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The gut microbial community is closely related to mastitis, but studies regarding

the influences of mastitis on gut microbiota in buffalo remain scarce. Herein, we

characterized the differences in gut bacterial and fungal communities between

mastitis-affected and healthy buffalos. Interestingly, although mastitis had no effect

on gut bacterial and fungal diversities in the buffalos, some bacterial and fungal

taxa were significantly altered. Bacterial and fungal taxonomic analysis showed that

the preponderant bacterial phyla (Firmicutes and Bacteroidetes) and fungal phyla

(Ascomycota and Basidiomycota) in buffalo were the same regardless of health

status. At the level of genus, the changes in some gut bacterial and fungal

abundances between both groups were gradually observed. Compared with healthy

buffalos, the proportions of 3 bacterial genera (uncultured_bacterium_f_Muribaculaceae,

Eubacterium_nodatum_group, and Lachnoclostridium_10) and 1 fungal genus (Pichia)

in the mastitis-affected buffalo were significantly increased, whereas 4 bacterial genera

(Ruminococcus_2, Candidatus_Stoquefichus, Turicibacter, and Cellulosilyticum) and 4

fungal genera (Cladosporium, Thermothelomyces, Ganoderma and Aspergillus) were

significantly decreased. Taken together, this research revealed that there was significant

difference in the compositions of the gut microbial community between the healthy and

mastitis-affected buffalos. To our knowledge, this is the first insight into the characteristics

of the gut microbiota in buffalos with mastitis, which is beneficial to understand the gut

microbial information of buffalo in different health states and elucidate the pathogenesis

of mastitis from the gut microbial perspective.
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INTRODUCTION

Mastitis, an inflammatory response of the mammary parenchyma, affects almost all lactating
mammals especially high-yield cows (1). It can lead to decreased milk production, severely
restraining dairy industry development (2). Early investigation revealed that fecal microbiota
transplantation from cows with mastitis to germ-free mice caused inflammations in
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multiple tissues, such as colon, spleen, and serum, as well
as mastitis symptoms in the mammary gland (3). Moreover,
probiotic administration has been demonstrated to effectively
alleviate mastitis symptoms in some exploratory human clinical
trials, indicating that the mechanism of mastitis protection may
be mediated through the gut microbiota (4).

Growing evidence indicated that gut microbiota participated
in multiple physiological and metabolic functions of the
host, including nutrient acquisition, intestinal epithelium
differentiation, and intestinal metabolism (5–8). Moreover,
the gut microbiota has also been demonstrated to play role
in intestinal mucosal barrier and immune system maturation,
implying its contribution in disease prevention and immunologic
functions (9, 10). However, multiple environmental-related
factors, such as diet, nutritional deficiencies, antibiotic treatment,
and exposure to contaminants, may affect gut microbial
homeostasis or even induce gut microbial dysbiosis (11, 12).
Stable gut microbiota enabled the intestines to function properly,
whereas gut microbial dysbiosis may cause etiopathologic
consequences (13, 14). Currently, gut microbial dysbiosis
has been shown to be the core and critical factor of many
gastrointestinal diseases, such as colonitis and diarrhea (15, 16).
Additionally, disturbed gut microbiota and its metabolites could
pass through the intestinal mucosal barrier and affect peripheral
organ systems by blood circulation, causing physiological
dysfunction and even disease, such as lipid disorders, diabetes,
and non-alcoholic fatty liver (17, 18).

Recently, culture-independent techniques, mainly including
metagenomic and 16S rDNA amplicon sequencing, have been
successfully developed and widely applied to dissect the
complicated gut microbial ecosystem, as well as investigate
gut microbial alterations after suffering certain diseases (19,
20). By systematically investigating and analyzing the microbial
information acquired, we can further understand the gut
microbiota-host interaction and mechanisms contributing to
ill-health, thereby formulating effective measures to minimize
the collateral damage. Presently, high-throughput sequencing
technologies have successfully dissected the gut microbiota
of giraffes, yaks, goats, and dairy cattle, making considerable
contributions to the etiological analysis, diagnosis, and treatment
of multiple gastrointestinal and systemic diseases (5, 21, 22).
As an important source of protein acquisition for humans,
buffalo milk has increasingly attracted widespread attention due
to its high fat, protein, mineral, and vitamin contents. However,
mastitis dramatically decreases buffalo milk production and
quality, causing significant health and economic burden in
buffalo farming. Although the gut microbial importance in host
health is widely acknowledged, scarce knowledge is known about
the interaction between mastitis and gut microbiota in buffalo.
Herein, we investigated the gut bacterial and fungal shifts of
buffalo with mastitis.

MATERIALS AND METHODS

Animals and Sample Collection
In this investigation, 10 buffalos (5 healthy and 5 with mastitis) in
Jingzhou, China were used for sample acquisition, and all selected

buffalos had similar characteristics, including age, weight, diet,
immune background, and dwelling environment. Buffalomastitis
was diagnosed by the California mastitis test (CMT) using a
commercial kit. Moreover, the confirmed cases did not receive
any treatment prior to the sample collection. On the day of
sample collection, all the selected buffalos were placed in separate
areas to maximally decrease potential contamination among
different samples of subjects. The sterilized fecal samplers were
used for collecting the rectal feces of each buffalo. The collected
samples were immediately placed intosterile plastic containers
and transported to the laboratory and later stored at −80◦C for
further study.

16S rDNA and ITS Genes Amplicon
Sequencing
Five fecal samples (∼200mg) from healthy and mastitis-
affected buffaloes were unfrozen and homogenized before DNA
extraction. Subsequently, the bacterial and fungal DNA of
the processed fecal samples were extracted using QIAamp
DNA Mini Kit (QIAGEN, Hilden, Germany) based on the
manufacturer’s recommendations. The quality and quantity
of the gDNA were evaluated via 0.8% (w/v) agarose gel
electrophoresis and UV-Vis spectrophotometer (NanoDrop
2000, United States), respectively. To characterize the gut
bacterial and fungal shifts, we amplified the V3/V4 and ITS2
regions utilizing bacterial (338F: ACTCCTACGGGAGGCAGCA
and 806R: GGACTACHVGGGTWTCTAAT) and fungal (ITS5F:
GGAAG TAAAAGTCGTAACAAGG and ITS2R: GCTGCGT
TCTTCATCGA TGC) primers, respectively. PCR amplification
was conducted as per the procedure previously described (5,
6). PCR products were subjected to target fragment recovery
and quality evaluation and gel electrophoresis to obtain
purified products. The recovered products were quantified by
fluorescence using Quant-iT PicoGreen dsDNA Assay Kit on the
Promega QuantiFluor fluorescent quantitative system and the
libraries with a concentration above 2 nM and only one peak were
considered qualified. The final purified products were applied for
preparing the sequencing library using MiSeq Reagent Kit V3
(600 cycles) on the MiSeq sequencing machine.

Bioinformatics and Statistical Analysis
The raw data was requested to be preprocessed. Specifically,
quality detection and primer removal were applied to initial
data with some problematic sequences, including unqualified,
short, or mismatched sequences, to acquire clean reads through
the Trimmomatic (v0.33) and Cutadapt software (1.9.1). The
collected clean reads were subjected to splice and secondary filter
as per the length range of different regions usingUsearch software
(v10). Afterward, recognition and removal of chimera sequences
were conducted to achieve effective reads. The effective reads
with 97 similarities were clustered into the same operational
taxonomic unit (OTU). Moreover, Venn graphs were also
generated to visualize the OTUs abundance and distribution in
each group. To further dissect the influence of mastitis on gut
microbial diversity and abundance, we computed multiple alpha
diversity indexes according to the OTUs’ distribution. On the
other hand, beta diversity analysis was used for characterizing
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TABLE 1 | Bacterial sequence information from amplicon sequencing.

Sample Raw reads Clean reads Effective reads AvgLen (bp) GC (%) Q20 (%) Q30 (%) Effective (%)

CB1 48,793 35,977 33,927 413 52.44 99.90 99.32 69.53

CB2 48,184 35,934 33,823 415 52.01 99.89 99.24 70.20

CB3 45,977 35,014 30,642 409 53.04 99.89 99.30 66.65

CB4 56,419 41,677 39,317 414 52.23 99.90 99.30 69.69

CB5 64,898 48,378 45,206 410 53.00 99.90 99.35 69.66

MB1 52,600 38,853 36,284 413 52.50 99.90 99.33 68.98

MB2 58,347 44,008 41,694 413 52.29 99.91 99.34 71.46

MB3 46,523 34,649 32,959 412 52.75 99.90 99.28 70.84

MB4 54,475 39,900 38,014 411 53.01 99.89 99.32 69.78

MB5 59,573 42,703 40,291 410 53.25 99.91 99.34 67.63

TABLE 2 | Fungal sequence information from amplicon sequencing.

Sample Raw reads Clean reads Effective reads AvgLen (bp) GC (%) Q20 (%) Q30 (%) Effective (%)

CB1 63,677 46,541 46,229 211 46.99 99.98 99.92 72.60

CB2 74,384 52,096 51,858 191 41.95 99.98 99.94 69.72

CB3 71,417 57,065 56,948 172 37.96 99.99 99.95 79.74

CB4 70,972 56,774 56,609 179 38.77 99.99 99.95 79.76

CB5 72,719 56,777 56,667 166 34.39 99.99 99.97 77.93

MB1 69,180 50,752 50,668 168 36.58 99.98 99.95 73.24

MB2 71,736 48,949 48,859 163 34.15 99.97 99.93 68.11

MB3 70,243 50,350 50,268 179 36.95 99.98 99.95 71.56

MB4 72,266 60,497 60,382 180 36.45 99.99 99.96 83.56

MB5 71,335 56,069 55,943 166 35.48 99.99 99.95 78.42

the differences between gut bacterial and fungal principal
components. The assessment of sequencing depth for each
sample was based on rank abundance and rarefaction curves.
Differential bacterial and fungal taxa were determined by the
LEfSe and Metastats analysis. Data analysis was performed by
SPSS statistical program (v20.0) and P-values (means ± SD)
<0.05 were recognized as statistically significant.

RESULTS

Sequence Analysis
In this study, we collected a total of 10 fecal samples for amplicon
sequencing and 535,789 (CB = 264,271, MB = 271,518), and
707,929 (CB = 353,169, MB = 354,760) original sequences
were achieved from the gut bacterial and fungal communities,
respectively (Table 1). After quality assessment, 906,588 (CB =

372,157, MB = 534,431) eligible sequences were identified, with
a median read count of 372,15 (ranging from 306,42 to 452,06)
and 534,43 (ranging from 462,29 to 603,82) reads from bacterial
V3/4 and fungal ITS2 regions from each sample, respectively
(Table 2). The qualified sequences were clustered into 671
bacterial OTUs and 142 fungal OTUs as per 97% sequence
similarity (Figures 1A–C,G–I). Additionally, the amounts of
unique bacterial OTUs in CB and MB were 16 and 2 and 653
OTUs were shared in both groups, accounting for approximately
97.31% of the total bacterial OTUs. Meanwhile, we also observed

142 common OTUs in CB andMB, which consisted of more than
100% of the overall fungal OTUs. The results of accumulation
and rarefaction curves demonstrated that almost all species can
be detected (Figures 1D–F,J–L).

Microbial Diversities Analysis Associated
With Mastitis
To further explore the influence of mastitis on the gut microbiota
of a buffalo, we calculated the alpha and beta diversity indices that
could reflect gut microbial diversity. Bacterial and fungal Good’s
coverage estimates in each sample of CB and MB were almost
100%, implying excellent coverage. Furthermore, there were no
significant differences in the bacterial and fungal Chao1 (496.79
± 144.06 vs. 534.90 ± 79.22, P = 0.62; 134.77 ± 3.85 vs. 133.91
± 7.35, P = 0.82), ACE (495.99± 143.39 vs. 529.78± 77.53, P =

0.65; 134.01± 2.01 vs. 134.20± 5.87, P= 0.94), Simpson (0.96±
0.011 vs. 0.96 ± 0.010, P =0.69; 0.83 ± 0.025 vs. 0.82 ± 0.030, P
= 0.44) and Shannon (6.47± 0.72 vs. 6.62± 0.37, P = 0.70; 3.62
± 0.17 vs. 3.53 ± 0.26, P = 0.53) indices between CB and MB
(Figures 2A–H). Alpha-diversity analysis indicated that mastitis
had no distinct effect on the gut bacterial and fungal diversity
and abundance in buffalos. Principal coordinate analysis (PCoA)
plots that reflect the similarities and differences among different
samples were used to assess the gut bacterial and fungal beta-
diversity. Results of the beta-diversity analysis showed that the
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FIGURE 1 | Operational taxonomic units (OTUs) distribution and sequencing data analysis. Venn diagrams for gut bacterial (A–C) and fungal (G–I) OTUs distribution.

Gut bacterial (D–F) and fungal (J–L) sequencing depth and evenness were assessed by rank abundance and rarefaction curves.

samples in CB and MB were clustered together, implying similar
gut microbial principal components (Figures 2I–L).

Comparative Analysis of Bacterial
Taxonomic Composition
In this microbiome investigation, a total of 9 bacterial phyla
and 155 genera were recognized in CB and MB, ranging from 7

to 9 phyla and 103 to 134 genera per sample, respectively. The
phyla Firmicutes (70.31, 68.19%), Bacteroidetes (27.88, 27.50%),
Spirochaetes (0.53, 1.84%), and Proteobacteria (0.56, 1.46%) were
the four most preponderant bacterial phyla in samples of CB
and MB regardless of health condition, which accounted for
approximately 99.00% of the total composition (Figure 3A).
Other phyla, such as Patescibacteria (0.32, 0.45%), Tenericutes
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FIGURE 2 | Changes of gut bacterial and fungal diversities associated with mastitis in buffalos. (A–D) Represent gut bacterial Chao, ACE, Simpson, and Shannon

indices, respectively. (E–H) Represent gut fungal Chao, ACE, Simpson, and Shannon indices, respectively. (I,J) Represent gut bacterial PCoA maps, whereas (K,L)

Represent gut fungal PCoA maps.

(0.25, 0.33%), Actinobacteria (0.091, 0.10%), Verrucomicrobia
(0.028, 0.10%), andCyanobacteria (0.024, 0.020%), in CB andMB
were identified in lower abundances. At the genus level, the most
dominant bacterial genera in the CB were Ruminococcaceae_UC
G-005 (13.79%) followed by the Bacteroides (6.88%) and
Rikenellaceae_RC9_gut_group (6.42%). However, Rumino
coccaceae_UCG-005 (19.25%), Rikenellaceae_RC9_gut_group
(7.06%) and uncultured_bacterium_f_Lachnospiraceae (6.70%)
were abundantly present in the MB (Figure 3B). Bacterial
distribution, as well as correlation of both groups during mastitis

could also be observed by the clustering heatmap and network
diagram, respectively (Figures 3E, 4).

To further assess the influences of mastitis on the gut

microbiota in buffalos, we performed Metastats analysis on
different classification levels. At the genus level, uncultured_bact

erium_f_Muribaculaceae, Eubacterium_nodatum_group, and

Lachnoclostridium_10 were significantly more dominant in the
MB group than in the CB group, whereas the Ruminococcus_2
was lower (Figure 5A). Besides the above-mentioned differential

taxa, the MB group also showed dramatically lower richness

of Candidatus_Stoquefichus, Turicibacter, and Cellulosilyticum
(Figures 6A,B).

Comparative Analysis of Fungal Taxonomic
Composition
There were 3 phyla and 66 genera recognized in the gut
fungal community of CB and MB and the dominant
phyla and genera were presented in Figures 3C,D. The
Ascomycota (77.11, 80.05%) and Basidiomycota (22.83,
19.91%) were the most prevalent fungal phyla in both
groups, making up approximately 99.00% of the overall
fungal composition. The Ascomycota (77.11, 80.05%) and
Basidiomycota (22.83, 19.91%) were the most prevalent fungal
phyla in both groups, making up approximately 99.00%
of the overall fungal composition. At the genus level, the
Galactomyces (33.66, 32.91%), Trichosporon (21.62, 18.51%),
and unclassified_Dipodascaceae (11.13, 10.24%) were the most
prevalent fungal genera in both groups, which accounted
for over 60.00% of the total taxonomical group identified.
The clustering heatmap also showed the distribution and
changes of gut fungal community in buffalo with mastitis
(Figure 3F).

Metastats analysis was used to compare the differences
in the gut fungal community of both groups (Figure 5B).
At the genus level, Cladosporium, Thermothelomyces,
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FIGURE 3 | The proportions of preponderant bacterial (A,B) and fungal (C,D) taxa at the level of phylum and genus associated with mastitis in buffalos. The

color-block in the heatmap indicates the normalized relative richness of each bacterial (E) and fungal (F) genera in healthy and mastitis-affected buffalos.

Ganoderma, and Aspergillus were all significantly overrepre
sented in the CB group, whereas Pichia was the most

abundant fungus in MB. Similar results were also observed
in Figures 6C,D.
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FIGURE 4 | The network diagram visualizes correlations between different bacterial genera. The orange lines indicate a positive correlation and the green lines

indicate a negative correlation.

FIGURE 5 | Significant changes in the intestinal bacteria (A) and fungi (B) associated with mastitis in buffalos. Data was indicated as mean ± SD. *p < 0.05,

**p < 0.01.

DISCUSSION

Mastitis is a common disease in buffalos that seriously affects

milk production and animal health, causing enormous economic

loss (23). However, multiple factors, including pathogen

infection, unclean environment, nutritional deficiency, and stress
reaction, cause mastitis to be difficult to control (23–25). A gut
microbial community containing trillions of microorganisms has
been demonstrated to be a complex and interactive ecosystem
that participates in the positive regulation of host metabolism
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FIGURE 6 | Recognition of differential taxa associated with mastitis in buffalo. Phylogenetic distribution of bacterial (A) and fungal (C) taxa with obvious differences

were visualized through the cladogram. The criterion of bacterial (B) and fungal (D) significance was performed at LDA scores > 2.

and health (22, 26). Although, these microorganisms, including
bacteria and fungi, colonize the intestine, they can expand their
negative impact beyond the gastrointestinal tract and thus cause
the development of other diseases (27–29). Recent investigations
about gut microbiota have also indicated its key role in the
development of mastitis in dairy cows (30, 31). Presently, the
study of the relationship between gut microbiota and mastitis has
covered many species, but research regarding the gut bacterial
and fungal communities in buffalo with mastitis remains scarce.
Here, we systematically dissected the gut bacterial and fungal
changes in buffalo associated with mastitis and indicated distinct
changes in gut bacterial and fungal taxa in buffalo duringmastitis.

Growing evidence indicated that the gut microbiota was
a dynamic system that was inevitably influenced by multiple
intrinsic and extrinsic factors, including diet, age, and sex
environment (32–34). Generally, the physiological fluctuations
of gut microbiota caused by the above-mentioned factors
cannot affect intestinal normal function and homeostasis.
However, intestinal-related diseases, such as diarrhea, colitis, and
colorectal cancer, have been demonstrated to perturb intestinal
homeostasis, resulting in dysbiosis (35, 36). Moreover, recent
studies have also shown that diabetes, high blood pressure, and
obesity could also cause significant changes in the gut microbiota
(37–39). In this study, we selected feces to explore the gut
microbial changes in buffalos with mastitis in consideration
of the samples’ availability and subjects’ particularity. Results
indicated that there were no significant differences in the gut
microbial alpha-diversity between healthy and mastitis-affected

buffalo, suggesting thatmastitis had no effect on the gutmicrobial
diversity and abundance of the buffalos. Consistent with this
study, Ma et al. (3) also demonstrated that there were no obvious
differences in the gut microbiota alpha-diversity between healthy
and mastitis-affected cows. Notably, although the differences
in gut bacterial and fungal diversities between controls and
mastitis-affected subjects were not significant, the percentages of
some bacteria and fungi altered markedly, implying that these
intestinal bacteria and fungi are constantly self-adjusting to the
current intestinal environment.

In this microbiome investigation, we observed that Firmicutes
and Bacteroidetes were the most preponderant bacteria, whereas
Basidiomycota and Ascomycota were the most dominant fungi
in buffalos, regardless of health status (40–42). Notably, these
microbial phyla have also been demonstrated to be widespread
in other ruminants, such as goats, cows, giraffes, and yaks,
indicating their key roles in intestinal ecology and function
(43, 44). Earlier studies indicated that most members of
Firmicutes were intestinal beneficial bacteria involved in the
regulation of the immune system, gut microbial homeostasis,
and intestinal barrier function (45). Moreover, its members
contribute to the degradation of cellulose in ruminants (40).
As the dominant bacteria in the gut, Bacteroidetes was
responsible for degrading carbohydrates and proteins, showing
the great potential for promoting the maturation of the
gastrointestinal immune system (43). At the genus level,
Bacteroides were abundantly present in the healthy buffalo,
which was inconsistent with the findings of mastitis-affected
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buffalo. As intestinal anaerobion, Bacteroides can decompose
polysaccharides and play a key role in the intestinal ecosystem
(46). As intestinal beneficial bacteria, Rikenellaceae has been
demonstrated to possess multiple probiotic properties and
control the development of colitis by regulating T-regulatory cell
differentiation (47). Ruminococcaceae can degrade cellulose and
starch, displaying positive regulation in growing development
and feed efficiency (48). Moreover, Ruminococcaceae, a potential
probiotic candidate, plays active roles in the secretion of short-
chain fatty acids (SCFAs), intestinal homeostasis, and host
health (49).

The shifts of some specific bacteria and fungi could dissect
the potential relationship between gut microbial community
and mastitis, thus we further investigated the gut bacterial
and fungal changes associated with mastitis. Results showed
a significant decrease in 4 bacterial genera (Ruminococcus_2,
Candidatus_Stoquefichus, Turicibacter, and Cellulosilyticum)
and 4 fungal genera (Cladosporium, Thermothelomyces,
Ganoderma, and Aspergillus), as well as an increase in 3
bacterial genera (uncultured_bacterium_f_Muribaculaceae,
Eubacterium_nodatum_group and Lachnoclostridium_10) and
1 fungal genus (Pichia) in mastitis-affected buffalo. These
bacteria and fungi may play an important role in intestinal
homeostasis and functions, as well as the development of
buffalo with mastitis. Ruminococcus and Cellulosilyticum have
been shown to possess the characteristics of decomposing
cellulose and starch (50–52). Notably, Ruminococcus is also a
potential producer of SCFAs (53). Numerous pieces of evidence
indicated that SCFAs play a fundamental role in gut microbial
homeostasis and host metabolism (54, 55). Furthermore, SCFAs
were also involved in the regulation of intestinal permeability,
immunologic function, and cell proliferation (56, 57). Therefore,
the higher proportions of Ruminococcus and Cellulosilyticum
in the ruminant are beneficial to maintain energy intake and
intestinal function.

Taken together, this study first compared and analyzed
the differences in gut microbiota between healthy and

mastitis-affected buffalos. Results showed that mastitis did not
alter the gut bacterial and fungal diversity, but the proportions
of some bacterial and fungal taxa altered significantly. This study
also contributes to understanding the gut microbial information
of buffalos and shows that the changes in gut bacterial and fungal
communities may be an important factor of mastitis. Notably,
this research is also beneficial to prevent and treat mastitis in
buffalos from the gut microbial perspective.
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