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Abstract: Animal models for colitis-associated colorectal cancer (CACC) represent an important
tool to explore the mechanistic basis of cancer-related inflammation, providing important evidence
that several inflammatory mediators play specific roles in the initiation and perpetuation of colitis
and CACC. Although several original articles have been published describing the CACC model in
rodents, there is no consensus about the induction method. This review aims to identify, summa-
rize, compare, and discuss the chemical methods for the induction of CACC through the PRISMA
methodology. Methods: We searched MEDLINE via the Pubmed platform for studies published
through March 2021, using a highly sensitive search expression. The inclusion criteria were only
original articles, articles where a chemically-induced animal model of CACC is described, preclinical
studies in vivo with rodents, and articles published in English. Results: Chemically inducible models
typically begin with the administration of a carcinogenic compound (as azoxymethane (AOM) or
1,2-dimethylhydrazine (DMH)), and inflammation is caused by repeated cycles of colitis-inducing
agents (such as 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS)). The
strains mostly used are C57BL/6 and Balb/c with 5–6 weeks. To characterize the preclinical model,
the parameters more used include body weight, stool consistency and morbidity, inflammatory
biomarkers such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, angiogenesis markers
such as proliferating cell nuclear antigen (PCNA), marker of proliferation Ki-67, and caspase 3, the
presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of inflammation.
Conclusion: The AOM administration seems to be important to the CACC induction method, since
the carcinogenic effect is achieved with just one administration. DSS has been the more used inflam-
matory agent; however, the TNBS contribution should be more studied, since it allows a reliable,
robust, and a highly reproducible animal model of intestinal inflammation.

Keywords: colitis-associated colorectal cancer; preclinical studies; disease animal models; animal
experimentation; colorectal cancer

1. Introduction

Colorectal cancer represents the third most diagnosed form of cancer, and it is a key
cause of cancer mortality worldwide [1]. Indeed, this type of cancer is characterized by
being responsible for 10% of all annually diagnosed cancer, and it is the world’s fourth
most deadly cancer with, approximately 900,000 deaths annually [2]. Additionally, over
1.9 million new colorectal cancer cases and 935,173 deaths were predictable in 2020 [1,3],
with more than half of the cases occurring in developed countries [4]. The disease prognosis
is strongly related to the diagnosis stage; however, currently, there is a 5-year survival rate
estimated at 66.1% for all stages of the disease [5,6].
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Carcinogenesis of colon cancer departs from normal mucosa; however, through non-
well-established steps, it tends to develop and leads to malignancy. It is a dynamic and
multi-phase disease, which develops slowly over years and progresses through cytolog-
ically distinct benign and malignant states, from single crypt lesions through adenoma,
to malignant carcinoma with possible metastasis [7]. In colorectal cancer, factors such as
intestinal injury, oxidative stress, and chronic inflammation contribute to an alteration of
the intestinal homeostasis [8–10].

Colorectal cancer pathogenesis could evolve from two different molecular pathways,
sporadic and colitis-associated colorectal cancer. CACC results from defects in the cell cycle,
even though different factors can be responsible for the neoplastic changes. Particularly,
proinflammatory pathways, especially the NF-κB, IL-6/STAT3, COX-2/PGE2, and IL-
23/Th17 signaling pathways, are dysregulated and consequently, they have a crucial role
in the pathogenesis of CACC. The increased regulation of antiapoptotic proteins and the
higher proliferation of epithelial cells, as well as new blood vessels, are essential in the
tumor initiation, growth, and progression [7–10].

Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the
large bowel including ulcerative colitis and Crohn’s disease and has been associated in
several epidemiological studies with the spontaneous development of colorectal neoplasia,
which is described as CACC. CACC is responsible for, approximately, 90% of the cases
of CRC, which is allied with a possible hereditary influence [11–15]. Patients with IBD
face an increased lifetime risk of developing CACC and a worse prognosis in comparison
to healthy individuals [9,16]. Additionally, colon cancer is associated with significant
morbidity and mortality up to 15% in IBD patients [17,18]. The risk for the development
of CACC is closely associated with the extent of colonic involvement, duration of colitis,
and severity of active inflammation [19–21]. The immune signaling pathways contribute
to the pathogenesis of colitis and CAAC; however, only a limited number of studies were
performed to understand the exact mechanisms underlying the link between chronic colitis
and the development of CACC [9,22].

The treatment for CACC is personalized, taking into account the patient’s needs and
tumor’s specificities [23]. In general, surgery is the mainstream curative treatment for
CACC combined with radiotherapy and/or chemotherapy. However, several side effects
are noticed due to the treatment toxicity. Side effects from chemotherapy for colon cancer
include nausea, vomiting, loss of appetite, hair loss, mouth sores, diarrhea, and rashes. It
also lowers white blood cell counts, so there is usually an increased risk of infection as well
as low blood platelet counts resulting in bleeding or bruising. These treatments decrease
life quality, and the survival rate depends primarily on the stage of the disease. Stage I
has a 90% survival rate in 5 years against a 10% survival rate in stage IV in the same time
spectrum [2,11,24].

Actually, numerous efforts have been made to find a new effective method to regulate
undesirable immune responses during the autoimmune reaction [19]. The development of
preclinical studies allows the evaluation of other therapeutic alternatives, knowledge of the
pathogenesis, and possible future treatments, which are essential to improving the pharma-
cological approaches in the treatment of CACC [25]. Indeed, animal models represent an
important tool to explore the mechanistic basis of cancer-related inflammation, where the
induction of CACC can be perceived and manipulated by researchers [25,26]. Additionally,
it also has an immense potential to provide important evidence about the inflammatory
mediator’s roles in the initiation and perpetuation of IBD and CACC as well as in the
development of new therapeutic approaches and their mechanism of action [7,25,26].

There are different types of animal models of CACC; however, chemically induced
models are the greatest commonly used [25,27,28]. Such models are characterized by
starting with the administration of a carcinogenic compound followed by repeated cycles
of proinflammatory agents, which are toxic to colonic cells and generate an exacerbated
inflammatory response [20,21]. This experimental intestinal carcinogenesis model should
represent characteristics observed in human disease where tumors develop quickly and
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express biological modifications similar to those found in humans as well as mimic the
disease progression from inflammation through dysplasia to carcinoma [29,30].

Currently, there is no agreement in the literature concerning the induction method
taking into account several parameters, such as doses and/or concentrations of the carcino-
genic and proinflammatory agents, frequency of administrations, gender, age, and strains
of the mice utilized. Thus, our research group purposes to identify, summarize, compare,
and discuss different protocols for the induction of CACC through the PRISMA method-
ology. The challenge of the present systematic review is to promote a synthesis of the
information available in the literature, which can be an important tool for future research
on new possible pharmacological approaches for the treatment of CACC, contributing to a
more effective and safe treatment.

2. Materials and Methods
2.1. Search Strategy

Following the establishment of a review protocol based on PRISMA methodology, the
electronic database MEDLINE via the PubMed platform was searched from initiation up
to March 2021 for all studies with a chemically induced animal model of CACC in mice.
The search strategy was initiated with the insertion of keywords in the MeSH Database
in order to find MeSH terms. Posteriorly, a combination of the keywords was carried out,
and the final search expression was: (“Mice”[Mesh] OR Mice[tiab] OR Mice OR Mouse)
AND (“Animal Experimentation”[Mesh] OR “Animal Experimentation”[tiab] OR “Animal
Experimentation” OR “Preclinical studies”[tiab] OR “Preclinical studies” OR “Non-clinical
studies”[tiab] OR “Non-clinical studies” OR “animal model”[tiab] OR “animal model”
OR “disease models, animal” [Mesh] OR “disease model”[tiab] OR “disease model” OR
“disease models”[tiab] OR “disease models” OR “disease animal model”[tiab] OR “disease
animal model” OR “disease animal models”[tiab] OR “disease animal models”)) AND
(“colitis-associated neoplasms”[Mesh] OR “colitis-associated neoplasms”[tiab] OR “colitis-
associated neoplasms” OR “colitis-associated colorectal cancer”[tiab] OR “colitis-associated
colorectal cancer” OR “colitis-associated cancer”[tiab] OR “colitis-associated cancer”). The
results of the literature search are outlined in Figure 1.

2.2. Selection of Studies

In order to select the articles after the search expression was performed, there were
several inclusion criteria taken into account, such as: (1) only original articles; (2) articles
where a chemically induced animal model of CACC is described; (3) preclinical studies
in vivo with rodents; and (4) articles published in English. Additionally, the research
group also selected exclusion criteria, such as: (1) review articles; (2) short communications;
(3) case reports, and (4) expert opinions. Throughout the process of selecting the studies, the
exclusion started with the analysis of the abstracts, and then, the full texts of the remaining
articles were retrieved and reviewed. In case of disagreements between the reviewers and
the absence of consensus, a third element was included to make the final decision.

2.3. Data Extraction

The data of interest were independently extracted by both reviewers into a Microsoft
Excel spreadsheet (Windows 10 edition; Microsoft Corporation, Lisbon, Portugal). As well
as in the process of selecting the articles, the possible disagreements between the reviewers
were resolved by mutual consensus or by the inclusion of a third element to make the
final decision. The information of interest extracted from each study was as follows:
pro-inflammatory reagent-related parameters (number of administrations, frequency of
administration, doses, volume, concentrations, and vehicles used), procarcinogen reagent-
related parameters (number of administrations and doses), mice-related parameters (strain,
gender, and animal age), model characterization (clinical signs and symptoms, biochemical
markers and inflammatory and angiogenesis biomarkers, macroscopic evaluation, and
histological evaluation), authors and year of publication.
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Figure 1. PRISMA flow diagram showing results of the literature search.

2.4. Articles Eligibility

Related to our article’s eligibility, studies using a carcinogenic chemical combined with
a proinflammatory substance were selected, promoting the development of tumors with an
inflammatory response associated. The parameters such as dosage, timing, and frequency
of administration were all included, since the objective is to compare and evaluate their
influence in the induction method. We excluded the utilization of only a procarcinogen
agent without a proinflammatory chemical, which mimics the development of cancer in
the colon without an inflammatory response associated. Studies with genetically modified
strains of mice were also excluded because tumors develop in the colon without the action
of chemicals. Finally, studies with transplanted tumors were excluded, too.

After performing the search strategy, the retrieved articles were exported from the
MEDLINE database to a Systematic Reviews Web Application (Rayyan QCRI), and the
titles and abstracts were analyzed by two independent reviewers in order to select the
relevant and potentially eligible studies. Then, after selecting all the articles, the same
two independent reviewers assessed the full text of each one and decided whether the
article was eligible or not, considering the inclusion and exclusion criteria. In these two
steps, a third element was included in case of discrepancies between the two reviewers
in order to provide a final decision. After the selection of the eligible studies, the same
two independent reviewers extracted the relevant data present in those and inserted them
in a customized data extraction document. The data of interest were extracted from the
text, graphs, and/or tables present in the chosen articles. In case of discrepancies and an
absence of a consensus at the end of the task, a third element was included in order to make
a final decision.
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To evaluate the internal validity of the selected studies and the methodological quality,
through the analysis of the potential risk of bias present, we used SYRCLE’s risk of bias
tool. Throughout the process, several key points will be formulated to be aware of the
analysis of each study and attributed a punctuation, which in the end culminated in a final
score for each article.

Our animal systematic review was posteriorly submitted to PROSPERO, which is an
international prospective register of systematic reviews.

Animal care was in accordance with the internationally accepted principles for labora-
tory animal use and care, Directive 2010/63/EU.

Thus, this review aims to identify, summarize, and analyze different chemical meth-
ods for inducing colitis-associated cancer in mice for that we propose to compare and
debate some important parameters, such as proinflammatory reagent-related parame-
ters, procarcinogen reagent-related parameters, mice-related parameters, and the model
characterization.

3. Results

The electronic database allowed identifying 208 publications in total after the appli-
cation of the search expression. The publications were then screened according to the
inclusion and exclusion criteria (Figure 1). No duplicates were identified in the abstract
analysis; however, 93 original articles were excluded, since they were published more than
5 years ago. Of these, 115 published articles appeared to be pertinent to the study question
and were saved for extra assessment. From the 115 papers remaining, 25 were not aligned
with the purpose of the work and were excluded as ineligible based on the inclusion criteria
described previously. The reasons for the excluded articles were: the article corresponds
to a protocol (n = 4); letter (n = 1); short communication (n = 1); review (n = 2); systematic
review (n = 1); method of induction that does not use only chemicals (n = 10); tumour
induction at other organs (n = 1); articles where a chemically induced animal model of
CACC was not described (n = 3), and the article was written in Chinese (n = 2). Thus,
89 original articles were included in the qualitative analysis, since all of these studies have
described a chemically induced animal model of CACC in rodents (Table 1).

Preclinical studies in vivo, particularly animal model studies, mimic the pathogenesis
of CACC disease in humans and allow testing new pharmacological approaches, and
they are vital for knowing the underlying pathogenesis and for conceivable upcoming
treatments [31,32]. There are several types of animal models of CACC: chemically induced
models; transplantation models, those that express intestinal inflammation spontaneously,
those in which intestinal inflammation can be induced by specific immunological methods,
the genetically engineered models by gene knockout, knockin, or transgenic methods,
and the last includes adaptative transfer models [33,34]. The chemically induced models
are studied in the greatest detail so far for CRC. The CACC models are appropriated
to develop and test novel therapeutic strategies for the treatment of the disease. The
knowledge of molecular pathways involved in CACC may provide opportunities for
innovative therapeutic strategies for the treatment of CACC in the future. The exact
involvement of genetic susceptibility, microenvironment, and immune reactivity remains
unclear; therefore, the prevention and therapy of CACC are challenging [35]. There is
interest in the use and study of more than one animal model, since differences between
models may reflect the different subgroups of patients with IBD. The most used chemicals
to induce colitis models are 2,4,6-trinitrobenzenesulfonic acid (TNBS), which promotes a
Th1 response, resembling CD, and dextran sulfate sodium (DSS), which promotes a Th2
response, resembling UC [36,37]. DSS-induced colitis and TNBS-induced colitis models
are the most widely used to induce IBD since they symptomatically, morphologically, and
histopathologically resemble human IBD and allow the development and test of novel
therapeutic strategies [38–40].

DSS is easy to use and briefly obtain results resembling UC in humans [41,42]. To
cause inflammation in rats or mice, DSS protocol uses DSS added to drinking water;
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then, acute or chronic colitis model experiments can be conducted only by altering the
concentrations of the administered substance as well as the number of cycles of supply of
the chemical agent. The severity of colitis caused by DSS depends on the dose, duration
of administration, and animal strain [38,39] as well as the manufacturer and molecular
weight of DSS, gender, and animals raising environment such as germ-free or specific
pathogen-free environments [43,44].

The TNBS model is an easily induced, rapid, reliable, robust, and highly reproducible
animal model of intestinal inflammation. The induction of the disease occurs quickly and
appears 4 to 7 days after intrarectal administration of the TNBS hapten reagent, gradually
progressing into a chronic pattern during at most approximately about 8 weeks [45–47].
Protocols of the chronic TNBS-induced colitis model are not standardized concerning the
dose of TNBS, the depth of TNBS administration, the animal strain, and the time point for
model evaluation [48].

The CACC animal model requires first the administration of a procarcinogen com-
pound AOM or DMH. AOM is used to enhance the formation of colorectal tumors. AOM
is transported to the liver and is metabolized by cytochrome P450 to methylazocymethanol,
which is a highly reactive alkylating species that induces nucleotide transitions, the active
agent which is then secreted with bile into colonic epithelium, inducing mutagenesis. DMH
is also a compound used experimentally to induce tumors in animal models of carcinogen-
esis, since it induces carcinogenesis through deregulation of the cell cycle, acting as a DNA
methylating agent [49,50].
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Table 1. Summarized outcomes of induction methods for CACC models.

Procarcinogen
Reagent-Related

Parameters—AOM
Pro-Inflammatory Reagent-Related Parameters Rodent-Related

Parameters
Model

Characterization Reference
Number of
Administra-

tions
Dose

(mg/Kg)

Number of
TNBS

Administra-
tions

TNBS Dose
(mg)

TNBS
Volume (µL)

TNBS
Vehicle

Number of
DSS Admin-

istrations
(Cycles)

DSS Dose
(%) Strain Gender Age

(Weeks)

- - - - - - 3 3 C57BL/6 M; F 10 CSS; M; H [51]

1

10 1 2.5 150 EtOH - - C57BL/6 - 8 CSS; BM; M [52]

3–20 - - - - 1–4 1-3

C57BL/6;
FVB/Ant
and IL-6;

BALB/c; A/J;
FVB/NJ;

B6:129; ICR;
SAMP; AKR

M; F 4–12 CSS; BM; M; H [53–134]

2 5–12.5 - - - - 2–3 0.5–2
C57BL/6;

STAT6;
Balb/c

M; F 5–14 CSS; BM; M; H [135–139]

5 10 - - - - 3 1.70 C57BL/6 F 6 CSS; BM; M [140]

Legend: CSS: Clinical signs and symptoms (e.g., body weight, mortality, morbidity, stool consistency, number of tumors); BM: Biochemical markers (e.g., TNF-α, TGF-β, IL-6,10,12; IL-1β,
IFN-γ, MPO, CD4+ lymphocytes); M: Macroscopic evaluation (e.g., ulcers, thickness, hyperemia, colon weight, and length); H: Histological evaluation (e.g., inflammation); F—Female;
M—Male.
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This experimental animal model of CACC must be capable of providing an intestinal
carcinogenesis model, where tumors develop over the short term and express biological
modifications similar to those found in humans. The two-step tumor model of CACC
mimics the progression of CACC development in humans from inflammation through
dysplasia to carcinoma [48–50].

However, a consensus in the CACC procedures model is not achieved, resulting in the
absence of a standardized protocol for the development of the disease. Parameters such as
the doses and concentration of proinflammatory agent, procarcinogen agent concentration,
the animal strain, and the time point for model evaluation remain indefinite, creating a
deficiency in obtaining a reproducible model [26,50]. Since there are several accessible
CACC models, the main concern of the researchers is having all of the variables, previously
referred, to in deliberation for future application in the preclinical testing to achieve the
greatest possible results [35].

3.1. Pro-Inflammatory Reagent Related Parameters
3.1.1. Number of TNBS Administrations

TNBS induces an acute and chronic form of colitis dependent on the dose and fre-
quency of administration, reacting with some amino acid groups on the intestinal mucosa
and bacterial proteins of the colon and rendering them immunogenic. This model is based
on increased permeability of the membrane that occurs in IBD, which facilitates the entry
of a luminal antigen that is not adequately eliminated by the immune system, the hapt-
enization [140,141]. A large part of the articles consider that the chronic colitis only can be
induced by more than one administration; however, our data only find one article with
TNBS, with one single administration, indicating a bigger use of DSS in CACC mouse
models in the last 5 years, allowing the opening of a new window of knowledge with the
use of TNBS as a disease inducer. The main advantages of this model include a simple and
low-cost protocol and reproducible colonic damage, short experiment duration, enduring
damage accompanied by inflammatory cell infiltration, and ulcers. The know-how of our
research group in the development of the chronic mouse model of colitis as well as the
literature defending those repeated administrations of TNBS are preferred, resulting in
a local Th1 response that has the characteristics of Crohn’s disease. Other authors refer
to a dose-escalating or repeated enemas of TNBS as a possible strategy to achieve the
induction of chronic colitis, but never by oral feeding, since this will endorse significant oral
tolerance [142,143]. Built from the knowledge of our research group in the development
and validation of a chronic mouse model of colitis, TNBS-induced chronic colitis should be
developed in 4 weeks, providing a chronic intestinal inflammation model. Accordingly,
the acute transmural damage became maximal from 3 days to 1 week after instillation
and resolved within 2 weeks; however, if multiple TNBS administrations are used, the
colonic inflammation can gradually progress, lasting for about 8 weeks [34,144,145]. In
addition, the disease severity and clinical course may be altered with the use of a TNBS
hapten suboptimal reagent [48].

3.1.2. TNBS Dose

To generate chronic colitis, the optimization of TNBS concentrations is important. The
dose to induce colitis oscillates due to several key factors, including genetic background,
gender, age, body weight, as well as sterility conditions of the animal facility and strain.
According to the literature, adjusting the respective doses of TNBS may bring about a
spectrum of disease, from acute to chronic. While high dosages of TNBS lead to massive
colitis, necrosis, colon perforation, and consequently an acute mortality rate due to massive
colitis, lower dosage may be inefficient in the induction of colitis, causing short-lasting,
weak, or even completely absent disease activity [32,45,146]. Relatively to TNBS dose,
our data refer to a 2.5 mg single dose; however, based on previous studies about chronic
colitis from our research group, doses ranges can vary from 0.3 to 5.0 mg per mouse
(for an average body weight in each mouse of 20 mg) to induce chronic colitis [30]. All
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experimental studies should be performed in a selected area exclusively for the colitis
induction with TNBS, and the sterility conditions of the animal accommodations should be
assured, as they have a large impact on disease outcome. In addition, the cohabitation of
the experimental mice with other strains of mice or pathogens may modify the immune
response and consequently the expected results [37].

3.1.3. TNBS Volume

As well as the dose, the volume of administration is a crucial parameter to evaluate
by the investigators before administering any substance to an animal. The recommended
volumes of administration are described in guidelines, considering the route of administra-
tion, the toxicity of the administrated substance, and the size of the rodent. Inappropriate
volumes of solution can shock the animal. Rectal administration is an enteral administra-
tion made directly in the gastrointestinal tract that can be performed using soft small-gauge
flexible tubing with a dosing syringe attached to the end. In the mouse, the injection volume
limit on rectal administration is 500 µL [147].

In this review, the authors used enemas with 150 µL, which are in agreement with
the literature. According to our experience with rectal administration in mice, the injected
volume varies between 50 and 500 µL; nevertheless, the risk of leakage is higher for volumes
above 100 µL [30]. However, there is no consensus about any recommend ideal volume for
rectal administration in mice. To prevent colonic reflux, the mice should be post-maintained
in the Trendelenburg position after the rectal administration, since a lack of practice in
the technique, presence of feces in the colon, anatomical positioning of the descending
colon, and injection rate of the volume to be administered can contribute to the rectal reflux
of TNBS and consequently promote deficiencies in the induction method or increase the
variability in animals’ disease.

These findings suggest that there is no defined volume. It is desirable always to use
reduced volume to the same dose in order to ensure the complete absorption and retention
of the entire solution to reduce the commitment of a correct validation model.

3.1.4. TNBS Vehicle

The range known of ethanol concentrations used in the literature varies between 10
and 80%; however, most studies use ethanol between 45% and 55% as a TNBS vehicle,
accordingly to the optimal dosage of ethanol described as 30% to 50% [41,45]. The ethanol
permeabilizes the epithelial layer that separates the luminal contents of the colon from the
cells of the mucosal immune system, allowing the penetration of TNBS in the bowel wall,
the ethanol at 50% is the most recommended to disrupt the intestinal barrier and enable
the translocation of the TNBS into the submucosal layer. Still, some authors use lower
concentrations of ethanol in order to avoid ethanol interference in inducing damage to the
intestinal epithelium, but there is no described evidence of the effects of 50% ethanol in
colon lesions in the TNBS colitis model. In our previous chronic colitis model, the findings
corroborate the same [148–153]. The use of ethanol is only required to break the intestinal
barrier, increasing its permeability [25,30,154,155].

3.1.5. Number of DSS Administrations

DSS-induced colitis is a reproducible model that morphologically and symptomatically
resembles UC in humans. DSS acts as a toxin to colonic epithelium originating epithelial
cell injury, the disruption of the intestinal epithelial monolayer lining outcomes in colonic
inflammation, resulting in the entrance of antigens and luminal bacteria in the bowel
mucosa, permitting the exacerbation of the inflammation and spread of the intestinal
contents into the tissue [141]. The commonly used protocol for DSS-induced colitis in
mice is to add DSS to drinking water in a dose range of 2–10% by repeated exposure
administering in three to five cycles punctuated with recovery periods. The addition of DSS
to drinking water, modifying the concentration of DSS, and the frequency of administration
permit obtaining a very reproducible acute or chronic and relapsing model of intestinal
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colonic inflammation as well as a useful model for a better understanding of the innate
immune mechanisms of UC [144,145]. The severity of the DSS-induced colitis model
depends on the dose, duration of administration, and animal strain. However, the DSS
model presents some disadvantages, such as the cost and the possible variations in disease
severity, taking into account the presence of impurities in the DSS preparation or the
quantity consumed by each mouse. In addition, the disease is characterized by progressive
crypt dropout, suggesting a direct effect of DSS on the epithelial cells as opposed to lamina
propria cells as suggested in human IBD [144–146].

Attending our studied papers, we observe an extensive number of papers using DSS
as an inducer of colitis in the studied animal models (n = 89) just like a wide range of
administration patterns. The administration design varies according to the different authors
from one DSS cycle to four DSS cycles of 5 or 7 days followed by a recovering period. The
majority of our papers indicate three DSS cycles as preferable (n = 41) contrarily to one DSS
cycle (n = 7) or four DSS cycles (n = 3), leading us to believe that fewer DSS cycles should
not be sufficient to establish the disease or even develop a chronic pattern, and similarly,
plentiful DSS cycles could be prejudicial to the animal, taking into account his life span and
posteriorly lead to death.

3.1.6. DSS Dose

DSS is usually administered in a dose range of 2–10% for 5–10 days to induce acute
inflammation following a single continuous exposure. By prolonging DSS administration,
acute colitis may be extrapolated to chronic colitis by repeated exposure administered in
three to five cycles interrupted with recovery periods [144–146].

In our review, we could find dose variation between 1% and 3% of DSS dose. The great
part of the analyzed papers maintains the initial dose during the treatment; however, some
authors refer to the use of increasing doses during the treatment to obtain a pre-sensitization
effect, which permits reducing the mortality rate with higher doses, and, according to the
authors, obtaining a more reliable chronicity animal model. The most applied dose is 2%
DSS observed in thirty-nine of our studied articles (n = 39); however, we observe a great
fraction of the articles using 3% DSS in the animal models (n = 15). Meanwhile, only two
articles refer to the use of 1% of DSS as enough to develop a chronic model of colitis to
induce CACC (n = 2). However, DSS promotes a generalized inflammation in the whole
intestine, including the colon and rectum, which allows us to assume TNBS as a better
chemical inducer in an animal model of CACC.

3.2. Procarcinogen Reagent Related Parameters
3.2.1. Number of AOM Administrations

A procarcinogen is a compound that is not itself carcinogenic but undergoes metabolic
activation in the body to yield a carcinogen. AOM is a metabolite of the procarcino-
genic 1,2-dimethylhydrazine (DMH). The mutagenic agent AOM initially needs metabolic
activation to form DNA-reactive products. Firstly, in the liver cytochrome, P-450 iso-
form hydroxylates AOM to the stable methylazoxymethanol glycoside (MAM), which
is then transported to the colon where it finally promotes DNA damage. In our review,
the articles are completely elucidative with an overwhelming majority of the papers us-
ing AOM as a procarcinogen (n = 89). As described in the literature, AOM on par with
1,2-dimethylhydrazine (DMH) are the most used procarcinogens in mice models. DMH,
a metabolic precursor of MAM, was used in several early studies to induce tumors in
rats [11,13,17]. Repetitive treatment with this methylating agent was reported to produce
colon tumors in rodents that exhibit many of the pathological features associated with the
human disease [19–22]. Thus, DMH has provided cancer researchers with a reproducible
experimental system for studying forms of CACC. However, AOM offers advantages over
DMH, including enhanced potency and greater stability in dosing solution [16,18,22]. The
number of procarcinogen administrations was also targeted by our review; the majority of
the articles indicate preferably the use of only one single administration of AOM (n = 56),
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others use two administrations (n = 5), and the last author uses five administrations of the
procarcinogen AOM (n = 1). The AOM administration normally is performed one week be-
fore the following treatment. The induction as well as the number of administrations has a
crucial role in the AOM absorption by the animal organism and consequent carcinogenesis
model success. The data demonstrate a preference for the intraperitoneal administration of
AOM (n = 84) against one paper that describes the administration intravenously; besides
this, intrarectal administration is well described in the literature. However, the performance
of carcinogen administration should be preferably intraperitoneal.

3.2.2. AOM Dose

A wide range of azoxymethane concentrations can be identified from our selected
articles; the lowest dose observed was 3 mg/kg, and the highest dose was 20 mg/kg.
Nevertheless, we observed a consensus in the majority of the CACC inductions with an
optimal concentration of 10 mg/kg (n = 53). In the literature, some authors perform a dose–
response study with AOM and different doses of a proinflammatory agent, suggesting
that severe types of inflammation and nitrosative stress were caused by high doses of the
proinflammatory agent. Thus, the tumor-promoting effect is dose-dependent, and the effect
corresponds to the degree of inflammation and nitrosative stress, which is assessed in this
study by an increased variety of cell types (neoplastic, cryptal, and endothelial cells, as
with infiltrative mononuclear cells) within the colonic mucosa [22].

3.3. Rodent-Related Parameters
3.3.1. Strain

In the animal models, the susceptibility to develop the studied disease varies with
strains; hence, it is important to choose the correct animal model strain. Preclinical studies of
experimental colitis have been developed in different animal species such as rats, mice, pigs,
rabbits, nonhuman primates, and dogs [156,157]. The majority of the animal models using
mice demonstrate susceptibility to disease development at a rate of 90% [45]. Originally,
SJL/J mice were described as the mouse strain with higher susceptibility for the induction
of colitis [145]; actually, this fact remains well accepted in actual scientific data [32,158].
Mainly in DSS animal models, C3H/HeJ and Balb/c mice strains are pronounced as more
susceptible [146]. However, strains such as BALB/C and C57BL/6 are frequently used with
success for the development of colitis with different inflammatory agents. The comparison
between strains demonstrates a relative resistance between Balb/c mice and C57BL/6, and
SJL/J, which can be mitigated with the use of pre-sensitization; the data are not shown
in our review. According to our data, the most frequently used strains to induce chronic
colitis were C57BL/6 (n = 59) and Balb/c mice (n = 16). It is important to ponder that the
inconsistency between mice strains requires also the optimization of the proinflammatory
reagent concentration [41], as we have mentioned before.

3.3.2. Gender

Relatively to animal gender, our analyzed studies allow us to understand that there
is no tendency toward gender. There are several articles referring to the use of males and
females in the same protocol (n = 11). A great percentage of the papers use males (n = 39)
against an inferior number using females (n = 17). However, some articles do not even
refer to gender (n = 15). There is no agreement about this topic in the literature, since
some studies argue for a more exacerbated disease in males, and on the other hand, some
authors studied particularly the hormonal involvement in the disease model progression,
concluding no association between the gender and the disease evolution. Particularly,
in DSS animal models, gender can influence the severity and susceptibility of exposure,
since some authors describe males as more susceptible to developing the disease [144].
Nevertheless, the literature indicates that both males and females can develop an animal
model with the same clinical characteristics [45]. Thus, it seems that there is no variation in
the results about the gender.
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3.3.3. Age

According to the literature, animal age represents a significant parameter in animal
model studies, since it is directly related to the animal susceptibility to the disease and
the consequent mortality rate. The data from our investigated articles demonstrate a large
range of ages, specifically between four and fourteen weeks. However, some studies do
not mention the animal age (n = 10). Scheiffele and Fuss described colitis induction with
animals at 5 to 6 weeks of age, because younger animals have a greater success rate of
induction; otherwise, animals up to 4 weeks of age suffer an increased mortality rate [45].
Instead of age, other articles define the weight instead the age of the animal or even combine
both. The used average weight is around 20 g (data not shown), which conforms to the
weight of an adult mouse [147]. Regarding this parameter, it is being considered that
colitis induction should be performed in animals between 18 and 20 g of body weight.
Nevertheless, the importance retained from the data is the preferential use of adult mice in
preclinical studies.

3.4. Model Characterization

The evaluated papers are coherent in the majority of parameters analyzed. The authors
evaluate clinical signs and symptoms, biochemical markers, and observed macroscopic
lesions, and then make a histological assessment of the colon samples. Still, different
parameters are investigated in different papers considering the preclinical models proposed.
Summarily, we describe each one of them below.

3.4.1. Clinical Signs and Symptoms

During the experimental development, the animals were observed daily, and we
monitored clinical signs throughout the evaluation of different parameters, such as body
weight, morbidity, stool consistency, and anus appearance. Regarding scrutinized articles,
we expected alterations of intestinal motility characterized by diarrhea or soft stools, edema
of the anus, and moderate morbidity, accompanied by a general deterioration in their
appearance. The studied groups presented a decrease in body weight, demonstrating
that sick mice became weaker, with progressive weight loss and subsequently increased
mortality. These are in agreement with other authors who describe that the animals develop
visible signs of disease and decrease in the activity level [33,45]. Although the clinical
signs and symptoms appear to be fewer sensitive parameters (especially body weight and
morbidity), almost all of the observed studies with this preclinical model have shown
the necessity of monitoring them (n = 63). However, in addition to the aforementioned
signs/symptoms regularly evaluated, it is suggested that the principles of the Rat/Mouse
Grimace Scale should always be monitored daily, as they allow for better monitoring of
pain and, thus, a better perception/assessment of model evolution. Some criteria are the
closure of the orbital area, the protuberance of the nose when the animal is not under active
exploration, the contraction of the cheek muscle, and the position of the ears and whiskers.

3.4.2. Biochemical Markers

The severity and the occurrence of pathology can be detected or measured in blood
or tissues through biochemical markers. From our collected data, we find a significant
percentage of articles using the determination of biochemical markers, since it allows a
precise parameters quantification in blood to determine the severity of colitis [159–161].
(n = 16). In the literature, we can find that the analysis of serum is conducted in order
to evaluate several parameters, such as alkaline phosphatase (ALP) and extra-intestinal
manifestations, urea, creatinine and alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), albumin as well as additional analyses, such as fecal hemoglobin. ALP is
expressed by the intestinal epithelium; it has an important role in mucosal defense and
will be determined as a marker of intestinal homeostasis. Extra-intestinal manifestations
are evaluated as representative of external and consequent manifestations of the inflam-
mation. All of them are evaluated spectrophotometrically. Urea, creatinine, and alanine
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aminotransferase (ALT) are biomarkers not significantly evaluated by the articles studied
in this review (n = 2). However, based on the know-how of our research group in the
anterior developed mouse model of TNBS-induced colitis, these parameters allow the
evaluation of the extra-intestinal influence of our induction model. These biochemical
markers, non-related directly to the intestine, are representative of external and consequent
manifestations of the inflammation. Urea and creatinine are determined as markers of renal
function, and ALT is determined to be a marker of hepatic function. Consistent with the
literature, the higher serum levels represent extraintestinal manifestations and secondary
effects involved with almost every organ system, and some of the most frequently involved
organs are the liver and kidney [162–165]. TNBS-induced colitis is therefore expected to
show a significant change in renal and hepatic functions compared to the control groups,
which is characterized by increased levels of these markers in serum. Feces are collected
from all groups in order to measure the fecal hemoglobin. Fecal hemoglobin is evaluated
using a quantitative method by immunoturbidimetry as an index of hemorrhagic focus.
Our research group used fecal hemoglobin, an extremely sensitive parameter, in the acute
colitis model. The determination of fecal hemoglobin allows the diagnosis and evaluation
of various colorectal diseases once it determines the intensity of the hemorrhagic focus in
the damage of colonic tissue [162–165]. In this sense, we expect to have high values of fecal
hemoglobin in the colitis groups as opposed to the control group, where we suppose that
they present residual fecal hemoglobin concentrations. Fecal hemoglobin is determined in
our data in ten articles (n = 10).

3.4.3. Pro-Inflammatory Markers

In the analyzed articles, several distinct inflammatory biomarkers are described as
interferon (IFN)-γ (n = 13), tumor necrosis factor (TNF)-α (n = 38), myeloperoxidase (MPO)
(n = 10), cyclo-oxygenase-2 (COX-2) (n = 21), interleukin (IL)-6 (n = 42), IL-12 (n = 4), IL-1β
(n = 21), and IL-10 (n = 18). Cytokines are molecules involved in signal emission between
cells during the triggering of immune responses and are crucial for fighting infections
and other immune responses. The proinflammatory cytokines, IFN-γ, TNF-α, IL-6, IL-12,
IL-1β, and the anti-inflammatory cytokine, IL-10, are the most used as biomarkers and
should be measured in the colon with a spectrophotometer. Proinflammatory cytokines
work by promoting the inflammatory process, ensuring that reactions occur and conse-
quently the initial insult is eliminated. In immune responses, IFN-γ, TNF-α, IL-6, IL-12, and
IL-1β are proinflammatory cytokines released after triggering the inflammatory process.
The increased values of these proinflammatory cytokines are related to IBD pathogenesis
once they are augmented in colitic tissue [166,167]. TNF-α is a proinflammatory cytokine
produced during the innate immune response of IBD. TNF-α is associated with the patho-
genesis of colitis since is increased in inflamed colon tissue. Anti-inflammatory cytokines
act as a brake on this process, preventing an exacerbated response and possibly producing
undesirable effects of the inflammation itself and the healing process [166,168]. The pres-
ence of anti-inflammatory cytokines, such as IL-10, suggests a decreased serum value in
different data, which is consistent with the expected hypothesis that the immune system in
the presence of a chronic inflammatory insult tends to dispel the disease, balance values of
biochemical markers of inflammation, and consequently re-establish homeostasis [169,170].
IL-10 plays a central role in the mucosal immune system by inhibiting proinflammatory
cytokine synthesis and antigen presentation, and at the same time, it relieves intestinal
inflammation [171]. COX-2 is another biomarker widely found in our data; it is an enzyme
responsible for the phenomena of inflammation and production of prostaglandins, which is
largely studied in the literature of the inflammatory process. MPO is a peroxidase enzyme
most abundantly expressed in neutrophil granulocytes. The MPO activity is indirectly
related to neutrophil infiltration in the inflamed colon. In the presence of inflammation,
the MPO enzyme is released from the colonic mucosa, allowing a direct correlation of its
release with the values in the systemic circulation [94]. The specific inflammation markers
studied in the colitic mouse models represent and prove the consistency of the induction
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method used as well as confirm the occurrence of inflammation in the intestine caused by
colonic damage.

3.4.4. Carcinogenesis Markers

Angiogenesis is essential for tumor growth and metastatic spread. Therefore, angio-
genic factors are important targets of anti-tumor therapy. Samples collected from colonic
tissue should be used for spectrophotometric measurement in a spectrophotometer to
determine tumor markers levels [155]. Markers such as vascular endothelial growth factor
A (VEGF-A), granulocyte colony-stimulating factor (G-CSF), chemokine (C-X-C motif)
ligand 1 (CXCL1), β- catenin, proliferating cell nuclear antigen (PCNA), a marker of pro-
liferation Ki-67, caspase 3 and epidermal growth factor (EGF) are found in the literature
as well as are present in our collected data, and they are important as representative of
tumor progression. VEGF-A is a signal protein produced by many cells that stimulates the
formation of new blood vessels and angiogenesis (n = 7). GCSF is a cytokine that stimulates
the production of granulocytes and stem cells (n = 8). CXCL1 has a role in angiogenesis
and thus has been shown to act in the process of tumor progression (n = 10). β-catenin
plays a role in the most diverse pathways of cell signaling, acting mainly as a transcription
factor, which mainly highlights its essential signaling in developmental biology and as
a protein involved in cell adhesion (n = 11). Mutations and super expression are associ-
ated with various types of cancer, including pulmonary, breast, ovarian, endometrial and
hepatocellular, and colorectal carcinomas. Proliferating cell nuclear antigen (PCNA) was
originally identified as an antigen that is expressed in the nuclei of cells during the DNA
synthesis phase of the cell cycle (n = 16). Ki-67 is an excellent marker to determine the
growth fraction of a given cell population (n = 21). The fraction of Ki-67-positive tumor
cells is often correlated with the clinical course of cancer. Antibodies against PCNA or
monoclonal antibody termed Ki-67 can be used for grading different neoplasms. They can
be of diagnostic and prognostic value. The imaging of the nuclear distribution of PCNA
can be used to distinguish between the early, mid, and late S phases of the cell cycle. The
caspase 3 protein by his side plays a central role in the execution phase of cell apoptosis
(n = 13). Lastly, EGF is important for cancer cell proliferation, angiogenesis, and metastasis
in many types of cancer [155,172,173]. There is a broad angiogenesis marker that represents
key molecules in angiogenesis and vasculogenesis; however, its molecular mechanisms
of action remain incompletely understood with no discussion about its importance in the
evaluation of the disease progression.

3.4.5. Macroscopic Evaluation

Relatively to the macroscopic evaluation, colons must be observed macroscopically
and scored to gross morphology according to the Morris method, and several parameters
can be analyzed in the necropsied colon, such as weight and length of the colon, wall
thickness, hyperemia, ulceration, and adhesions. The macroscopic evaluation, although
unspecific, represents an important tool in the disease characterization, as present in our
data (n = 29). In inflammation, the gut wall tends to increase in the thickness, and the
macroscopic observation of the bowel also demonstrates ulcerations and hyperemia, which
are parameters analyzed in data that are consistent with those expected by other authors
and the presence of disease. Macroscopic score evaluation of the colon was based on
descriptions by Morris et al. (1989) [145]. Colon length (n = 28) is evaluated in our studies
as a picture of intestinal damage and measured as a marker of tissue integrity, which
is determined using a measuring scale; the literature points to a reduction in colonic
length after TNBS treatment, indicating a reduction in the colon length after the disease
installation [174–177].

The number, incidence, size, and distribution of tumors (n = 79) were the most scruti-
nized parameters observed macroscopically, which represents the capability of the induc-
tion method in developing polyps as well as the location in the gut and dimensions.
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3.4.6. Histological Evaluation

Histopathology is carried out by two independent histopathologists blinded to the
treatment groups. The colon samples are fixed, processed routinely for paraffin embedding,
sectioned, and stained with hematoxylin and eosin. The assessment of colitis-associated
cancer is scored based on the sum of the inflammation score and carcinogenesis score of
colons. The histopathological score of lesions is partially scored with some parameters:
namely, the presence of tissue loss/necrosis, the severity of the mucosal epithelial lesion,
inflammation, the percentage of intestine affected in any manner, and the percentage of
intestine affected by the most severe lesion. The articles show histological evaluation as an
important parameter to be considered, since it is present in several examined papers (n = 30).
The histologic analysis method allows a qualitative evaluation of the analyzed sample,
since it determines the impact in colon tissue, the change in intestinal permeability, and the
damage in the colon tissue as well as the inflammation severity in the intestine [178–181].

4. Conclusions

In CACC research, preclinical studies in vivo are pillars for understanding the patho-
genesis and possible future treatments. Murine models have an immense potential, where
the induction of CACC can be witnessed and manipulated by researchers [24]. The results
from animal models research may provide insight into potential therapeutic approaches to
ameliorate the inflammation and minimize the morbidity and mortality associated with
CACC. However, variability in the results in preclinical studies, due to several conditions
such as type of induction method, administered doses, and treatment period, makes the
translation of the data for clinical practice difficult. Careful attention may be required to
translate animal studies to clinical settings by ensuring that both safety and efficacy can be
modeled [2].

Based on this review study, the previous AOM administration seems important to
the CACC induction method; however, just one administration is necessary to stimulate
the carcinogenic effect. DSS has been the more used inflammatory agent to promote
chronic colitis. However, more studies with the TNBS contribution are suggested, since
this inflammatory agent allows a reliable, robust, and highly reproducible animal model of
intestinal inflammation.

The strains mostly used are Balb/c and C57BL/6 with 5–6 weeks with males or
females. The most used parameters to characterize this preclinical model include clinical
signs and symptoms (body weight, stool consistency, and morbidity), the concentration
of inflammatory biomarkers (IFN-γ, MPO, TNF-α, IL-6, and IL-10), the concentration
of angiogenesis markers (VEGF-A, G-CSF, CXCL1, β-catenine, PCNA, Ki-67, caspase 3
and EGF), macroscopic evaluation of the colon (ulcers, thickness, and hyperemia) and
histological evaluation of the colon. Since the two-step tumor model of CACC mimics the
progression of CACC development in humans from inflammation through dysplasia to
carcinoma, this systematic review allows us to better understand the different methods to
induce a CACC model. Considering that there are several protocols published for inducing
this disease in animals through the use of chemicals with the absence of a standard process,
this systematic review summarizes and analyzes the different chemical procedures existent
and the underlying evidence. In this sense, this systematic review provides a clearer vision
about the use of chemicals in the development of CAC in animal models, which can be
useful for the scientific community in terms of the formulation of a protocol based on the
information present in the final version of this study.
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