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Abstract

Tribbles homolog 3 (TRIB3) is a mammalian pseudokinase that is induced in neuronal cell cultures in response to cell death-
inducing stresses, including neurotrophic factor deprivation. TRIB3 is an inhibitor of activating transcription factor 4 (ATF4),
the central transcriptional regulator in the eukaryotic translation initiation factor 2a (eIF2a) phosphorylation pathway that is
involved in the cellular stress response and behavioral processes. In this article, we study the expression of Trib3 in the
mouse brain, characterize the brain morphology of mice with a genetic ablation of Trib3 and investigate whether Trib3
deficiency alters eIF2a-dependent cognitive abilities. Our data show that the consumption of a leucine-deficient diet
induces Trib3 expression in the anterior piriform cortex, the brain region responsible for detecting essential amino acid
intake imbalance. However, the aversive response to leucine-devoid diet does not differ in Trib3 knockout and wild type
mice. Trib3 deletion also does not affect long-term spatial memory and reversal learning in the Morris water maze and
auditory or contextual fear conditioning. During embryonic development, Trib3 expression increases in the brain and
persists in the early postnatal stadium. Neuroanatomical characterization of mice lacking Trib3 revealed enlarged lateral
ventricles. Thus, although the absence of Trib3 does not alter the eIF2a pathway-dependent cognitive functions of several
areas of the brain, including the hippocampus, amygdala and anterior piriform cortex, Trib3 may serve a role in other central
nervous system processes and molecular pathways.
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Introduction

TRIB3 (also known as TRB3, NIPK and SKIP3) is a kinase-like

protein (pseudokinase) that was first isolated as a gene that is

strongly induced during neuronal cell death caused by nerve

growth factor deprivation or disruption of calcium homeostasis

[1,2]. Further studies revealed that the upregulation of Trib3

during cellular stress is mediated by the binding of activating

transcription factor 4 (ATF4) to the Trib3 promoter [3,4]. In

mammalian cells, the response to diverse types of cellular stress

converges on a single biochemical event – the phosphorylation of

eukaryotic translation initiation factor 2a (eIF2a) at serine 51 –

that inhibits general translation but selectively increases the

translation rate of ATF4, leading to the activation of a multi-

faceted stress response gene expression program that is coordi-

nated by ATF4 [5,6]. Through the four known eIF2a kinases

(GCN2, PERK, PKR and HRI), the eIF2a–ATF4 pathway is

activated in stress situations such as amino acid or glucose

deficiency, unfolded protein accumulation in the endoplasmic

reticulum and oxidative damage [5], and, in accordance with the

studies of the Trib3 promoter, these stresses are also characterized

by the marked induction of Trib3 in different types of cells [3,4,7–

10]. The TRIB3 protein is able to act as an inhibitor of ATF4 by

directly binding to it [2,11]. Therefore, the activation of the Trib3

promoter by ATF4 constitutes a negative feedback mechanism for

regulating the activity of the eIF2a–ATF4 pathway [3,4,8,12].

In the brain, the phosphorylation of eIF2a participates in

several behavioral processes. Animals are unable to synthesize a

subset of amino acids, termed essential amino acids (EAA), and

thus need to acquire EAAs from their diet. Omnivores that have a

number of different food sources available need to balance their

intake of different foods in order to obtain EAAs in the correct

proportions. When fed an otherwise complete diet lacking a single

EAA, animals including mice and rats will promptly, within the
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course of one meal, develop an aversive reaction towards the food,

which involves substantially limiting the consumption of the food

and foraging for alternative dietary sources (reviewed in [13]). This

innate reaction does not depend on the gastrointestinal tract, or

the senses of taste and smell, but rather on the sensing of blood

amino acid levels by the anterior piriform cortex (APC) region of

the brain [13]. Following consumption of an EAA-deficient meal,

eIF2a is phosphorylated in the APC by GCN2, which is sensitive

to intracellular levels of uncharged tRNA molecules, and mice that

lack GCN2 fail to reject an EAA-imbalanced diet [14,15].

However, the mechanisms acting downstream of eIF2a to regulate

feeding behavior are currently uncertain.

The eIF2a–ATF4 pathway is also involved in hippocampal

long-term memory formation, which is necessary for spatial

learning and contextual fear conditioning. Following behavioral

training, eIF2a phosphorylation in the hippocampus decreases,

and, in mouse models with reduced phospho-eIF2a and ATF4

levels, the threshold for eliciting hippocampus-dependent learning

is lowered [16,17]. Conversely, genetically increasing the amount

of eIF2a phosphorylation in the hippocampus to a level that does

not inhibit general translation, but does induce ATF4, impairs

hippocampal memory [18]. In line with this, the induction of late

long-term potentiation, a putative cellular model of learning, is

prevented by the pharmacological inhibition of eIF2a dephos-

phorylation in wild type hippocampal slices but is unaffected in

slices from ATF4 knockout mice [17]. Thus, hippocampal long-

term memory formation appears to occur via the downregulation

of the phospho-eIF2a–ATF4 axis in response to behavioral

training, but how this process might be influenced by endogenous

modulators of ATF4 activity is unknown.

TRIB3 is a target gene and inhibitor of the eIF2a–ATF4

pathway in cell cultures, but its role and expression regulation in

the brain are unclear. In the present work we characterize the

expression of Trib3 in the adult mouse brain and during mouse

brain development, and, by utilizing a Trib3 knockout mouse line,

study whether TRIB3 has an effect on the behavioral responses

that are mediated by the phosphorylation of eIF2a and examine

the brain morphology of mice lacking Trib3.

Materials and Methods

Animals, feeding and diets
The Trib3 knockout mouse line used in this study was generated

by us by introducing a targeted deletion of the entire Trib3 protein

coding region, and is based on the C57BL/6J mouse strain genetic

background [19]. Mice were genotyped for knockout and wild

type Trib3 alleles by PCR. The animals were maintained on a 12-

hour light/12-hour dark cycle, and experimental procedures were

performed during the light phase. Access to food and water was

provided ad libitum, with the exception of experiments that

involved an overnight period of fasting (described below).

In indicated experiments, overnight fasting was used to

synchronize feeding between individual mice. During the light

phase, food was available ad libitum. At the end of the light phase,

the remaining food was removed from the feeder and the cage

bedding was replaced to avoid the consumption of feed pellet

crumbs and to minimize coprophagy. After the dark phase, ad

libitum access to food was restored. Access to water was not

restricted during the fasting period.

To study dietary essential amino acid limitation, synthetic diets

composed of purified ingredients were used (manufactured by

Research Diets, New Brunswick, NJ). The diets contained free L-

amino acids as the sole source of dietary amino acids. A

nutritionally complete diet containing an entire complement of

amino acids was used for training and as the experimental control

diet, and a corresponding diet lacking the essential amino acid

leucine was used to evoke leucine deficiency. The composition of

the leucine-devoid diet was adjusted with carbohydrate. The full

composition of the diets used for leucine deprivation experiments

is presented in Table S1. For other experiments, animals were

maintained on standard commercial rodent chow.

All animal procedures were performed in accordance with the

guidelines of the European Union and were approved by the

Estonian National Board of Animal Experiments (resolutions

number 83, 25.06.2007; 82, 25.08.2011; 8, 06.05.2013). All efforts

were made to minimize suffering of animals during experimental

procedures.

Total RNA isolation, RT-qPCR and RT-PCR
To study adult brain gene expression during leucine deficiency,

four-month-old male wild type C57BL/6J mice were trained with

synthetic nutritionally complete control diet ad libitum for one

week, then fasted overnight and randomly provided either the

leucine-deficient diet (Leu2) or the control diet (Leu+). Procedures

were performed in an alternating order of Leu2 and Leu+ group

individuals. After 6 h of access to the experimental diet ad libitum,

the mice were sacrificed by cervical dislocation and their brains

were immediately dissected. Brain regions were identified accord-

ing to the mouse brain atlas of Franklin and Paxinos [20]. The

anterior piriform cortex (as defined in [20]), the hippocampus

(encompassing both the dorsal and ventral hippocampus), a

sample of the cerebral cortex (an approximately 363 mm region

from the center of the frontal lobe, encompassing all neocortical

layers) and the cerebellum (whole) were excised on ice and

immediately frozen in liquid nitrogen. To quantify gene expression

during mouse development, total RNA was extracted from excised

embryonic or neonatal brains (excluding the cerebellum) of the

indicated age using TRIzol (Invitrogen). Total RNA was isolated

from the APC using the RNeasy Micro kit and from the other

adult brain regions using the RNeasy Mini kit (both from Qiagen).

Samples were homogenized with a glass-Teflon homogenizer, and

on-column DNase digestion was performed according to the

manufacturer’s recommendations.

Total RNA concentration was determined spectrophotometri-

cally with NanoDrop 1000 (Thermo Scientific), and 0.5 mg of total

RNA was used in 10 ml first-strand cDNA synthesis reaction. The

developmental brain cDNA series was synthesized with Super-

Script III reverse transcriptase (Invitrogen), and the adult brain

region cDNA series was synthesized with RNase H-minus M-

MLV reverse transcriptase (Solis BioDyne, Estonia). Real-time

PCR quantification of Trib3 mRNA and ribosomal protein L7a

(Rpl7a) mRNA, which was used as the endogenous reference gene

for expression normalization, was performed as described previ-

ously [19]. RT-qPCR analysis of Trib1 and Trib2 expression was

performed as for Trib3, using primers with the following

sequences: Trib1 mRNA: 59-GCTCGGCTCTTCAAGCAGAT-

39 (sense) and 59-GCTGGGCAGCCATGTTTATC-39 (anti-

sense), Trib2 mRNA: 59-TGACCTCAAGCTGCGGAAAT-39

(sense) and 59-TAACTGCCGCTGGTGTTCAA-39 (anti-sense).

For end-point RT-PCR, the sequences of the primers used are as

follows: Trib3 mRNA: 59-GGCCTTATATCCTTTTG-

GAACGA-39 (sense) and 59-CGCTGGCAGGGTACACCTT-39

(anti-sense), Gapdh mRNA: 59-TGTGTCCGTCGTGGATCTG-

A-39 (sense) and 59-TTGCTGTTGAAGTCGCAGGAG-39 (anti-

sense). The RT-PCR products were analyzed by gel electropho-

resis in agarose gel.

Trib3 in the Mouse Brain
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Aversive response to amino acid-deficient food
The protocol used for studying the effect of amino acid-devoid

diet on food intake was adapted from a previously published article

[15]. Four-month-old mice were used in the experiment, and for

both Trib3+/+ and Trib32/2 genotypes, the experimental group

contained four females and three males. The animals were

arranged in a random order and the experimenter was blind to

mouse genotype. Mice were trained for one week to the novelty of

the synthetic control diet, single housing and food deprivation

during the dark phase (overnight fasting). Single housing was used

to enable the determination of food consumption by weighing the

food pellets remaining in the feeder (visible food pellet crumbs

found inside the cage were also included in the measurement). In

the days following the training period, the animals’ food

consumption was measured at set time-points throughout the

light phase. On the first three days, the intake of the control diet

was monitored, and on the next three days, leucine-deficient diet

consumption was investigated. For every animal, the consumption

of the leucine-devoid diet was compared to the amount of

complete diet consumed by the same animal, which serves to

control for individual variations in food intake that are indepen-

dent of the dietary conditions investigated.

Morris water maze
The experimental groups consisted of three-month-old litter-

mate Trib3+/+ and Trib32/2 mice, and both groups were sex-

balanced (Trib32/2 group: 8 males and 8 females; Trib3+/+ group:

5 males and 5 females). Animal housing was not divided by

genotype. To perform the experimental procedures, the animals in

each cage were assigned a random order that was kept consistent

over the course of the experiment. The experimenter was blind to

mouse genotype. The pool diameter was 150 cm, and the water

was kept at room temperature and rendered opaque by the

addition of a small amount of non-toxic white putty. The platform

diameter was 16 cm and its top surface was approximately 1 cm

below the surface of the water. One day before the start of

training, the mice were placed into the pool (with no platform) for

60 seconds to habituate them with swimming and handling. Mice

were trained four times per day at intervals of approximately 45

minutes for four consecutive days. In each training trial, the

animal was allowed to swim until it found the platform, but not for

more than 60 seconds. If the platform was not found after 60

seconds, the mouse was guided to the platform by the

experimenter. After arriving on the platform, the mouse was left

there for 15 seconds before being picked up. Four different start

positions, located beside the side wall of the pool at 90u intervals,

were used once per day by every mouse. For each training day, the

start position order was permutated for each mouse. One day after

the end of the training phase, a probe trial was performed by

removing the platform from the pool and allowing the mice to

search for 60 seconds. An automated video tracking system was

used to monitor the swimming trajectory and time (TSE Systems

GmbH, Germany). During training trials, the time required for

finding the platform (escape latency) was recorded, and for probe

trials, the time spent searching in each pool quadrant was

recorded. Following the probe trial, reversal training was started

on the same day and performed for two consecutive days. For

reversal training, the platform was positioned at the quadrant

opposite of the platforms’ original location and the training

protocol corresponded to that of the initial training. The reversal

probe trial was performed one day after the end of the reversal

training phase.

Fear conditioning
The fear conditioning experiments were performed using the

same groups of Trib3+/+ and Trib32/2 mice that were previously

used in the Morris water maze, after a resting period of

approximately one month. The housing arrangement and

temporal order of animals in the experimental procedures was

the same as in the Morris water maze. The experimenter was blind

to mouse genotype. To induce leucine deficiency during the

experiment, mice were first habituated to the synthetic control diet

ad libitum for 12 days, and then deprived of food overnight on the

night before the training day. Starting from the morning of the

experimental training day, mice were fed the synthetic diet lacking

leucine ad libitum. The fear conditioning training was performed

five hours after the initiation of leucine deprivation. For training, a

mouse was placed into the training chamber (TSE Systems

GmbH), allowed to acclimatize to the context for 120 seconds,

followed by two pairings of a tone (30 seconds, 75 dB, 10 kHz)

with a co-terminating foot shock (2 seconds, 0.5 mA, constant

current). The two pairings were separated by a 120-second pause,

and mice remained in the training chamber for 15 seconds after

the last pairing. Twenty-four hours after training, contextual fear

conditioning was assayed by placing the animal into the training

chamber for 5 minutes and recording its movement. Two hours

later, auditory fear conditioning was assayed by placing the animal

into a visually different chamber and recording its movement

during a 150-second habituation (pre-tone) phase, followed by a

150-second phase of training tone presentation. The incidence of

freezing (immobility except for respiration) during each testing

phase was tracked with an automated system (TSE Systems

GmbH). After testing, the animals were returned to a standard

diet.

RNA in situ hybridization
Preparation of mouse brain sections and their analysis by in situ

hybridization using digoxigenin-labeled riboprobes was performed

as described previously [21]. To generate the template for the

probe targeting synaptophysin (Syp) mRNA, a 463-bp cDNA

fragment was PCR-amplified from mouse brain cDNA using the

primers 59-CCCAAGCTTGGGGGTCAGTTCCGGGTGGT-

39 and 59-CCGCTCGAGCTTCACATCGGACAGGCCTT-39

(sense and anti-sense, with HindIII and XhoI restriction sites

underlined, respectively) and cloned into the pBlueScript KS+
vector (Stratagene).

Lateral ventricle size measurement
Lateral ventricle size was studied from PFA-fixed coronal

sections by measuring the area of the lateral ventricles from a

microphotograph of the section, using Adobe Photoshop software,

with the experimenter blind to genotype. The areas of the left and

right lateral ventricle were summed for each individual. For adult

mice, the section selected for the measurement was located at the

level 0.1–0.22 mm posterior to bregma (figures 32 and 33 in [20]),

and the anterior–posterior location of the section was determined

based on the dorsal part of the third ventricle, the anterior part of

the anterior commissure and the anterior part of the paraven-

tricular thalamic nucleus. The adult study groups consisted of age-

and sex-matched Trib3+/+ and Trib32/2 individuals (4 males and 3

females for each genotype) with an age of 5.5–7 months. For 9-

day-old mice, the section selected for the measurement corre-

sponded to 0.02–0.1 mm posterior to bregma (figures 31 and 32 in

[20]), and the anterior–posterior location of the section was

determined based on the anterior part of the anterior commissure

and the shape of the dorsal part of the third ventricle. Both the

adult and juvenile animals were maintained in standard laboratory

Trib3 in the Mouse Brain
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animal husbandry conditions and were not subjected to prior

experimental procedures.

Southern blot
Ten micrograms of mouse genomic DNA was digested with

NcoI (Fermentas, Lithuania) and separated by gel electrophoresis in

1% agarose gel. DNA fragments were transferred onto Hybond-

N+ positively charged nylon membrane (Amersham) according to

the manufacturer’s recommendations. To prepare the probe, a

1.2-kb DNA fragment corresponding to the genomic region

immediately downstream of the Trib3 termination codon was

purified and radiolabeled in a random-primed labeling reaction

containing 50 mCi [a-32P]-dCTP (Hartmann Analytic GmbH,

Germany) using the DecaLabel DNA labeling kit (Fermentas).

Autoradiography of the hybridized probe was performed by

storage phosphor imaging on a Typhoon Trio imager (GE

Healthcare).

Statistical analysis
Data are expressed as the mean 6 SEM, and group sizes are

stated in the figure legends. To analyze the effect of leucine

deficiency on gene expression in different brain regions, gene

expression in leucine-devoid diet-fed and control diet-fed individ-

uals was compared for each studied brain region with the two-

tailed t test, and the resulting P-values were corrected for multiple

comparisons with the Holm–Bonferroni method, using R software

(version 3.0.2; The R Foundation for Statistical Computing).

Repeated measures ANOVA was used to compare amino acid-

deficient diet rejection between genotypes and Morris water maze

escape latency between genotypes, using the Statistica software

package (version 8.0; StatSoft). Gene expression changes between

different stages of brain development were analyzed in R by

performing one-way ANOVA followed by pairwise comparisons of

all group means with correction for multiple testing using the

Holm–Bonferroni method. Lateral ventricle size was compared

between genotypes with the Mann–Whitney U test, using

Statistica. For experiments not specified above, comparisons

between groups were performed with the two-tailed t test. For

all analyses, P,0.05 was considered statistically significant.

Results

Consumption of essential amino acid-deficient diet
induces Trib3 mRNA expression in the anterior piriform
cortex

When mice are fed a diet lacking an EAA, the concentration of

that EAA is reduced in the blood and GCN2-dependent

phosphorylation of eIF2a ensues in the APC, the region

containing the brains’ chemosensor for EAA deprivation [14,15].

To determine whether Trib3 is upregulated in the brain in

response to EAA deficiency, adult mice were habituated to a

nutritionally complete synthetic diet ad libitum for one week, which

was followed by overnight fasting to synchronize feeding before

being provided either a synthetic diet lacking the EAA leucine

(Leu2) or the corresponding leucine-containing complete diet

(control; Leu+). After 6 h, the mice were sacrificed, and RT-qPCR

was used to quantify Trib3 expression in various brain regions. In

the complete diet-fed mice, the Trib3 expression level is very

similar in the frontal cerebral cortex, the APC and the

hippocampus, while in the cerebellum it is approximately 5-fold

higher (Figure 1). In leucine-deprived mice, Trib3 mRNA

abundance is increased 3-fold in the APC, compared to Leu+
mice, and it is also slightly but statistically significantly elevated in

the cerebral cortex, while no significant change in Trib3 expression

is detectable in the hippocampus or cerebellum (Figure 1).

In addition to Trib3, there are two other Drosophila Tribbles

homologs in mammals, Trib1 and Trib2. RT-qPCR analysis of

Trib1 and Trib2 expression in the adult mouse brain was

performed in the same brain regions and dietary conditions as

for Trib3. The results show that in complete diet-fed mice, Trib1

expression level does not vary between the APC, the cerebral

cortex and the cerebellum, and is approximately 50% lower in the

hippocampus compared to the other studied regions (Figure S1A),

while the level of Trib2 expression is uniform in all of the four

studied brain regions (Figure S1B). Neither Trib1 nor Trib2

demonstrate a significant change in expression level in any of the

studied brain regions in response to the consumption of leucine-

deficient diet (Figure S1A and B). Thus, in comparison with the

other Tribbles homologs, Trib3 displays a unique expression pattern

in the adult mouse brain, with elevated basal expression in the

cerebellum compared with the cerebrum, and Trib3 is the only

gene in the Tribbles homolog family that is induced in the APC by

amino acid deficiency.

Deletion of Trib3 does not influence the rejection of
amino acid-imbalanced diet

Because the aversive response to an amino acid-deficient diet is

dependent on the modulation of eIF2a phosphorylation [14,15],

and because Trib3 was revealed to be induced by EAA depletion in

the EAA-sensitive APC region of the brain (Figure 1) and is known

to regulate eIF2a–ATF4 pathway activity during amino acid

limitation in cell cultures [12], we sought to explore the

importance of Trib3 for the sensing of amino acid-imbalanced

diet in mice. We have recently generated a Trib3-deficient mouse

line by introducing a targeted deletion of the protein coding region

of the Trib3 gene, as detailed in Figure S2A and B. As expected,

RT-PCR analysis of Trib3 expression in mouse brain readily

detects Trib3 mRNA in Trib3+/+ and Trib3+/2 individuals, while

Trib3 mRNA is undetectable in Trib32/2 littermates (Figure S2C).

Figure 1. Trib3 is upregulated in the mouse anterior piriform
cortex in response to leucine-deficient diet. Adult wild type mice
consumed either a diet lacking leucine (Leu2; n = 5) or a corresponding
control diet containing leucine (Leu+; n = 5), and, after 6 h of feeding,
Trib3 expression in the indicated brain regions was quantified by RT-
qPCR. The results are presented as the mean 6 SEM, and expressed
relative to the level of Trib3 mRNA in the anterior piriform cortex of the
control diet (Leu+) group. *P,0.05 comparing leucine-starved and
control diet-fed groups.
doi:10.1371/journal.pone.0094691.g001
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To study the aversion to amino acid-deficient diet, Trib3+/+ and

Trib32/2 mice were fasted 12 h overnight and presented with

either Leu+ or Leu2 diets during the day, and food intake was

measured at 0.5 h to 12 h time-points. As depicted in Figure 2A,

both Trib3+/+ and Trib32/2 mice demonstrate a similar and

substantial rejection of Leu2 food starting from 0.5 h, and, at the

later time-points (4 h and 12 h), where the intra-group variation is

lower, the consumption of Leu2 diet is decreased by approxi-

mately 30% compared to Leu+ for both genotypes. The

proportion of food intake repression for EAA-deficient diet is

comparable to results that other researchers have obtained for wild

type mice [15]. In both males and females, the body weight of

littermate wild type and Trib3-deficient mice habituated to the

synthetic complete diet (Leu+) is similar (Figure 2B), as is the

amount of weight lost due to overnight fasting (Figure 2C). Thus,

the loss of Trib3 does not alter the self-restriction behavior of mice

in response to amino acid-insufficient food.

Trib3 is dispensable for spatial and reversal learning in
the Morris water maze

Excessive hippocampal ATF4 activity resulting from eIF2a
phosphorylation has been associated with impaired spatial

memory and learning [17,18], and the hippocampus also expresses

Trib3 (Figure 1). To examine the role of Trib3 in long-term spatial

memory, we studied the performance of Trib3+/+ and Trib32/2

mice in the Morris water maze, a hippocampus-dependant task in

which mice learn to escape from opaque water onto a submerged

platform by following spatial cues [22]. As shown in Figure 3A,

Trib3-deficent mice and their wild type counterparts demonstrate

similar and consistent improvement in the time required to find

the hidden platform (escape latency) over the first three training

days, and no further improvement is displayed by either genotype

on training day four. One day after the last training day, a probe

test was performed by removing the platform and allowing the

mice to search for one minute. Both genotypes exhibited a strong

preference for the quadrant of the pool that previously contained

the platform (target quadrant), spending nearly 50% of the time

there, indicating that no significant differences exist between the

genotypes in spatial learning ability (Figure 3B).

The Morris water maze can also be used to study spatial

reversal learning by repositioning the platform and challenging the

mice to learn the new platform location. Recently, it has been

published that mice with a forebrain-specific postdevelopmental

disruption of the eIF2a kinase PERK have unaltered learning in

the Morris water maze but are impaired in reversal learning,

implicating the eIF2a phosphorylation pathway in behavioral

flexibility [23]. Therefore, we also studied reversal learning ability

in Trib3 knockout mice. For this experiment, the hidden platform

was relocated to the opposite quadrant. As indicated in Figure 3C,

Trib3+/+ and Trib32/2 mice display similar escape latency of

nearly 30 seconds on the first day of reversal training, and, for both

genotypes, the escape latency improves drastically on the second

reversal training day, with Trib3-deficient as well as wild type

individuals swimming to the hidden platform in approximately 10

seconds on average. In accordance with this result, no significant

differences are observable between Trib3+/+ and Trib32/2 mice in

Figure 2. Rejection of amino acid-imbalanced diet in mice is not influenced by the deletion of Trib3. (A) Consumption of a diet lacking
the essential amino acid leucine (Leu2), compared to the consumption of a corresponding nutritionally complete control diet (Leu+). Adult Trib3+/+

and Trib32/2 (n = 7 per genotype) mice were trained with food deprivation during the dark phase, and, during the light phase, food intake was
measured for each animal at the indicated time-points by weighing the remaining food. For each animal, the intake of Leu2 diet was compared to
that of the Leu+ diet, and the average difference in the consumption of the Leu2 diet relative to the Leu+ diet is expressed in percent 6 SEM for
each genotype. (B) Body weight and (C) body weight loss due to overnight food deprivation do not differ between Trib3-deficient and wild type
adult mice. For B and C, four-month-old group-housed Trib3+/+ (n = 5 for both males and females) and Trib32/2 (n = 8 for both males and females)
mice were maintained on the Leu+ diet ad libitum for two weeks to determine their diet-habituated body weight, followed by a single iteration of
overnight fasting. The data in B and C are presented as the group means 6 SEM.
doi:10.1371/journal.pone.0094691.g002
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the quadrant occupancy pattern of a probe trial performed after

reversal training (Figure 3D). The swimming speeds exhibited in

60-second sessions at different phases of the experiment are similar

for both genotypes (Figure 3E), indicating that locomotor ability in

the Morris water maze is not compromised by the lack of Trib3.

Trib3-deficient mice display normal contextual and
auditory fear conditioning

In a fear conditioning experiment, animals learn to associate an

aversive stimulus with a neutral stimulus or context [24], and long-

term fear memory is known to involve eIF2a but the genes acting

downstream of eIF2a are uncertain [16,17,25]. We trained Trib3

knockout and wild type mice with two pairings of tone with co-

terminating foot shock, and to induce Trib3, the animals were fed a

leucine-deficient diet ad libitum from the morning of the training

day until the end of the measurements (performed one day after

training). Auditory fear conditioning, which requires the amygdala

but not the hippocampus [24], was tested by presenting the

training tone in a chamber different from the training chamber

and measuring the amount of time spent freezing, an indicator of

fear. Trib3+/+ and Trib32/2 mice demonstrated a similar robust

increase in freezing time during the tone period compared to the

pre-tone period (Figure 4A). Contextual fear conditioning, which

Figure 3. Long-term spatial memory and reversal learning ability in the Morris water maze is not altered in Trib3-deficient mice.
Data are means 6 SEM from littermate Trib32/2 (n = 16) and Trib3+/+ (n = 10) mice. (A) Escape latencies during four days of hidden-platform training
performed at four trials per day. (B) Pool quadrant occupancy in a probe trial performed 24 h after the completion of training. The submerged
platform was removed from the pool and the swim trajectory of mice was monitored for 1 min. The pool quadrant that previously contained the
platform is designated the target quadrant, and the time spent in each quadrant of the pool is presented as percent of the total search time. (C)
Reversal training escape latencies during two days of training performed at four trials per day. For reversal training, the hidden platform was
repositioned to the pool quadrant opposite of the initial platform location. (D) Results of a probe trial performed 24 h after reversal training. The
probe trial was carried out as in B. The reversal target denotes the pool quadrant that contained the platform during the reversal trainings trials. (E)
Swimming speed at different stages of the experiment. The mean speed 6 SEM from 60-second swimming sessions with no platform are shown. The
habituation session was performed one day before the start of training. For Trib3+/+, n = 5 per sex, and for Trib32/2, n = 8 per sex.
doi:10.1371/journal.pone.0094691.g003
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requires both the amygdala and the hippocampus [24], was tested

by placing the animal into the training chamber and tracking its

movement over the course of 5 minutes. The amount of time spent

freezing did not differ significantly between mice lacking Trib3 and

their wild type counterparts, with both genotypes freezing for

more than 50% of the time spent in the chamber (Figure 4B). Thus

Trib3 does not affect long-term fear memory.

Trib3 expression increases during embryonic mouse
brain development

In Drosophila, the Tribbles protein is expressed in the embryo

and participates in early embryonic development [26–28].

Therefore, we sought to examine the expression of Tribbles

homologs in the developing mammalian brain. RNA was

extracted from mouse brains ranging from embryonic day (E) 14

to postnatal day (P) 4, and the abundance of Trib1, Trib2 and Trib3

mRNA was determined by RT-qPCR. The results show that Trib3

expression increases steadily from E14 to E18, by approximately

4-fold in total (Figure 5A). After birth (P0), the level of Trib3

mRNA is decreased by approximately 50% compared to E18,

however, this decrease appears to be transient, as a resumption of

elevated Trib3 expression is evident at over following days, with a

peak at P2 reaching nearly 6-fold higher than E14 (Figure 5A).

Unlike Trib3, the changes in Trib1 and Trib2 expression over the

course of mouse brain development are very mild, with both genes

demonstrating expression variations of less than 2-fold from E14 to

P4 (Figure S3A and B). To study whether the loss of Trib3

expression affects the mRNA levels of the other Tribbles homologs

in the developing brain, we quantified the expression levels of

Trib1 and Trib2 in littermate Trib3+/+, Trib3+/2 and Trib32/2

mouse brains at P3. The results, presented in Figure 5B, show a

lack of compensatory regulation of Trib1 or Trib2 expression in the

developing brain in response to Trib3 deletion. These results

indicate a possible role for Trib3 in the pathways regulating brain

development.

Enlarged lateral ventricles in Trib32/2 mice
To study the effect of germline Trib3 gene inactivation on brain

morphology, sections from adult littermate Trib3+/+ and Trib32/2

mouse brains were visualized by RNA in situ hybridization of Syp

mRNA, which encodes the synaptic marker synaptophysin [29].

The results show that the expression pattern of Syp is similar in

Trib3+/+ and Trib32/2 individuals, and that the gross morphology

of many prominent brain structures is unaltered by Trib3

deficiency (Figure 6A). However, the lateral ventricles are

noticeably enlarged in mice lacking Trib3 compared to the

corresponding wild type mice (Figure 6B). To study this further,

lateral ventricle area was measured from coronal brain sections of

a group of Trib3+/+ and Trib32/2 mice at 5.5–7 months of age. As

depicted in Figure 6C, the size of the lateral ventricles is

significantly increased, by 47% on average, in adult Trib3-deficient

mice compared to wild type individuals. Similarly, in juvenile (P9)

mice, lateral ventricle size is approximately 2-fold greater in

Trib32/2 mice than in corresponding Trib3+/+ individuals

(Figure 6D). Thus, Trib3 may serve a function associated with

the ventricular system in the brain.

Discussion

TRIB3 is known to be upregulated in neuronal cell cultures

subjected to cell death-inducing stresses [1,2,30], but its role and

Figure 4. Contextual and auditory fear conditioning is
unaffected in mice with a targeted disruption of Trib3. Data
are means 6 SEM from littermate Trib32/2 (n = 16) and Trib3+/+ (n = 10)
mice. The testing of fear memory was performed approximately 24 h
after training, and the animals were fed a leucine-deficient diet starting
from the morning of the training day. (A) Auditory fear conditioning in
mutant and wild type mice. For testing, the mice were placed into a
chamber differing from the training chamber, and their movement was
monitored during a habituation phase (pre-tone) and during the
presentation of the auditory cue (tone). The percentage of time spent
freezing is presented for each phase. (B) Contextually triggered freezing
in Trib3+/+ and Trib32/2 mice. To assess contextual fear conditioning,
the activity of the mice was monitored upon being returned to the
training chamber, and the fraction of time spent freezing is expressed in
percent.
doi:10.1371/journal.pone.0094691.g004

Figure 5. Trib3 is developmentally regulated in the mouse
brain. (A) RT-qPCR quantification of Trib3 expression in wild type
C57BL/6J mouse brains at embryonic day (E) 14, 15, 17 and 18, and at
postnatal day (P) 0, 2 and 4. The mean Trib3 expression level 6 SEM at
the indicated age is presented relative to the level of Trib3 expression at
E14 (n = 7 for E17, E18 and P0, n = 6 for E15, n = 5 for E14 and P2, and
n = 3 for P4). Means marked with the same letter are not significantly
different at the 5% significance level. (B) Lack of Trib3 does not lead to
altered expression of other Tribbles family genes in the P3 mouse brain.
RT-qPCR was used to determine the level of Trib1 and Trib2 mRNA
expression in littermate Trib3+/+, Trib3+/2 and Trib32/2 mice (n = 5 per
genotype). For both genes, the mean 6 SEM is presented relative to the
level of expression in Trib3+/+ mice.
doi:10.1371/journal.pone.0094691.g005
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regulation in the brain under physiological conditions have not

been investigated previously. In this article, we studied the

expression of Trib3 in the mouse brain during adulthood and

development, the brain morphology of Trib3-deficient mice, and

characterized the behavioral phenotype of Trib3 knockout mice,

including their long-term spatial memory, fear memory and

response to amino acid-insufficient food.

In the adult mouse brain, our experiments revealed that Trib3 is

markedly induced in the APC region by dietary EAA insufficiency

within 6 hours. Previous knowledge of transcriptional changes in

the APC in response to amino acid deficiency is relatively scarce.

Consumption of an EAA-incomplete meal leads to the depletion of

the limiting amino acid in blood plasma, and, in the brain, the

concentration of the limiting amino acid is decreased in the APC,

leading to eIF2a phosphorylation [15,31]. The phosphorylation of

eIF2a is coupled to the upregulation of ATF4 [5], which acts as a

master transcriptional activator of C/EBP-ATF composite sites

[6], a type of stress-sensitive regulatory element. In various

continuous cell lines, examination of the Trib3 promoter has

revealed that the upregulation of Trib3 in response to chemical

inducers of endoplasmic reticulum stress and oxidative stress is

mediated by the binding of ATF4 to a C/EBP-ATF site [3,4].

Therefore, it is likely that the mechanism of Trib3 regulation by

nutrients in vivo in the brain also proceeds via the C/EBP-ATF

composite site in the Trib3 promoter.

Mice carrying a targeted deletion of Trib3, generated recently

by us [19], have no apparent physical defects, allowing for

behavioral testing to be performed. Our experiments uncovered

that a lack of Trib3 does not affect aversion to EAA-imbalanced

diet, which is dependent on the APC, long-term spatial memory,

which is dependent on the hippocampus, or fear conditioning,

which is dependent on the amygdala. These behavioral paradigms

require the modulation of eIF2a phosphorylation in the brain, and

for long-term memory consolidation, the control of ATF4 levels

appears to be the crucial function of phospho-eIF2a [14,15,17,18].

In light of cell culture-based data which demonstrates that TRIB3

provides negative feedback inhibition of ATF4 activity [3,4,8,12],

the behavioral test results obtained for Trib3-deficient mice are

unexpected. It is possible that TRIB3 does not significantly inhibit

ATF4 activity in the brain during normal physiology, or that the

inhibitory effect of TRIB3 does not extend to the particular aspect

of ATF4 function that is necessary for memory formation, which is

proposed to be the antagonism of CREB [16]. Alternatively,

possible ATF4-dependent or -independent effects of Trib3 in the

brain are masked in Trib32/2 mice by slight alterations in nervous

system development or the activation of intracellular signaling

mechanisms that are able to compensate for the absence of Trib3.

The importance of Trib3 expression in the brain may also be

revealed in behavioral responses that are currently unexplored in

Trib3-deficient mice. In mammals, two additional Tribbles homo-

logs, Trib1 and Trib2, are present along with Trib3. However, the

molecular and physiological functions of the three Tribbles

homologs have diverged [32], and the ability to interact with

ATF4 has only been shown in the case of Trib3. This reduces the

likelihood that Trib1 and Trib2 could compensate for the deletion

of Trib3 in the context of ATF4 activity regulation, and we did not

detect altered expression of Trib1 or Trib2 in the brain of neonatal

Trib3 knockout mice. Further, our data demonstrate that the

expression pattern of Trib3 in the brain is distinct from that of the

other members of the Tribbles homolog family. Notably, only Trib3

was induced in the APC by EAA deprivation and only Trib3

exhibited prominent upregulation during embryonic brain devel-

opment.

Our analysis of Trib3 expression during mouse brain develop-

ment revealed that the abundance of Trib3 mRNA in the brain

increases from E14 to E18 and remains high in the neonatal brain.

During vertebrate brain development, a substantial proportion of

newly generated neurons undergo programmed cell death, which

is caused in part due to the limited availability of neurotrophic

factors [33]. In the mouse forebrain, programmed cell death is

prevalent during the period from E12 to E18, encompassing both

proliferative and postmitotic neurons [34]. Therefore, it is possible

that the induction of Trib3 during embryonic brain development is

related to neurotrophic factor deficiency or neuronal cell death.

Consistent with this assumption, Trib3 is upregulated in neuronally

differentiated PC12 cells and superior cervical ganglion neurons in

response to nerve growth factor deprivation [1,35,36]. In addition

to neuronal cells, BV-2 microglial cells also upregulate Trib3

expression under certain conditions [37,38]. Thus, the origin of

Figure 6. Gross brain morphology of Trib3 knockout (Trib32/2)
and corresponding wild type (Trib3+/+) mice. (A and B)
Representative adult mouse brain coronal sections are shown
hybridized with a digoxigenin-labeled RNA probe complementary to
mRNA encoding the synaptic vesicle protein Syp. (C) Size of lateral
ventricles in adult Trib3+/+ and Trib32/2 mice (n = 7 per genotype). The
area of the lateral ventricles was measured from coronal sections at the
level depicted in panel B. (D) Size of lateral ventricles at postnatal day 9
(P9) in Trib3 knockout mice and their wild type littermates (n = 5 per
genotype). In C and D, the areas of the left and right lateral ventricle on
the coronal section were summed for each mouse, and the mean 6

SEM for each genotype is presented. Abbreviations: aca, anterior
commissure, anterior part; Bl, basolateral amygdala; CPu, caudate–
putamen; Hip, hippocampus; Hy, hypothalamus; III, third ventricle; lv,
lateral ventricle; Nc, neocortex; Pir, piriform cortex; Th, thalamus. Scale
bar 1 mm. *P,0.05 comparing genotypes.
doi:10.1371/journal.pone.0094691.g006
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Trib3 expression during central nervous system development

warrants evaluation in future studies.

Examination of the brain morphology of adult and juvenile

Trib3-deficient mice revealed increased lateral ventricle size

compared to mice with wild type Trib3. In humans, lateral

ventricle size increases with aging and enlarged ventricles are

associated with age-related brain disorders, including Alzheimer’s

disease [39], however, lateral ventricle volume also displays a

relatively large amount of variability in healthy, non-elderly

humans [40]. Further experiments are needed to study the

dynamics of Trib3 deficiency-related ventricular expansion during

mouse brain aging, as well as the neurological, neuroanatomical

and behavioural importance of this effect, and to elucidate the

mechanism by which the lack of Trib3 results in enlarged lateral

ventricles.

In conclusion, we establish that Trib3 expression increases in the

mouse brain during the progression of embryonic brain develop-

ment, and, in the adult brain, Trib3 is induced by dietary essential

amino acid deprivation. Nevertheless, mice homozygous for a

germline deletion of Trib3 are normal regarding several aspects of

cognitive functioning, including spatial learning and re-learning,

fear memory, and the self-restriction of amino acid-deficient diet

intake.

Supporting Information

Figure S1 Trib1 (A) and Trib2 (B) expression levels in
various regions of the adult mouse brain. Wild type mice

consumed either a diet lacking leucine (Leu2; n = 5) or a

corresponding control diet containing leucine (Leu+; n = 5), and,

after 6 h of feeding, gene expression in the indicated brain regions

was quantified by RT-qPCR. The results are presented as the

mean 6 SEM, and expressed relative to the level in the anterior

piriform cortex of the control diet (Leu+) group.

(TIF)

Figure S2 Targeted disruption of the mouse Trib3 gene.
(A) Schematic representation of the gene targeting strategy used to

generate the Trib3-deficient allele. Filled and unfilled boxes

indicate exonal regions containing the Trib3 protein coding

sequence and mRNA untranslated regions, respectively. The 59

and 39 homology arms (3.1 and 1.9 kb, respectively) for the

homologous recombination event were selected to flank the

genomic region corresponding to the Trib3 protein coding

sequence. The homology regions were PCR-amplified and cloned

into a targeting vector that contained a phosphoglycerate kinase

promoter-driven neomycin resistance cassette (pgk-NeoR) for

positive selection and a thymidine kinase promoter-driven

diphtheria toxin A expression cassette (tk-DTA) for negative

selection. The NcoI restriction sites that generate the genomic

DNA fragments detected in panel B are indicated by unfilled

vertical arrowheads. (B) Verification of the targeted disruption by

Southern hybridization. NcoI-digested genomic DNA was trans-

ferred onto membrane and probed with a radiolabeled 1.2-kb

genomic fragment corresponding to the region immediately

downstream of the Trib3 stop codon. The expected size of the

target fragment is 2.8 and 1.9 kb for the wild type and mutant

alleles, respectively. (C) RT-PCR analysis of Trib3 gene expression

in P3 brain samples from wild type, heterozygous mutant and

homozygous mutant littermate mice (n = 2 per genotype). Gapdh

was amplified from the same samples as a positive control gene.

The results from negative control reactions, which contained

either total RNA that had not been subjected to reverse

transcription (No RT) or water instead of template solution (No

template), are also shown.

(TIF)

Figure S3 Trib1 (A) and Trib2 (B) expression levels
during mouse brain development. RT-qPCR quantification

of gene expression in wild type C57BL/6J mouse brain at

embryonic day (E) 14, 15, 17 and 18, and at postnatal day (P) 0, 2

and 4. The mean expression level 6 SEM at the indicated age is

presented relative to the level of expression at E14 (n = 7 for E17,

E18 and P0, n = 6 for E15, n = 5 for E14 and P2, and n = 3 for P4).

Means marked with the same letter are not significantly different

at the 5% significance level.

(TIF)

Table S1 Composition of the diets used to study leucine
deficiency.

(PDF)
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