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Abstract: In this paper, we present a new regularized image reconstruction method for positron
emission tomography (PET), where an adaptive weighted median regularizer is used in the context
of a penalized-likelihood framework. The motivation of our work is to overcome the limitation of the
conventional median regularizer, which has proven useful for tomographic reconstruction but suffers
from the negative effect of removing fine details in the underlying image when the edges occupy less
than half of the window elements. The crux of our method is inspired by the well-known non-local
means denoising approach, which exploits the measure of similarity between the image patches for
weighted smoothing. However, our method is different from the non-local means denoising approach
in that the similarity measure between the patches is used for the median weights rather than for the
smoothing weights. As the median weights, in this case, are spatially variant, they provide adaptive
median regularization achieving high-quality reconstructions. The experimental results indicate that
our similarity-driven median regularization method not only improves the reconstruction accuracy,
but also has great potential for super-resolution reconstruction for PET.

Keywords: image reconstruction; median regularization; non-local regularization; penalized likelihood;
super-resolution reconstruction; positron emission tomography

1. Introduction

Positron emission tomography (PET) has played an important role in molecular
imaging by providing functional information about physiological process in the human
body. The PET scanner detects gamma-ray photons created during the emission of positrons
due to the breakdown of the radiotracer introduced in the patient body [1,2]. Then, the
distribution of the radiotracer is visualized as a two-dimensional (2D) or 3D image by
solving the inverse problem of image reconstruction from projectional views acquired at
many different angles relative to the patient.

In clinical practice, since only a small amount of radiotracer must be injected into
the human body to minimize the risk of radiation exposure, the quality of PET images is
extremely poor compared to that of other imaging modalities, such as X-ray computed
tomography (CT), whose radiation source is placed outside of the body. Moreover, in order
to maintain an acceptable level of signal-to-noise ratio of the reconstructed image, the size
of each detector unit must be designed to be large enough to collect a sufficient number of
photons, which eventually limits the image resolution. Statistical noise due to scattered-
coincidence and random-coincidence events, as well as several physical effects, also limits
the spatial resolution in PET. Therefore, the use of a direct inversion method, such as the
well-known filtered back-projection algorithm, which oversimplifies the PET reconstruction
problem by ignoring the measurement noise and modeling the image formation process
as line integrals through the radiotracer distribution, often leads to unacceptable noise
amplification in the reconstructed image [2].
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Over the last decades, a variety of reconstruction methods, which can improve the
quality of reconstructed images by overcoming the limitation of the direct inversion
method, have been developed. In particular, along with fast growing technologies in
high-performance computing hardware, there has been increasing emphasis on developing
model-based iterative reconstruction (MBIR) methods, which not only can incorporate a
system model needed to account for physics of image formation, but also allow a priori
information to be incorporated on the underlying source distribution. In fact, some of them
are now limitedly used in clinical practice. For example, the Bayesian penalized likelihood
algorithm (Q.Clear—General Electric Healthcare, Milwaukee, WI, USA) developed for
General Electric PET scanners uses a point spread function model and a penalty function
to reduce noise within each iteration. The overview of the development in MBIR methods
for PET can be found in [3–5].

Recently, inspired by machine learning, example-based methods, such as dictio-
nary learning-based methods [6,7] and convolutional neural network (CNN)-based meth-
ods [8,9], have been a topic in image denoising and have also attracted growing interests
in medical imaging. While the example-based methods can be useful as post-processing
tools for image denoising and artifact reduction in medical imaging, they have not yet
been effectively incorporated into the tomographic reconstruction process, because they
require large amounts of prior training pairs, some of which must be high-quality images,
but are often unavailable in routine clinical practice. Moreover, it has been a challenging
problem to incorporate deep neural networks into MBIR due to computational complexity
in conjunction with the repeated time-consuming projection and back-projection opera-
tions. While deep learning methods with CNNs for tomographic reconstruction are being
developed by many researchers and have also been applied to some MBIR methods, the
claim that CNNs solve inverse problems as well as traditional MBIR methods do in medical
imaging often remains unsubstantiated [10].

In this work, to improve MBIR for PET, we focus on the penalized-likelihood (PL) ap-
proach, where the penalty term (also known as the regularizer) takes the form of constraints
on the local spatial structure of the underlying image. In general, regularizers are largely
classified into two different types; local and non-local regularizers. While the local regular-
izers take the mean of a target pixel and its neighboring pixels, the non-local regularizers
take the weighted mean whose weights reflect the “similarity” between the patch centered
at the pixel being considered and its neighbor patch. Each type has its own advantages and
disadvantages depending on its applications. For example, local regularizers are useful for
preserving fine-scale edges when the penalty function takes a non-quadratic form, but local
non-quadratic regularizers (LNQRs) [11,12] tend to produce spurious edges in monotonic
areas when noise is present. On the other hand, non-local regularizers (NLRs) [13–16] are
useful for preserving coarse-scale edges as well as monotonic areas but tend to oversmooth
fine-scale edges [16].

In order to compromise the two different types of regularizers, one can consider
linearly combining them using a control parameter. However, since the performance
of each regularizer depends on the spatial characteristics of the underlying image, it is
challenging to select an optimal value of the control parameter to balance between the two
regularizers for all pixels.

In this work, we propose a different approach to PL-based regularization, which is
expected to be more robust to noise than LNQRs while taking advantage of NLRs using
patch similarities. Our proposed method first takes the median rather than the mean of
pixels, which is known as median regularization. Our motivation for using the median
regularizer lies in the fact that, unlike conventional LNQRs, where each pixel being updated
is strongly affected by impulsive noise in its local neighbors, the median regularizer has a
behavior whereby each pixel is attracted to its local median, thereby being less affected by
such noise.

The idea of using the median regularizer for MBIR was first introduced in [17,18].
However, the methods proposed in [17,18] are based on a heuristic empirical approach
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rather than on a theoretical approach that solves an optimization problem. Therefore, the
solutions obtained by these methods tend to diverge even for some reasonable values
of the regularizing parameter. Later, Hsiao et al. [19] proposed a novel method of for-
mulating a convex objective function for the PL-based reconstruction algorithm with a
median regularizer and showed that an exact solution could be obtained by optimizing the
objective function.

Here, we note that, while the median regularizer preserves edges as well as locally
monotonic regions, it often results in a negative effect of removing fine-scale edges by
eliminating any structure that occupies less than half of the median window elements.
To overcome this problem, we extended the standard non-weighted median regularizer
(NWMR) to the weighted median regularizer (WMR) [20–23], so that a pixel with a larger
weight can be more probable to become a median than a pixel with a smaller weight.

In this work, inspired by the non-local means denoising approach [13], which exploits
the self-similarities measured by the patch differences to reduce noise, the median weights
for the WMR are determined by the patch differences within the neighborhood. However,
unlike the NLR, instead of applying the patch differences to the smoothing weights, we
applied them to the median weights. With this new approach, our PL-based reconstruction
method was performed by similarity-driven median regularization.

To extend our application, we also considered super-resolution reconstruction where
the resolution of PET images increases during the reconstruction process. This new applica-
tion can be useful for increasing the spatial resolution of PET images without modification
of PET scanner hardware. We show how super-resolution can be achieved within the
PL framework and, finally, demonstrate its improved performance by using our pro-
posed method.

2. Methods
2.1. Penalized-Likelihood Approach to PET Reconstruction

A dominant source of image degradation inherent in PET imaging is the noise due
to the variation in the number of gamma rays emitted from a radiotracer. Since the total
number of gamma photons emitted during a finite interval of time follows a Poisson
distribution, the likelihood in the PL approach is expressed as a product of independent
Poisson distributions, as follows:

Pr(g|f) = ∏
i

ggi
i e−gi

gi!
, (1)

where f is the underlying source image, g is the observed projection measurements and gi
is the i-th element of g representing the number of coincidence events detected by the i-th
detector pair whose mean is denoted as gi. The image formation process, in this case, is
expressed as gi = ∑

j
Hij f j + ri, where Hij ≥ 0 denotes the elements of the system matrix,

each of which represents the probability of detecting an event originated at the j-th pixel
by the i-th detector pair; f j is the j-th pixel of the underlying source distribution (or the
underlying image); and ri is the mean number of background events such as scattered and
random events.

By adding the regularizer R(f) to the likelihood in (1), the PL reconstruction method
can be expressed as the following minimization problem:

^
f = argmin

f
[−L(g|f) + βR(f)], (2)

where L(g|f) is the log-likelihood (the log of Pr(g|f) ) and β is a positive parameter (also
known as a smoothing parameter) which controls the balance between the likelihood and
the regularization terms.
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2.2. Similarity-Driven Median Regularization

To formulate our idea of using the WMR, we followed the derivation of the PL
algorithm with the “median prior” as proposed in [19], where the regularizer (or the
prior) is modeled as a function that penalizes the differences between the pixels f j of
the underlying object f =

{
f j; j = 1, . . . , J

}
and components mj′ of the auxiliary vector

m =
{

mj′ ; j′ ∈ Nj

}
within the local neighborhood system Nj of the j-th pixel, including

itself. The auxiliary vector m is in register with f in such a way that mj′ interacts with f j,
so that mj′ is a neighbor of f j and vice versa. (See [19] for the details on the relationship
between f and m.) Therefore, the WMR is expressed as

R(f, m) =
J

∑
j=1

∑
j′∈Nj

wjj′ψ( f j −mj′), (3)

where wjj′ is the weight between j and j′ and the penalty function is defined as ψ(ξ) =
√

ξ2 + ε,

which is a differentiable approximation to the absolute function, lim
ε→0

ψ(ξ) =

∣∣∣∣ξ∣∣∣∣. Note that

the penalty function in (3) is associated with penalizing the difference f j −mj′ rather than
f j − f j′ . Note also that, if wjj′ is uniform over the entire image, (3) becomes the NWMR.

In this work, we propose a new WMR whose weights are determined by measuring
the patch similarities within the neighborhood of the pixel to be updated. In this case, the
new WMR becomes an adaptive version with space-variant weights which is different
from the conventional WMR with fixed weights for all the pixels in the image. We call this
regularizer the similarity-driven median regularizer (SDMR). Inspired by the non-local
means approach [13], when the median window is centered at the pixel j, the median
weights can be calculated as follows:

wjj′ =
w̃jj′

∑
j′∈Nj

w̃jj′
, where w̃jj′ = exp

(
−
‖ρ(Nj)− ρ(Nj′)‖2

δ2

)
. (4)

In (4), Nj is the neighborhood system of the pixel j, ρ(Nj) is the patch centered at the
pixel j and δ is a positive parameter. The difference between the two patches ρ(Nj) and
ρ(Nj) centered at the pixels j and j’, respectively, is calculated by

∆ρjj′ , ‖ρ
(

Nj
)
− ρ
(

Nj′
)
‖

2
=

P

∑
p=1

(
f j(p) − f j′(p)

)2
, (5)

where P is the total number of pixels in a patch and f j(p) and f j′(p) are the p-th pixels in the
patches ρ(Nj) and ρ(Nj′), respectively.

Figure 1 illustrates self-similarity driven median weights whose values for the pixel
j are determined by the patch differences ∆ρ, which are measured by calculating the
difference between the center patch ρ(Nj) and its neighbor patch ρ(Nj′) for all j′ ∈ Nj.
The median weights are calculated in such a way that the higher the relative similarity
between the center patch and its neighbor patch is, the more probable the median of the
neighbor patch (designated as mj′ ) is to be chosen as the median of the center patch within
a median window. If the difference between the center patch ρ(Nj) and its neighbor patch
ρ(Nj′) is negligible, the value of w̃jj′ is close to 1, which is the largest possible value of
w̃jj′ in the median window. In this case, a relatively larger weight is assigned to mj′ , so
that mj′ becomes more probable to be chosen as the median of ρ(Nj). In contrast, when
the neighbor patch is dissimilar to the center patch, the value of w̃jj′ is close to 0. In this
case, a relatively smaller weight is assigned to mj′ , so that mj′ becomes less probable to be
chosen as the median of ρ(Nj). This implies that, for the homogeneous regions consisting of
nearly uniform patches, the SDMR behaves similar to the NWMR by using almost-uniform
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weights. On the other hand, for the non-homogeneous regions consisting of different
patches, the SDMR preserves fine-scale edges more accurately than the NWMR by using
the nonuniform weights whose values are close to one only when the similarities are
very high.

1 
 

 
 
 

 

Figure 1. Illustration of similarity-driven median weights. Given the PET image f, the median
weights w are determined by the patch similarities ∆ρ.

In this work, we also applied the SDMR to the super-resolution (SR) reconstruction
problem. Our motivation of considering SR is based on the recent development of multi-
modal medical imaging systems, such as PET combined with X-ray CT (PET/CT) and PET
combined with magnetic resonance imaging (PET/MRI), where the image resolution of
PET is much lower than that of CT or MRI. Most of the SR techniques used in PET recon-
struction are based on the multi-frame SR (MFSR) technique that combines the multiple
low-resolution (LR) images generated either by acquiring the projection data from different
points of views or by shifting the reconstruction pixel grid during the image reconstruction
process [24–27]. In contrast, we present a different approach to SR reconstruction for PET,
where a high-resolution (HR) image is reconstructed from a single set of standard LR
projections, which is similar to single-frame SR (SFSR) [28–31] as opposed to MFSR in
non-tomographic SR applications. To increase the pixel resolution, upscaling is performed
by back-projecting the projection measurements into the HR image space modeled on a
finer grid [32].
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2.3. Optimization of PL-SDMR Algorithm

For our PL reconstruction, the key to SR is to estimate the underlying HR image fH

from the projections g acquired by LR detectors. In this case, the PL algorithm using the
SDMR defined above reduces to a joint estimation of both fH and mH , as follows:

f̂
H

, m̂H = argmin
fH ,mH

[
−L(g

∣∣∣fH) + βR(fH , mH)
]
, (6)

where L(g
∣∣∣fH) is the log-likelihood, β is the smoothing parameter that adjusts the balance

between the likelihood term and the regularization term and mH is the median image of the
underlying HR PET image fH . As the derivation of the PL algorithm for SR reconstruction
is essentially the same as that for non-SR reconstruction, for convenience, we drop the
superscript H denoting “high resolution” for both f and m for the rest of the equations, so
that our PL algorithm can be used for both SR and non-SR reconstructions.

To solve (6), its overall objective function is jointly minimized with respect to both f
and m by using the following alternating algorithm:

fn = argmin
f

[
−L(g

∣∣∣f) + βR(f, mn−1)
]
, (7)

mn = argmin
m

[R(fn, m)], (8)

where n is the iteration number.
The early approach to minimizing the likelihood term in (7) was to use the expectation

maximization (EM) algorithm [33]. Later, the EM algorithm was further improved to
converge faster by employing block-iterative schemes. The popular ordered subsets EM
(OSEM) algorithm [34] accelerates the convergent speed by subdividing the projection
data into several subsets (or blocks) and then progressively processing each subset by
performing projection and back-projection operations in each iteration. However, the
OSEM algorithm does not have an objective function and converges to a limit cycle.

In this work, to overcome the limitation of the OSEM algorithm, we used a modified
version of the COSEM algorithm [35], which is fast and convergent with an objective
function. The COSEM algorithm applies the idea of ordered subsets used in the OSEM
algorithm on the “complete data” C rather than on the projection data g. The complete
data C, whose elements are denoted as Cij, represent the number of coincidence events
originated at a specific location in the underlying source and recorded by a specific detector
pair, so that the following relationship holds: ∑j Cij = gi. When the ML-based COSEM
algorithm is extended to the PL approach, the overall objective function is modified to the
following form:

E
(

f; fn,l−1, Cn,l , mn−1
)
= −∑

ij
Cn,l

ij log f j + ∑
ij

Hij f j + βR
(

f; fn,l−1, mn−1
)

. (9)

In (9), n and l are the indices for the iteration and subset, respectively. For example, fn,l

indicates the estimated image after processing the l-th subset of the n-th iteration. Once all
of the subsets {Sl |l = 1, . . . , L} are successively processed, the n-th iteration is completed
by setting fn = fn,L.

With the regularization term in (9), which takes the form of (3), it is not possible
to obtain a closed-form solution. Therefore, we employed the method of optimization
transfer using paraboloidal surrogates [36] that can efficiently find a global minimum of
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a convex function by using the following surrogate function for the regularization term
R
(

f; fn,l−1, mn−1
)

:

U1

(
f; fn,l−1, mn−1

)
=

1
2∑

j
∑

j′∈Nj

wjj′

.
ψ
(

f n,l−1
j −mn−1

j′

)
f n,l−1
j −mn−1

j′

(
f j −mn−1

j′

)2
, (10)

where
.
ψ(ξ) is the first-order derivative of ψ(ξ). In (10), wjj′ is updated using (4), where the

patch difference is calculated on fn,l−1.
In this case, the overall surrogate objective function for (7) with respect to f j can be

expressed as

Es

(
f j; fn,l−1, Cn,l , mn−1

)
= −∑

i
Cn,l

ij log f j + ∑
i

Hij f j +
β

2 ∑
j′∈Nj

wjj′

.
ψ
(

f n,l−1
j −mn−1

j′

)
f n,l−1
j −mn−1

j′

(
f j −mn−1

j′

)2
. (11)

By taking the first-order derivative of (11) and setting it to zero, the following update
equation for f n,l

j is obtained:

f n,l
j =

−b +
√

b2 − 4ac
2a

, (12)

a = β ∑
j′∈Nj

wjj′

.
ψ
(

f n,l−1
j −mn−1

j′

)
f n,l−1
j −mn−1

j′
, (13)

b = ∑
i

Hij − β ∑
j′∈Nj

wjj′

.
ψ
(

f n,l−1
j −mn−1

j′

)
f n,l−1
j −mn−1

j′
mn−1

j′ , (14)

c = −∑
i

Cn,l
ij . (15)

In (15), Cn,l
ij = gi

Hij f n,l−1
j

gi
, ∀i ∈ Sl and Cn,l

ij = Cn,l−1
ij , ∀i /∈ Sl , where Sl is the l-th subset.

After all of the subsets {Sl |l = 1, . . . , L} are successively processed, the n-th iteration for f
is completed by setting fn = fn,L.

The sub-minimization problem in (8) can be solved by minimizing the following
surrogate objective function, which is similar to the surrogate function in (10) but uses q as
the index for the sub-iteration:

U2

(
m; mn,q−1, fn

)
=

1
2∑

j
∑

j′∈Nj

wj′ j

.
ψ
(

f n
j′ −mn,q−1

j

)
f n
j′ −mn,q−1

j

(
mj − f n

j′

)2
, (16)

where q = 1, . . . , Q. In (16), wj′ j is updated using (4), where the patch difference is calculated
on fn.

The surrogate objective function for (8) with respect to mj can be expressed as

U3

(
mj; mn,q−1, fn

)
=

1
2 ∑

j′∈Nj

wj′ j

.
ψ
(

f n
j′ −mn,q−1

j

)
f n
j′ −mn,q−1

j

(
mj − f n

j′

)2
. (17)
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By taking the first-order derivative of (17) and setting it to zero, the following update
equation for mn,q

j is obtained:

mn,q
j =

∑
j′∈Nj

wj′ j

.
ψ
(

f n
j′−mn,q−1

j

)
f n
j′−mn,q−1

j

f n
j′

∑
j′∈Nj

wj′ j

.
ψ
(

f n
j′−mn,q−1

j

)
f n
j′−mn,q−1

j

(18)

After a complete inner loop for the sub-iterations indexed by q = 1, . . . , Q is finished,
the n-th iteration for m is completed by setting mn = mn,Q.

The outline of the PL-SDMR algorithm is summarized in Algorithm 1, where f and m
are updated alternately; for sub-minimization in (7), f is updated while fixing m, and, for
sub-minimization in (8), m is updated while fixing f.

Algorithm 1: The outline of the PL-SDMR algorithm.

Initialize f and m
for each iteration n = 1, . . . ,N

fn,0 = fn−1,
mn,0 = mn−1,

for each subset l = 1, . . . ,L
Update fn,l using (12),

end
fn = fn,L,
for each sub-iteration q = 1, . . . ,Q

Update mn,q using (18),
end
mn = mn,Q,

end

3. Results
3.1. Reconstruction Accuracy

To measure the reconstruction accuracy of our proposed method, we performed
simulation studies using the mathematical phantoms of two different levels (LR with
128 × 128 pixels and HR with 256 × 256 pixels) of resolution. The LR phantom in Figure 2a
was derived from the original HR phantom in Figure 2b by summing up four adjacent pixels
to generate a corresponding pixel in the associated LR phantom. The projection data were
generated from the LR phantom by our own projector with 128 bins and 128 discrete angles
over 180 degrees. The gray scale of the phantom was adjusted to yield 500,000 projection
counts. (The LR-COSEM result in Figure 2c qualitatively shows the Poisson noise level for
the 500,000 projection counts.) Note that the HR phantom is only for measuring the error
of HR reconstructions.

Here, we focused on the comparison of the SDMR with the NWMR in PL reconstruc-
tion. Both the SDMR and NWMR were applied to LR and HR (by SR) reconstructions
to yield four variants of the NWMR, such as LR-SDMR, HR-SDMR, LR-NWMR and HR-
NWMR (the HR images were reconstructed by our SR method). The number of subsets
and the number of iterations used for reconstructing an image were 4 and 200, respec-
tively, for all PL algorithms. To compare the SDMR with other existing regularizers, we
additionally tested the PL algorithm with the local quadratic regularizer (LQR) and the
local non-quadratic regularizer (LNQR) for LR reconstruction and the non-local regular-
izer (NLR) for HR reconstruction. The LQR takes a simple quadratic penalty, so that its
first-order derivative, which represents the strength of smoothing, linearly increases as the
intensity difference between the adjacent pixels increases. While the LQR suppresses noise
well, it has an undesirable effect of oversmoothing edges. On the other hand, the LNQR
takes a non-quadratic penalty, so that its first-order derivative does not increase further
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when the intensity difference between the adjacent pixels is relatively large at the edges.
(Since both the LQR and LNQR do not perform as well as the NWMR/SDMR, only their
LR reconstructions are shown in Figure 2. The reconstruction shown in Figure 2j is to give
an idea of how the non-local patch-based quadratic regularization method, namely, the
NLR method, compares with the SDMR in HR reconstruction.)
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where ˆ k
jf  is the j-th pixel value of the reconstructed image for the k-th noise trial, jf  is 

the j-th pixel value of the phantom and K = 50 is the total number of noise trials. 
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Figure 2. Anecdotal PL reconstructions: (a) LR phantom; (b) HR phantom; (c) LR-COSEM; (d) LR-
LQR (MPE = 37.42%); (e) LR-LNQR (MPE = 19.27%); (f) LR-NWMR (MPE = 18.31%); (g) HR-
NWMR (MPE = 18.89%); (h) LR-SDMR (MPE = 17.31%); (i) HR-SDMR (MPE = 15.77%); (j) HR-NLR
(MPE = 16.85%).

Figure 2d–j shows anecdotal reconstructions obtained with the seven different regular-
ization methods described above. For the smoothing parameter β, we independently chose
its value for each method so that the images reconstructed by the different regularization
methods had approximately the same background noise level measured in the flat area of
the largest circle. To measure the accuracy of each reconstruction, we calculated the mean
percentage error (MPE) of each reconstruction from 50 independent Poisson noise trials,
which is defined as

MPE =
1
K

K

∑
k=1

√
∑

j

(
f̂ k
j − f j

)2
/∑

j
f j

2 × 100%, (19)

where f̂ k
j is the j-th pixel value of the reconstructed image for the k-th noise trial, f j is the

j-th pixel value of the phantom and K = 50 is the total number of noise trials.
Figure 2d,e shows the LR reconstructions by the LQR and LNQR, respectively. Since

the LQR cannot preserve edges, when the smoothing parameter was adjusted to yield
the same background noise level as other edge-preserving regularizations, it resulted in a
significantly oversmoothed reconstruction. For the LNQR, it clearly preserved edges while
suppressing noise. Figure 2f,g shows the LR and HR reconstructions, respectively, by the
NWMR. The visual comparison of Figure 2e with Figure 2f indicates that the NWMR reveals
better recoveries of the circular shape with better contrast than the LNQR. The comparison
of Figure 2f with Figure 2g indicates that, as the number of pixels per unit area increases
from Figure 2f to Figure 2g, the image becomes less sharp, lowering the accuracy in terms
of the MPE. When the NWMR was replaced with the SDMR, the accuracy of both LR and
HR significantly increased by yielding sharper edges and better contrasts, which shows
the efficacy of using the adaptive median weights determined by the patch similarities.
(Compare the SDMR reconstructions in Figure 2h,i with the NWMR reconstructions in
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Figure 2f,g.) Then, one may expect that the HR-NLR would perform as well as the HR-
SDMR. However, according to the results shown in Figure 2i,j, the HR-SDMR reconstruction
in Figure 2i is sharper than the HR-NLR reconstruction in Figure 2j, which indicates that
the NLR was not as effective in preserving sharp edges as the SDMR for this particular
phantom with a relatively simple spatial structure.

Figure 3a,c shows two lines on the LR image along which profiles are displayed for
the four algorithms LR-LNQR, LR-LQR, LR-NWMR and LR-SDMR. Similarly, Figure 4a,c
shows two lines on the HR image along which profiles are displayed for the three algorithms
HR-NLR, HR-NWMR and HR-SDMR. (Note that the relative positions of the lines in
Figure 4a,c are the same as those in Figure 3a,c, respectively.) From Figure 3b,d, it can be
observed that the LR-SDMR not only incurred lower bias errors around pixels 40, 60 and
90 for both Figures 3b and 3d, but also reconstructed most of the pixels more accurately
than other regularizers used in the experiment.
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Figure 3. Profile plots for LR anecdotal reconstructions: (a) LR phantom with a profile line shown;
(b) profile plots along the line shown in (a) for LR reconstruction methods (LNQR, LQR, NWMR and
SDMR); (c) LR phantom with a profile line shown; (d) profile plots along the line shown in (c) for LR
reconstruction methods (LNQR, LQR, NWMR and SDMR).
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Similar advantages of the SDMR can be observed from Figure 4b,d. (See around pixels
80, 130 and 180.) In addition, while the HR-NLR performed better than HR-NWMR, its
overall performance was inferior to that of HR-SDMR.

To evaluate the regional performance of each algorithm, we first selected the six
high-intensity circles (as shown in Figure 5) as regions of interest (ROIs) and computed
the mean contrast recovery coefficients (MCRCs) of the reconstructions calculated from
50 independent noise trials. The regional MCRC defined in (20) measures how well the
algorithm restores the contrast of an ROI with respect to its background chosen from the
base circle with a low intensity.
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Figure 5. The six regions of interest for evaluating the regional performance of each algorithm used
in Table 1.

Table 1. Regional MCRCs for ROIs in Figure 5 evaluated from 50 independent noise trials. The bold
values indicate the best results.

ROI LR-LQR LR-LNQR LR-NWMR HR-NWMR LR-SDMR HR-SDMR HR-NLR

R1 0.3131 0.7833 0.8046 0.7423 0.8777 0.8805 0.8791
R2 0.2199 0.7024 0.7165 0.6347 0.8090 0.8128 0.8197
R3 0.1986 0.6173 0.6303 0.5336 0.7410 0.7277 0.7384
R4 0.3148 0.8090 0.8164 0.7488 0.8945 0.8844 0.8896
R5 0.4454 0.8627 0.8740 0.8352 0.9256 0.9317 0.9205
R6 0.3853 0.8809 0.8886 0.8395 0.9482 0.9543 0.9302

CRCR =
K

∑
k=1

CRCk
R, with CRCR = CRR/CRR0. (20)

In (20), CRCR stands for the regional MCRC, CRR =
∣∣ÂR − ÂBg

∣∣/ÂBg, where
ÂR = (1/T)∑j∈R f̂ j denotes the mean activity for T pixels in each ROI, ÂBg is the mean
activity in the background region and CRR0 is the true contrast in the phantom image.

Table 1 summarizes the regional MCRCs for the six ROIs, which indicates that the
MCRC was significantly improved by using the SDMR-based methods (LR-SDMR and
HR-SDMR). Note that the SDMR-based methods clearly outperformed the NWMR-based
methods. In fact, the SDMR-based methods performed better than other methods except for
R2, where the HR-NLR performed slightly better than the HR-SDMR, though the difference
in the MCRC between the two methods was almost negligible. Since our SR method, to
produce the HR reconstruction, involves upscaling, sometimes, the LR-SDMR revealed
slightly better MRCRs than both the HR-SDMR and HR-NLR. (See the MCRCs for R3
and R4.)

To further validate the performance of our proposed method, we compared the accu-
racies of the reconstructed images shown in Figure 2 in terms of five different image quality
assessment metrics, namely, mean structural similarity (MSSIM) [37,38], mean absolute
error (MAE) [39], peak signal-to-noise ratio (PSNR) [37], root-mean-square error (RMSE)
and visual information fidelity (VIF) [40]. As shown in Table 2, the proposed SDMR method
performed better than the other non-SDMR methods tested here in all of the five metrics.
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In particular, the overall performance of the HR-SDMR method was clearly better than the
other methods.

Table 2. Quantitative performance comparison of reconstructions using five different image quality
assessment metrics. The bold values indicate the best results.

Assessment
Metrics LR-LQR LR-LNQR LR-NWMR HR-NWMR LR-SDMR HR-SDMR HR-NLR

MSSIM 0.8647 0.9421 0.9467 0.9447 0.9525 0.9593 0.9550
MAE 5.1005 1.7672 1.6545 2.1027 1.2175 1.1679 1.3433

PSNR (dB) 20.6715 26.4239 26.8659 26.5827 27.3898 28.1843 27.6263
RMSE 0.0922 0.0475 0.0452 0.0467 0.0425 0.0388 0.0414

VIF 0.1340 0.2973 0.3224 0.3275 0.3483 0.3460 0.3394

3.2. Robustness against Variation in the Smoothing Parameter

To characterize how effective our method is while tested with different settings of
the smoothing parameter β, we performed additional simulations using a new digital
phantom, shown in Figure 6, where Figure 6a is a 128 × 128 Hoffman brain slice with a
large circular area in the background to measure the noise level, Figure 6b shows ROIs for
the quantitative regional studies and Figure 6c shows the ROI for the MCRC measure.
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Figure 6. Hoffman brain phantom and ROIs for regional MPE and MCRC measures: (a) phantom;
(b) ROIs for regional MPE; (c) ROI for CRC with respect to background.

Figure 7 shows the anecdotal reconstructions obtained from the PL algorithm with
three different regularizers: Figure 7a,d, LQR; Figure 7b,e, NWMR; and Figure 7c,f, SDMR.
To compare the performance of the different methods under the same conditions, we
adjusted the smoothing parameter β of each method so that the resulting reconstructions
had approximately the same background noise level measured in the circular area located
outside of the phantom. Note that the background noise level of Figure 7b–d was higher
than that of Figure 7e–g. When the smoothing parameters were adjusted to yield a relatively
high background noise level, as shown in Figure 7b–d, the improvement, in terms of
the percentage error (PE), from the NWMR to the SDMR was not stunning, though the
SDMR reconstruction in Figure 7d was visually sharper than the NWMR reconstruction
in Figure 7c. However, when the smoothing parameters were increased to yield a lower
background noise level, as shown in Figure 7e–g, the SDMR clearly outperformed the
NWMR in both qualitative and quantitative comparisons, which indicates that the SDMR
not only outperformed the NWMR in reconstruction accuracy, but was also more robust to
variations in the smoothing parameter.
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Figure 7. Anecdotal PL reconstructions: (a) LQR (β = 10, PE = 40.02%); (b) NWMR (β = 0.3,
PE = 34.18%); (c) SDMR (β = 0.3, PE = 33.17%); (d) LQR (β = 25, PE = 43.95%); (e) NWMR (β = 0.6,
PE = 36.37%); (f) SDMR (β = 0.6, PE = 34.47%).

To observe the quantitative effect of changing the smoothing parameter β, we set the
value of the smoothing parameter to the eight different values of β = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6 and 0.7 for each algorithm and measured the MPE over the 50 reconstructions obtained
from 50 independent Poisson noise trials. Figure 8 shows the smoothing parameter-versus-
MPE curves for the NWMR and SDMR methods. Note that, except for a small value of
β = 0.05, the performance of the SDMR clearly outperformed the NWMR in terms of MPE
over a range of the smoothing parameter.
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Figure 8. MPE-versus-smoothing parameter curves for NWMR and SDMR.

To compare the results more quantitatively, we first pre-selected the 10 regions of
interest (ROIs) as shown in Figure 6b and measured the regional MPEs over the 50 noise
realizations of reconstructions for each method. Note that, while R1–R8 include sharp
edges, R9 and R10 do not include an edge.

Figure 9 shows the error-bar plots for the regional MPE of NWMR and SDMR, where
the four samples (a) β = 0.05, (b) β = 0.2, (c) β = 0.4 and (d) β = 0.7 were chosen. According
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to the results in Figure 9, while the performance difference between the NWMR and SDMR
was negligible for an extremely small value of β, which is almost equivalent to turning off
the regularization term, it quickly became noticeable as soon as the smoothing parameter
increased and was eventually significant for the large value of β = 0.7 in all regions. In
particular, the SDMR significantly lowered the regional MPE in the small monotonic regions
R9 and R10.
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Figure 9. Error-bar plots for regional MPE for NWMR and SDMR: (a) β = 0.05; (b) β = 0.2; (c) β = 0.5;
(d) β = 0.7.

Figure 10 shows the regional MCRC curves over the range of β ∈ [0.05, 0.7] calculated
in the ROI with respect to the background designated in Figure 6c, where each regional
MCRC was calculated from 50 independent noise trials. It is clear that the SDMR outper-
formed the NWMR over a wide range of the smoothing parameter. Moreover, the difference
in the MCRC between the SDMR and NWMR became more significant as the smoothing
parameter increased.
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Figure 10. Regional MCRC curves evaluated over a range of the smoothing parameter β for NWMR
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4. Summary and Conclusions

We introduce an adaptive method for selecting the weights for the median regular-
izer in penalized-likelihood PET reconstruction. In our method, the median weights are
calculated in such a way that the higher the similarity between the center patch and its
neighbor patch is, the more probable the median of the neighbor patch is to be chosen as
the median of the center patch within a median window. In relatively smooth regions with
occasional sharp edges, the SDMR performed just as the NWMR with a uniform weight.
On the other hand, in regions containing many fine-scale edges, where most of the patches
are not similar to each other, the weights of the SDMR became non-uniform, which made
the SDMR adaptively preserve fine details more accurately than the NWMR.

We also applied the SDMR to the SR image reconstruction problem where the res-
olution of PET images increased during the iterative reconstruction process. As our SR
method is applicable to any PL reconstruction methods involving repeated projection and
back-projection operations, we also applied it to the PL reconstruction with the popular
NLR and compared the resulting HR-NLR with the HR-SDMR. Our experimental results
show that the SDMR provided more accurate HR reconstructions than the NLR in most of
the image quality assessment metrics.

According to our additional test for a wide range of smoothing parameter settings,
the SDMR was less sensitive to variations in the smoothing parameter than the NWMR.
Moreover, for the same value of the smoothing parameter, the SDMR always outperformed
the NWMR in terms of the MPE and MCRC. As the smoothing parameter increased, the
difference in the MPEs, as well as that in the MCRCs, between the SDMR and NWMR
became more significant.

In conclusion, while the NWMR has a fundamental limitation in preserving fine details,
the proposed SDMR overcomes the limitation by adaptively selecting the median weights
derived from the patch similarities that reflect the spatial structure of the underlying image.
With this advantage, the SDMR has great potential for super-resolution reconstruction from
low-resolution PET data without modification of scanner hardware. Finally, the SDMR is
more robust to variations in the smoothing parameter than the NWMR, which indicates
that the SDMR can be more reliable in practice. To validate the practical performance of the
SDMR, further experiments with clinical data are required.
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