeds is intimately connected to the influence of light on
seed dormancy and germination. A. thaliana seed germination is selectively regulated by
photoreceptor phytochromes in red or far-red light, while H. vulgare seed germination is
inhibited by photoreceptor cryptochromes in blue light [53]. Blue light transduced over the
cryptochrome blue light receptor can increase dormancy in H. vulgare by inducing the ABA-
synthesizing enzyme 9-cis-epoxycarotenoid dioxygenase and decreasing the expression of the
ABA-catabolizing enzyme 8′-hydroxylase, while red/far-red light showed no effect [54].

Using suitable procedures to prepare seeds for harsh circumstances is thought to be a
good approach to decrease the negative impacts of environmental stressors on the plant
while also increasing output. The seed priming methodology is one of the best approaches
that has gained a lot of attention lately. Researchers have looked at the use of priming as a
way to increase germination and seedling establishment in plants, including Z. mays, O.
sativa, T. aestivum, and Stevia rebaudiana [55]. Plant seeds can sense environmental factors,
viz. temperature, oxygen, and light, in both space and time [56]. A. thaliana accessions
grown in cold environments tend to start DOG-1 expression prior to seed maturation.
DOG-1 is implicated in the development of primary dormancy in the planting material
in response to the cold seed-maturation temperatures. As a result, DOG-1 is expected
to be sensitive to the environment [57]. DOG-1 gene research is complicated by the fact
that it influences flowering and drought tolerance. DOG-1 and primary dormancy status
are both elevated after exposure to cold stress in maternal plants during seed develop-
ment [58]. Seed dormancy and climate-dependent germination require competence to
control germination time in natural environments. However, the level of dormancy cycling
for many species in the field is not quantitatively related to environmental, physiological,
and biochemical characteristics.

Low temperature raises grain susceptibility to pre-harvest sprouting via a number of
regulators, with 10 ◦C causing a significant increase in the expression of DOG-1, which may
also boost GA2ox6 expression in Arabidopsis seed development. OsSdr4 controls seed dor-
mancy in O. sativa via the OsDOG1L-1 pathway [59], which was revealed very recently in A.
thaliana [60]. Cold temperatures have been shown to affect the quantity of phytohormones
in O. sativa seeds. Low temperature (15 ◦C) upregulated the OsGA2ox2, OsGA2ox5, and
OsNCED2 genes through a reduction in the GA:ABA ratio, resulting in a lower germination
percentage [61]. Cold stratification (4 ◦C) of T. aestivum has upregulated the jasmonate
genes of TaAOS and TaAOC, which block the expression of the ABA-synthesizing genes
TaNCED1 and TaNCED2 and increase seed germination [62]. Cold stress causes jasmonate
synthesis, and methyl jasmonate stimulates dormancy breaking in dormant seeds, whereas
methyl jasmonate prevents germination in after-ripened seeds. Differential temperatures
interrupt the seed dormancy more efficiently than constant cold stratification for equal
time intervals. This suggests that changing temperatures are instructional for plant growth,
and that plants prefer to adapt to the temperature to enhance their tolerance and break the
dormancy [63].

Physical characteristics including seed coat color, awn presence or absence, and epi-
cuticle waxes have consistently been associated with variations in pre-harvest sprouting
frequency [38]. In addition, various biochemical characteristics influenced during germina-
tion cause poor product qualities of cereal crops. Pre-harvest glyphosate treatment may
have an influence on the biochemical and nutritional features of wheat bran and proteins,
perhaps by disrupting biochemical processes essential for starch and protein stacking,
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resulting in variations in seed quality attributes [64]. Even though the molecular foun-
dation for the physiological impacts is recognized, the genes associated with pre-harvest
sprouting are less understood. Several studies have revealed that QTLs and various bio-
chemical systems implicate a complex series of genes. The causative genes are frequently
overlooked [38,65]. Some variables that alter dormancy and pre-harvest sprouting via
signal transduction or amino acid activity have been discovered. The enzyme alanine
transaminase, which interconverts glutamate to alanine, has been reported to enhance
dormancy in H. vulgare, although the pathway is unknown [66]. The efficiency of amino
acids in both H. vulgare and T. aestivum was reduced by a bifunctional α-amylase/subtilisin
inhibitor from H. vulgare. While T. aestivum and Secale cereale were discovered to have genes
that were similar to those found in H. vulgare, none of the cultivars examined resembled
the same substantial decrease in activity [67].

5. Pre-Harvest Sprouting in Rice

Due to the excessive rainfall during grain maturation, pre-harvest sprouting is widespread
in rice, especially in southwest Asian countries. In addition, the inhibitory effect of eugenol
on hybrid rice seed germination and pre-harvest sprouting due to a significant reduction
in α-amylase activity has been reported recently [26]. The frequency of incidence of pre-
harvest sprouting has been known to increase primarily after the yellow-ripe stage of grain
filling, which is thought to be influenced by the steady reduction in ABA content from
its peak point at a given point during grain development until maturation. Further, the
likelihood of sprouting is increased after heading once a certain temperature has been
reached [68,69]. Rice develops the potential to sprout when it reaches the late grain filling
stage, that is, after a certain amount of time has passed since grain filling was completed.
In spite of inter-cultivar variations, this period in time occurs when above 50% of rice
grains can sprout, roughly 35–45 days after heading and following the attainment of an
accumulated temperature of 800–900 ◦C [70]. Furthermore, ABA content, which is associ-
ated with pre-harvest sprouting resistance and plays a role in seed dormancy, peaks about
5–15 days after heading and subsequently declines as grain filling progresses. In addition,
upon high-temperature grain filling, granule-bound starch synthase activity diminishes,
resulting in milled grain with low amylose content, high free-sugar content, and low starch
crystallinity with rapid water absorption, all of which are possible causes for increasing
the rate of pre-harvest sprouting [70]. It has a wide variety of negative implications, from
instant loss of seed viability upon desiccation to a significant reduction in seed lifetime
when embryo growth has not progressed that much. Pre-harvest sprouting initiates the
synthesis of enzymes that increase reserve mobilization, resulting in significant changes in
grain quality [8,51].

In rice and wheat crops, a link between dormancy and pericarp color has been estab-
lished, with red-grained varieties showing increased resistance to pre-harvest sprouting.
Two loci that affect the red-colored grain in rice have been found through genetic studies,
one of which encodes a basic helix–loop–helix transcription factor that causes enhanced
dormancy when introduced into white-grained rice [7,71]. A pleiotropic gene that affects
ABA and flavonoid production in early seed development is shown to influence seed
coat-induced dormancy, which is linked to pericarp color in lower epidermal cells [72].
In addition to organic substances, seed coat impermeability to water and/or oxygen is
emphasized in the research of seed dormancy [73]. The increased frequency of severe
weather events such as torrential rainstorms and typhoons has raised the risk of pre-
harvest sprouting in rice [17,74], prompting further research into pre-harvest sprouting
mechanisms, QTLs, and key regulatory genes with the aim of developing rice cultivars
with improved resistance [45,50,59,71,75]. The QTL/key players are essential for gene
pyramiding in breeding programs. Still, the functional and regulatory mechanisms are
far from clear, which is why the progress in developing rice and other cereals pre-harvest
sprouting resistance is inadequate.
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6. Omics Approaches for Pre-Harvest Sprouting in Rice

Genomics-assisted breeding is one of the promising approaches to overcome pre-
harvest sprouting and raise the yield potential to the level required to meet the fast-
increasing global demand. During the last two decades, tremendous advances have been
carried out with the identification of useful resistance/dominance genes. In Figure 2, we
illustrate an overview of diverse genomics-assisted breeding approaches for effectively
exploiting genomics research for pre-harvest sprouting resistance detection. The first and
foremost stage in this process relied on the characterization of germplasm for the identifi-
cation of promising genetics resources. The breeding program depends on the persistent
phenotypic selection of resistant and susceptible parents to generate improved populations
for further breeding processes. The genetic resources include contrasting materials derived
from O. sativa subsp. japonica and indica varieties. In addition, wild relatives including
O. rufipogon [76] and O. nivara [77] and weedy rice [78] were also employed. However,
wild crop relatives’ usage for crop improvement remains a big challenge mainly due to
hybridization barriers [79]. The genomics approach appears as a promising strategy, specif-
ically for complex traits as it is less expensive and time-efficient [80]. The researchers are
moving forward to the application of genomic selection such as estimating breeding values,
developing improved models for prediction of parent and variety selection, as well as using
various genetic and genomic approaches toward accelerated breeding [81]. The studies of
the earlier detection of pre-harvest sprouting-related QTLs relied mostly on RFLP and SSRs
markers. The recent progress of genetic studies based on molecular markers in pre-harvest
sprouting, seed dormancy, low-temperature germination (LTG), and germination index
(GI) is summarized in Table 1. Thus far, a total of 185 QTLs have been detected within all
the 12 chromosomes of the rice genome (Table 1). Although MAS is an effective tool in
modern plant breeding, it has been limited to simple traits with monogenic or polygenic
inheritance in crops such as rice [82]. At an early stage of pre-harvest sprouting gene
discovery, comparative genomics was also tested. The identification of orthologous genes
by comparison with well-characterized pre-harvest sprouting and seed dormancy genes in
barley and wheat revealed the presence of the hormonal GA20-oxidase-encoding gene [8].
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variety selection, as well as using genome-wide association studies (GWASs), marker-assisted selection (MAS), QTL studies,
recombinant inbred lines (RILs), backcross inbred lines (BILs), chromosome segment substation lines (CSSLs), three-way
cross hybridization, and double haploidy (DH) toward accelerated breeding.
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Table 1. Summary of quantitative trait loci and genome-wide association studies for pre-harvest sprouting-related traits identified in rice.

Specialization
of Study Traits QTL/Genes Growth

Condition
Markers

Type
Markers

No.
Mapping

Population Parents References

QTL

PHS qPHS-1-1, qPHS-1-2, qPHS-4,
qPHS-5, qPHS-7, qPHS-8

NG, Yellow and
White paper bag RFLPs 6 71 F6 RILs IR64 (Indica) × Asominori

(Japonica) [83]

PHS qPHS1-1FC, qPHS1-2FC,
qPHS1-1GC, qPHS1-2GC

FC, GH SNPs 8 88 F2:3 RILs
Jinsang (Japonica) × Gopum

(Japonica) [84]SD qSD1-1, qSD1-2

LTG qLTG1-1, qLTG1-2

SD qSDR9.1 and qSDR9.2 FC SNPs 2 44 BC4F5 CSSLs Owarihatamochi (Japonica) ×
Koshihikari (Japonica) [85]

PHS qPHS-3FD, qPHS-11FD, qPHS-3GH,
qPHS-4GH, qPHS-11GH FC, GH KASP, CAPS,

SNPs 5 F9 160 RILs Odae (Japonica) × Unbong40
(Japonica) [86]

PHS RM4108-RM5849, RM3455-RM6905 FC SSRs, SNPs 2
79 N-BILs, 48

BC3F1 N-CSSLs,
41 BC4F1 K-CSSLs

Nipponbare × Koshihikari
(Japonica) [87]

SD C1488, R830, R1440, R1245, C390 FC RFLPs 5 98 BC1F5 Nipponbare (Japonica) ×
Kasalath (indica) [88]

LTG qLTG-2, qLTG-4-1, qLTG-4-2,
qLTG-5, qLTG-11 FC RFLPs 5 98 BILs Nipponbare (Japonica) ×

Kasalath (indica) [89]

SD qSD-3, qSD-5, qSD-6 qSD-11 FC RFLPs, SSRs 4 127 Double
haploid (DH) lines

ZYQ8 (indica) × JX17
(Japonica) [90]

SD qSD-1, qSD-3, qSD-7 FC SSRs 3 166 F1, 12 F2,
IR50 (indica) × Tatsumimochi

(Japonica) ×Miyukimochi
(Japonica) 3-way Breeding

[91]

SD qSdn-1, qSdnj-3, qSdn-5,
qSdn-7, qSdn-11 FC SSRs 5 168 BC1, 82 BC1,

148 F2 individuals

Nanjing35 (Japonica) × N22
(indica) and USSR (Japonica) ×

N22 (Indica)
[92]

PHS qPSR-2, qPSR-5, qPSR-8 FC SSRs 3 164 F2 K81 × G46B [93]
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Table 1. Cont.

Specialization
of Study Traits QTL/Genes Growth

Condition
Markers

Type
Markers

No.
Mapping

Population Parents References

QTL

SD

qDOR-2, qDOR-3-1, qDOR-3-2,
qDOR-3-3, qDOR-5-1, qDOR-5-2,
qDOR-6-1, qDOR-6-2, qDOR-8,

qDOR-9-1, qDOR-9-2, qDOR-11-1,
qDOR-11-2, qDOR-11-3, qDOR-11-4,

qDOR-11-5, qDOR-11-6

FC RFLPs 17 125 F7 RILs Pei-kuh × O. rufipogon [94]

LTG qLTG-3, qLTG-10 GC SSRs 2 198 Double
haploid F1

Zhenshan 97B (indica) ×
AAV002863 (Japonica) [95]

LTG
qLTG-3, qLTG-4, qLTG-5-1, qLTG-5-2,
qLTG-5-3, qLTG-5-4, qLTG-7, qLTG-9,

qLTG-10, qLTG-11-1, qLTG-11-2
GC SSRs 11 148 F2 USSR5 (Japonica) × N22

(Indica) [96]

GR qGR-2, qGR-3, qGR-11, qGR-12,
qGR-2, qGR-10, qGR-11, qGR-7

GC RFLPs, SSRs 13 71 F6 RILs
IR64 (Indica) × Asominori

(Japonica) [97]GI qGI-2, qGI-7, qGI-10, qGI-11

MGT qMGT-2

SD qSd-1, qSd-2, qSd-1-1, qSd-1-2 GC SSR 4 122 BILS, 536
BC6F2

N22 (Indica) × Nanjing35
(Japonica) [98]

SD Sdr6, Sdr9, Sdr10 CC (Short Day) SSRs 3 44 CSSLs, 87 F2
RILs

Koshihikari × Nona Bokra,
F2 population of SL506 ×

Koshihikari
[99]

LTG

qLTG-7, qLTG-9, qLTG-12,
qLTG-7, qLTG-9

(Os09g0395600,Os09g0396300,Os09g0396900,
Os09g0395700, and Os09g0395800)

FC SSRs 5 F7 RILs, 181
individuals

USSR5 (Japonica) ×
N22 (Indica) [100]

SD qSD-3.1, qSD-6.1, qSD-7.1, qSD-10.1 FC RFLPs 4 98 BILs, 4 CSSLs Nipponbare × Kasalath [101]

SD qSD1.1, qSD2.2, qSD4.1, qSD4.2,
qSD5.1, qSD2.1, qSD3.1, qSD7.1 FC SSRs 8 150 RILs (F2:9) Jiucaiqing (Japonica) ×

IR26 (Indica) [102]

LTG qLTG3, qLTG7-1, qLTG7-2,
qLTG12, qLTG8 FC SSRs, STS 5 160 RILs Tong88-7 ×Millyang23 [103]
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Table 1. Cont.

Specialization
of Study Traits QTL/Genes Growth

Condition
Markers

Type
Markers

No.
Mapping

Population Parents References

QTL

SD qDGE1, qDGE5a, qDGE5b, qDGE7 FC RFLPs, SSRs 4 240 RILs ZS97 ×MH63 (Hybrid
Shanyou 63) [104]

LTG qLTG-3-1, qLTG-3-2, qLTG-4 FC SSRs 3 F1 BC1F1, 122
BILs BC1F5

Hayamasari (Japonica) ×
Italica Livorno (Japonica) [105]

SD qSDS-4, qSDS-6, qSDS-7,
qSDS-8, qSDS-12 GH SSRs 5 BC1

EM93-1 X EM93-1 (indica-type
Breeding line) × SS18-2

(indica wild-type weedy rice)
[106]

SD qSD4, qSD7-1, qSD7-2, qSD8, qSD12 GH SSRs 5 F1, 156 BC1 SS18-2 (weedy Rice) ×
EM93-1 (Cultivated rice) [107]

SD qSD1-2, qSD3, qSD6, qSD7-2, qSD10 GH SSRs 5 BC1F1 SS18-2 × EM93-1 [108]

SD qSD1, qSD3, qSD4, qSD7-1, qSD7-2,
qSD7-3, qSD10, qSD11, qSD12 FC SSRs 9

BR RIL 198
indivuduls, CR

RIL 174
individuals F8:9

generation

s Bengal × PSRR-1; Cypresss
× PSRR-1 [109]

SD,
PHS
(R)

qSDR9.1, qSDR9.2 FC SSRs 2 44 BC4F5, CSSL Owarihatamochi ×
Koshihikari [85]

SD

qDOR-2, qDOR-3-1, qDOR-3-2,
qDOR-3-3, qDOR-5-1, qDOR-5-2,
qDOR-6-1, qDOR-6-2, qDOR-8,

qDOR-9-1, qDOR-9-2, qDOR-11-1,
qDOR-11-2, qDOR-11-3, qDOR-11-4,

qDOR-11-5, qDOR-11-6

FC RFLPs 17 189 F2, 158 F2
progency Pei-kuh × O. rufipogon [94]

SD qSD1-2 (* Map-based cloning) CC SSRs 1 BC5F3 F2 RIL EM93-1 (Indica) × SS18-2
(weedy rice) [110]

LTG qLTG3–1 (* Map-based cloning) CC SSRs, SNP,
Indels 1 BILs 116 Hayamasari × Italica Livorno [111]

SD Sdr4 (* Map-based cloning) CC FNPs, SNPs,
Indels 1 28 BC4F2 Nipponbare (Japonica) ×

Kasalath (Indica) [59]
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Table 1. Cont.

Specialization
of Study Traits QTL/Genes Growth

Condition
Markers

Type
Markers

No.
Mapping

Population Parents References

QTL PHS

Sdr6, qSD-1, qSD1, qDEG1, qSdn-1,
Sdr1, qDT-SGC3.1, qSD-3, qSdn-5,

qMT-SGC5.1, Sdr9, qDOR6-2, qSD6,
SDR4, qMT-SGC7.2, qSD-7-2,

qPHS-7, qSD12, qLTG3-1

FC GBS 6 21 Japonica (14) Indica (7) [14]

GWAS PHS

Os01g03740, Os01g03730,
Os01g03820, Os01g03840,
Os01g03890, Os01g03914,
Os01g03950, Os04g08460,
Os04g08470, Os04g08570

FC SNPs 10 Indica, Japonica 277 accessions [70]

SD
RM6902, RM525, RM231, RM5963,

qSD7-1, FHS7.0, RM234,
FH8.1, qSD-11

FC SNPs Indica 453 accessions [112]

SD

GA2ox3, GH3–2, EUI1, Sdr4,
GA2ox3, OsEF3, OsbohE, OsISA,

OsHPL2, EXP4, OsMADS13, AP59,
OsAsr1, OsABI5, OSH43, Pid3,

OSH43, OsCLC-1, OsLHY, OsBOR1

FC SNPs 20 Indica, Japonica,
Aus 350 accessions [113]

* Seed dormancy (SD), Normal Growth condition (NG), Growth chamber (GC), Green House (GH), Mean germination time (MGT), Controlled condition (CC), Simple sequence repeats (SSRs), Genotyping by
sequencing (GBS), Restriction fragment length polymorphism (RFLP), Pre-harvest sprouting (PHS), Genome-wide association studies (GWASs), low-temperature germination (LTG).
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Transcriptomics studies are considered an effective method for comparative transcrip-
tome profiling, providing insight into the mechanism of gene regulation and networks
controlling various complex biological processes, especially signal transduction [86]. High-
throughput methods have been used to accurately characterize and quantify the complete
set of RNAs in a given organ such as panicle, embryo and endosperm, tissues, or cells in
different rice materials [114–117]. To determine the genes involved in pre-harvest sprout-
ing and the corresponding biological processes such as seed dormancy, germination, and
maturation, RNA and small-RNA sequencing were performed with different genotypes
(Table 2). Candidate genes regulating hormones such as ABA (Figure 3A), GA (Figure 3B),
and IAA were highlighted. These include transcription factors such as DREB (dehydration-
responsive element-binding protein), basic helix–loop–helix transcription factor (bHLH),
late embryogenesis abundant protein (LEA), NAC transcription factor, and CCAAT-HAP3
transcription factor and AP2-EREBP, highlighting the contribution of transcription factors
as among the major players in mediating hormonal expression. It is well known that
microRNAs (miRNAs) are dependent on hormonal regulation in plants [118]. Recently,
Park et al. [117] identified two candidate miRNAs (osa-miR5827 and osa-miR1862h) associ-
ated with two pre-harvest sprouting-related genes OsFbox594 and OsbHLH084, respectively.
In addition to transcription factors, NCED (OsNCEDs) and CYP (OsCYP707As) genes were
differentially expressed by comparing the transcriptome profiles of Korean cultivars [119].

Table 2. Application of next-generation sequencing technologies on pre-harvest sprouting in rice.

Category Material
Plant Organ/

Developmental
Stage

Study
Objective Methodology Reference

PHS

Gopum
(PHS-susceptible)

and Jowoon
(PHS-resistant)

4 embryo and
endosperm miRNA PHS RNASeq and small RNASeq

(Illumina HiSeq 2500) [117]

SD Nona Bokra Seeds (dormant and
dormant broken) SD RNASeq (Illumina Hiseq

2000) [116]

PHS Gopum and
Samgwang Caryopses PHS, SD Microarray (Agilent DNA

Microarray Scanner) [114]

SD Cultivar N22
and Q4646 Seeds SD

GeneChip arrays (Affymetrix
Fluidics Station 450 and
GeneChip Scanner 3000)

[120]

Germination Cultivar N22 Seedlings GHT RNASeq (Ion Proton
sequencer) [115]

PHS Joun and Jopyeong Seeds PHS RNASeq [119]

Germination at high temperature (GHT); Pre-harvest sprouting (PHS); Seed dormancy (SD).

High-quality genome resources enabled the detection of pre-harvest sprouting-related
genes via GWASs and genome-wide identification approaches. Zhu et al. [121] pinpointed
the role of the bZIP transcription factor OsbZIP09, whose expression is induced by ABA.
The mutation of this gene inhibited pre-harvest sprouting in rice. By mining GWASs and
transcriptome data, Shi et al. [122] found a significant effect of the variation in SNPs in
the promoter region of the Os9BGlu33 gene regarding germination index. In the same
vein, taking advantage of a worldwide rice subpopulation, including japonica and indica
populations, Magwa et al. [113] investigated candidate genes relative to seed dormancy
by genome association analyses. A total of 54 loci were identified from which strong
associations were mentioned with already cloned GA/IAA inactivation genes, includ-
ing GH3-2, GA2ox3, and EUI1. Interestingly, one locus was found near the well-known
pre-harvest sprouting resistance gene Sdr4. Using the GWAS approach on a 277-japonica
rice panel, Lee et al. [70] pointed out ten candidate loci responsible for pre-harvest sprout-
ing resistance. The candidate loci were predicted to be involved in ABA, GA, and IAA
signaling pathways.
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Figure 3. Regulatory networks of abscisic acid (ABA) and gibberellic acid (GA) of pre-harvest sprouting (PHS) in rice.
(A) High accumulation of ABA in seeds can reduce the risk of PHS advent. At an early stage of ABA biosynthesis, beta
carotenoid acts as a precursor with the conversion of geranylgeranyl pyrophosphate (GGPP). ABA signaling is regulated by
downstream transcription factors such as OsbZIP, OsWRKY29, Rc(bHLH), OsWD40, TRAP1, and OsAP2-39. (B) Regulatory
networks of gibberellin (GA) regulation of PHS in rice. Increased content of GA in seeds induce PHS. At an early step of GA
biosynthesis, CPS-like, KS-like, and KO-like genes convert geranylgeranyl diphosphate (GGDP) to intermediate GA. The
main core of GA synthesis in rice is defined by the complex GA1—OsGID1-OsSLR1-OsGAMYB. The red color of GA was
predicted in Arabidopsis thaliana [123] (+++ is high hormone concentration whereas — is low hormone concentration of both
ABA and GA respectively).

From those large genetic and genomic resources, few candidate players have been
functionally validated. Sugimoto et al. [59] identified the Sdr4 gene as responsible for
seed dormancy control. Interestingly, OsVP1 exhibited a regulatory effect on the Sdr4
gene via the ABA signaling pathway [3]. Transcription factors also play a crucial role
for regulating the signal transduction and hormonal expression in rice. Hobo et al. [124],
Wang et al. [9], and Wu et al. [125] demonstrated the interaction between VP1 and TRAP1
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(bZIP transcription factor) and Rc (basic helix–loop–helix (bHLH) transcription factor)
genes for ABA regulation. In addition, Xu et al. [62] demonstrated the implication of the
glutaredoxin-mediated gene PHS9 acting as a negative regulator of both ABA and ROS
signaling during seed germination. The authors suggested a combinatory action of PHS9
with OsGAP for reducing ABA signaling via the interaction with ABA receptor OsRCAR1
(detailed in Figure 3A). The AP2 TF OsAP2-39 was also functionally validated through an
RNAi approach as a regulator of ABA and GA genes (OsNCED1 and OsEU) during seed
dormancy [126].

7. Conclusions and Future Perspectives

In conclusion, ABA and GA act as hubs linking internal and external signals and
antagonistically regulating pre-harvest sprouting. Advancements in our knowledge of
the molecular mechanisms linked to dormancy, as well as quantitative genetics-based
techniques, will enable new approaches for introducing the necessary level of dormancy
into rice. Except in rice, mutant libraries that focus on seed dormancy and germination in
few crop species have been developed [43]. Thus, creating mutant libraries in rice will be
critical for future research. Furthermore, mutant analysis, as well as map-based cloning
of the important gene loci, might bring new information about the seed dormancy in
rice. Thus, genetic improvement for pre-harvest sprouting resistance requires a degree of
primary seed dormancy recovery that is neither too strong nor too weak [5,9].

Considering the importance of environmental effects on seed dormancy and germina-
tion, we suggest a comparative investigation of the epigenome of pre-harvest sprouting-
resistant and susceptible rice cultivars. In fact, increasing evidence has been in favor of DNA
and histone methylation in regard to the pre-harvest sprouting resistance genetic mecha-
nism [127,128]. The role of the ARGONAUTE4_9, a DNA methylation RNA-dependent
gene, has been proved in the wheat pre-harvest sprouting resistance mechanism. How-
ever, the epigenetic framework of pre-harvest sprouting in rice is still elusive. Therefore,
deciphering the epigenetic factors contributing to the pre-harvest sprouting resistance
regulation in rice will lay a foundation for a deep understanding of the full machinery in
real environmental cues. Moreover, an intensive validation of the existing candidate genes
should be processed via CRISPR-Cas9 [129], RNAi [130], and super-Agrobacterium tumefa-
ciens-mediated transformation [131] as a notable example. Altogether, post-transcriptional
regulation encompassing, splicing RNA, and epigenetics offer novel avenues for unrav-
elling the mechanism of resistance of pre-harvest sprouting in rice. Ultimately, a deeper
comprehension of the whole machinery will provide a gain for designing agronomically
improved rice. Further, molecular breeding programs will allow the exploitation of molec-
ular markers in the screening of rice germplasm for pre-harvest sprouting resistance and
aid in the development of pre-harvest sprouting-resistant rice varieties.
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Abscisic acid (ABA), backcross inbred lines (BILs), chromosome segment substation lines
(CSSLs), DELAY OF GERMINATION-1 (DOG-1), double haploidy (DH), genome-wide association
studies (GWASs), genotyping by sequencing (GBS), germination index (GI), gibberellic acid (GA),
indole-3-acetic acid (IAA), low-temperature germination (LTG), marker-assisted selection (MAS),
next-generation sequencing (NGS), quantitative trait loci (QTLs), recombinant inbred lines (RILs),
restriction fragment length polymorphism (RFLP), simple sequence repeats (SSRs).
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