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a b s t r a c t

The Coronavirus disease 2019 (COVID19) pandemic has led to a dramatic loss of human life worldwide
and caused a tremendous challenge to public health. Immediate detection and diagnosis of COVID19
have lifesaving importance for both patients and doctors. The availability of COVID19 tests increased
significantly in many countries, thereby provisioning a limited availability of laboratory test kits
Additionally, the Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test for the diagnosis of
COVID 19 is costly and time-consuming. X-ray imaging is widely used for the diagnosis of COVID19. The
detection of COVID19 based on the manual investigation of X-ray images is a tedious process. There-
fore, computer-aided diagnosis (CAD) systems are needed for the automated detection of COVID19
disease. This paper proposes a novel approach for the automated detection of COVID19 using chest
X-ray images. The Fixed Boundary-based Two-Dimensional Empirical Wavelet Transform (FB2DEWT)
is used to extract modes from the X-ray images. In our study, a single X-ray image is decomposed
into seven modes. The evaluated modes are used as input to the multiscale deep Convolutional
Neural Network (CNN) to classify X-ray images into no-finding, pneumonia, and COVID19 classes.
The proposed deep learning model is evaluated using the X-ray images from two different publicly
available databases, where database A consists of 1225 images and database B consists of 9000 images.
The results show that the proposed approach has obtained a maximum accuracy of 96% and 100% for
the multiclass and binary classification schemes using X-ray images from dataset A with 5-fold cross-
validation (CV) strategy. For dataset B, the accuracy values of 97.17% and 96.06% are achieved using
multiscale deep CNN for multiclass and binary classification schemes with 5-fold CV. The proposed
multiscale deep learning model has demonstrated a higher classification performance than the existing
approaches for detecting COVID19 using X-ray images.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

COVID19, now called severe acute respiratory syndrome
oronavirus-2 (SARS-CoV-2), has proliferated worldwide. It was
irst spotted in Wuhan City, Hubei Province, China [1]. After
ausing nearly 17,205 cases in China [2,3], it began to proliferate
o the Philippines, India, US, UK, Russia, and other countries,
ventually causing more than 4, 999, 530 deaths worldwide [2,4].
oronavirus is a pathogenic disease that starts by invading the
espiratory tract and then guides itself into the cells using an en-
yme called furin and ultimately impairs the immune system [5].
ome common symptoms of COVID19 are shortness of breath,
hest pain or tightness, a deeper cough, and other breathing
ifficulties [5,6]. A molecular test, namely RT-PCR, is used to

∗ Corresponding author.
E-mail address: rajeshiitg13@gmail.com (R.K. Tripathy).
ttps://doi.org/10.1016/j.asoc.2022.108610
568-4946/© 2022 Elsevier B.V. All rights reserved.
detect the presence of this pathogen. Even though the RT-PCR
test became the standard confirmatory clinical test for detecting
COVID19 infection, the limited availability of its test kits and
hospital experts created restrictions in diagnosing the infected,
who required immediate isolation. The costs of the test kits,
especially in developing and underdeveloped countries, are a con-
siderable obstacle for testing in this pandemic. Due to this, chest
radiologic examinations using computed tomography (CT) and X-
ray as alternatives have become necessary for the early detection
of COVID19 [7,8]. A study on Chest X-ray (CXR) of 88 patients
confirmed with COVID19 described the temporal changes of the
chest radiological findings throughout the disease course [9]. It
concluded that almost half of the patients with COVID19 showed
abnormal CXR, and the abnormalities correlated significantly with
symptoms. Further studies revealed distinct visual characteristics
such as multi-focal, bilateral ground-glass opacities (GGO), and

patchy reticular opacities as the most common findings in the
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XR of the infected patients [9,10]. Therefore, these features deem
XRs viable for the analysis and diagnosis of COVID19. CXR is
lso readily available at most medical centers and has a faster
urnaround time during laboratory examination, which adds to
ts advantages for use.

Artificial Intelligence (AI) is an ever-expanding field and has
een proven to show stable and accurate results when analyzing
nd diagnosing various diseases. With the combination of AI with
mage analysis, the diagnostic power has been remarkable [11].
eep learning is one of the fields in AI which has gained impor-
ance in the past few years. The image-based classification has
dvanced to new peaks using hidden layers and deep convolu-
ional networks (CNNs or ConvNets). When we consider the case
f COVID19, the use of feature extraction and image classification
an be used in the analysis of CXRs [12]. Radiologists, nurses,
nd hospital staff play a critical role in the diagnosis of COVID19.
owever, a radiologist can miss these parameters due to the
xcessive load of patients at the hospitals, which creates fatigue
nd a need to complete the diagnosis faster and efficiently. Hence,
here is a need for the deep learning model for better and faster
nalysis of X-ray images to detect COVID19.
The residual sections of this paper are organized as follows.

he existing methods for the detection of COVID19 using X-ray
mages are discussed in Section 2. In Section 3, the motiva-
ions and the contributions of this paper are written. Section 4
laborates on the different X-ray datasets used in this study. In
ection 5, the proposed approach is described. Section 6 explains
he results obtained and the discussions of the results. Finally,
ection 7 concludes the paper.

. Related works

Since the last few decades, various computer-aided detection
ystems have taken a noticeably significant step, especially in the
edical domain. Many applications, particularly detection and
iagnosis, pertaining to the medical field have been performed
sing several AI-based deep learning algorithms. AI has been suc-
essful in recent times for the diagnosis of poultry disease [13],
steoporosis [14], breast cancer [15], cardiovascular disease [16],
nd plant disease [17], respectively. The pandemic has necessi-
ated the need for computer-aided deep learning-based COVID19
etection systems. In this regard, many researchers have devel-
ped various machine learning and deep learning models using
oth X-ray and CT scan images for timely detection. As X-ray
ests are cheaper than CT scan tests, it is economical to detect
OVID19 using CXR images feasible with higher performance.
fshar et al. have developed a capsule network-based frame-
ork (COVIDCAPS) on an X-ray dataset and have arrived at ac-
uracy and specificity of 95.7% and 95.8%, respectively [18]. Such
odels can efficiently handle the availability of even limited
atasets. Similarly, other models have been built using ResNet50,
esNet101, ResNet152, InceptionV3, Inception-ResNetV2 achiev-
ng a maximum accuracy of 99.7% produced by ResNet50 for
inary classification [19]. Sethy et al., [20] have separated the
OVID19 positive cases from the others using the support vector
achine (SVM) with learnable features from X-ray images and
ave successfully achieved an accuracy of 95.38%. Their research
as stated that SVM combined with ResNet50 produces fairly
uperior results.
Furthermore, various researchers have introduced a deep con-

olutional neural network design on CXR images providing ac-
urate yet practical results [21]. A deep learning model, namely
OVIDX-Net, was done on 50 CXR images with 25 COVID19 cases
y Hemdan et al. [22]. The model consisted of the architec-
ure of seven deep convolutional neural network (CNN) models.
postolopoulos et al. have achieved an accuracy of 98.75% and
2

93.48% for binary (COVID19 and no-finding or normal classes) and
multi-class (common pneumonia, COVID19, and normal classes),
respectively [23]. Their deep learning model used transfer learn-
ing for the classification of 1427 X-ray images. Horry et al. have
performed detection through transfer learning using multimodal
imaging data [24]. The chosen VGG19 based transfer learning
model was fine-tuned with appropriate parameters and reached
a precision of 86% for X-ray (three classes), 100% for Ultrasound
(three classes), and 84% for CT scans (two classes). The model
developed by Ozturk et al. has obtained an accuracy of 98.08%
and 87.02% for binary and multi-classes using the DarkCovidNet
model [25]. The model has a total of 17 CNN layers with separate
filters on each layer. Another hybrid model by Altan and Karasu
has been developed by applying 2D curvelet transform on the
CXR images, the output coefficients were optimized using CSSA,
and the final detection was performed using the EfficientNet-B0
model [26]. Tsiknakis et al. have used transfer learning for the
classification of COVID19 and normal X-ray images [27]. They
have obtained an overall area under the Receiver Operating Char-
acteristics (ROC) curve as 1. Several deep learning models are
used to detect COVID19 patients using CT scans and ultrasound
images [27–32].

In the past few years, the learnable feature extraction and clas-
sification of images have gained much importance in deep learn-
ing. Empirical Wavelet Transform (EWT), developed by
Gillies [33], is a technique that uses an adaptive wavelet subdivi-
sion scheme to create a multiresolution analysis (MRA) of a signal.
It is used to design a filter-bank, which is formed based on the
segregation of the Fourier spectrum of the non-stationary signals
by detecting the boundary points [34]. The evaluated filter-bank
is used to compute the modes of a signal or image. The fixed
boundary-based EWT has already been used to extract modes
from ECG signals [35–37]. The EWT with fixed boundary points
reduces the computational complexity as the detection of the
peaks in the Fourier spectrum of the signal is not required [34].
The multiscale convolutional neural network (CNN) developed
by considering these modes of ECG signals has shown better
performance for the detection of cardiac arrhythmia [34]. The
fixed boundary-based EWT has not been explored for image
analysis. Therefore, the deep CNN model can be applied in the
EWT domain of X-ray images for the automated detection of
COVID19.

3. Motivation and contributions

Multiscale deep CNN architecture is adopted in this study
for the diagnosis of COVID19. This model essentially takes in
information from different modes and then combines it to pro-
duce promising results. The modes, or channels, extracted from
a particular image are semantically correlated and provide com-
plementary information with respect to each other. Due to the
above characteristics, they tend to reflect information that is
unique to each other. The proposed model consolidates these
heterogeneous modes, producing a more robust diagnosis for
the detection of COVID19. The proposed approach uses X-ray
images for the classification due to its cost-effectiveness and easy
availability. Moreover, CT scans are more expensive and are not
readily available due to their availability in only large healthcare
centers [27]. The multiscale gated multi-head attention-based
CNN model has been used to detect COVID 19 using X-ray and CT
scan images [38]. However, the deep CNN model in the empirical
wavelet-based multiresolution domain of X-ray images has not
been explored to detect COVID19. The novelty of this work is
to develop a new multiscale two-dimensional (2D) deep CNN
model to detect COVID19 using X-ray images. The significant
contributions of this paper are as follows.
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Fig. 1. CXR images from the dataset A for COVID19, Pneumonia, and No-finding classes.
1. Fixed boundary-based two-dimensional Empirical Wavelet
Transform (FB2DEWT) filter bank is used to extract modes
or sub-band images from the CXR images.

2. A novel multiscale deep CNN architecture is proposed to
detect COVID19 patients using various modes of the CXR
images.

3. The performance of the proposed architecture is compared
for both binary and three-class classification of X-ray im-
ages for different combinations of the modes.

4. The model is evaluated using two different datasets, con-
sisting of 1125 and 9000 images each, to ensure the robust-
ness of the model.

. X-ray image datasets

Two publicly available CXR image databases are used in the
resent work. The first database (dataset A) contains 1125 im-
ges, of which 125 were COVID19 images, 500 were pneumonia
mages, and the remaining 500 were No-Findings images. The 125
OVID19 images are obtained from Cohen’s Covid-CXR dataset,
hich has been developed by collecting the images from various
ublications and researchers to maintain the quality of the im-
ges [39]. For Pneumonia and No-Findings, 500 images for each
lass are obtained from Wang et al.’s CXR image dataset [40].
he dataset B contains 9000 images, with the issue of class
mbalance in mind; 3000 CXR images are taken for each class
f COVID19, No-Findings, and Pneumonia. The COVID19 and no-
indings CXR images are obtained from the dataset created by
ahman, T. [41,42]. He had developed the database of COVID19
XR images from the Italian Society of Medical and Interventional
adiology (SIRM) COVID-19 database, Novel Coronavirus 2019
ataset developed by Joseph Paul Cohen and Paul Morrison, and
an Dao [39]. For Pneumonia, the CXR images are obtained from
he large dataset of labeled Optical Coherence Tomography (OCT)
nd chest X-ray Images developed by Kermany, D. [43]. The X-ray
mage of each class in dataset A is shown in Fig. 1. The CXR images
rom the different dataset sources had different resolutions and
ile formats. For the sake of standardization, all the images in both
atasets are converted into Joint Photographic Experts Group
JPEG) format for further processing.

. Proposed approach

A block diagram of the proposed COVID19 detection model is
llustrated in Fig. 2. The approach comprises the pre-processing
f the X-ray images. Then, the images are decomposed into seven
odes, each containing information unique to each other, using
WT. Further, various combinations of modes are selected ran-
omly as the input to a multiscale deep CNN. These modes are
hen used as the input to the proposed model for the detection
f COVID19. The detection part is split into two schemes. Scheme
includes the binary classification where the model considers
nly two classes, namely COVID19 and No-findings. Scheme 2 is
he classification of the image dataset into three classes, namely
OVID19, Pneumonia, and No-findings. The above approach was
dopted by two different datasets: dataset A (consisting of 1125
mages) and dataset B (9000 images).
3

Fig. 2. Block-diagram of the proposed approach for the detection of COVID19.

5.1. Pre-processing

The original X-ray images in both databases have the size of
256 × 256. In this work, we have resized the X-ray images of
each class to 64×64 [25]. The image resizing helps to reduce the
computational time of the proposed multiscale deep CNN model
during training.

5.2. FB2DEWT for X-ray image decomposition and mode selection

In this work, we have considered the FB2DEWT to decompose
each X-ray image X(n1, n2) into modes as shown in Fig. 3. In the
first step of two-dimensional EWT (2DEWT), the pseudo-polar
Fast Fourier Transform (FFT) of the input image is evaluated and
it is denoted as Yp(θi, |k|) [44]. After evaluating the pseudo-polar
FFT, the average spectrum is computed as follows [44]:

Y |k| =
1
m

m∑
i=0

Yp(θi, |k|) (1)

where ‘m’ is denoted as the number of phase angles. The bound-
ary points can be evaluated using any of the boundary detection
techniques such as local maxima based, local minima based,
scale-space, etc. [33] using the average spectrum, Y |k|. In this
study, we have considered the fixed boundary points such as
[K1, K2, K3, K4, K5, K6] = [0.5, 1, 1.5, 2, 2.5, 3] in the average
spectrum to decompose each X-ray image into modes [45]. Once
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φ1(k) =

⎧⎪⎨⎪⎩
1 if |k| ≤ (1 − γ )K1

cos[
π

2
β(

1
2γK1

(|k| − (1 − γ )K1))] if (1 − γ )K1 ≤ |k| ≤ (1 + γ )K1

0 elsewhere

⎫⎪⎬⎪⎭ (2)

Box I.
ψq(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if (1 + γ )Kd ≤ |k| ≤ (1 − γ )Kd+1

cos[
π

2
β(

1
2γKd+1

(|k| − (1 − γ )Kd+1))] if (1 − γ )Kd+1 ≤ |k| ≤ (1 + γ )Kd+1

sin[
π

2
β(

1
2γKd

(|k| − (1 − γ )Kd))] if (1 − γ )Kd ≤ |k| ≤ (1 + γ )Kd

0 elsewhere

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3)

Box II.
ψ7(k) =

⎧⎪⎨⎪⎩
1 if (1 + γ )K6 ≤ |k|

sin[
π

2
β(

1
2γK6

(|k| − (1 − γ )K6))] if (1 − γ )K6 ≤ |k| ≤ (1 + γ )K6

0 elsewhere

⎫⎪⎬⎪⎭ (4)

Box III.
the boundary points are assigned, the 2D empirical Littlewood–
Paley and Mayer wavelets are used to evaluate both 2D scaling
and 2D wavelet functions [44]. The empirical 2D scaling function
is written as Eq. (2) in Box I [44].

The empirical 2D scaling function is used to evaluate the
first mode of the X-ray image with the foundry range as [0,
K1]. Similarly, the remaining other modes of X-ray images are
computed using empirical 2D wavelet function. This empirical 2D
wavelet function is given as Eq. (3) in Box II [44].
Where d = 1, 2, 3, 4, 5 are the index for the boundary points.
Similarly, the parameter ‘q’ is interpreted as mode number and it
is given as q = 2, 3, 4, 5, 6. The boundary ranges evaluated from
the boundary points for the design of 2D wavelet functions are
given as [K1, K2], [K2, K3], [K3, K4], [K4, K5], and [K5, K6], respec-
tively. As six boundary points are considered as prior, hence we
can evaluate 7 modes from the X-ray image. For obtaining the last
modes, the wavelet function is written as Eq. (4) in Box III [44].
The boundary range for the seventh mode is given as [K6, π ]. The
first mode is evaluated by considering the 2D scaling function is
given as follows [44]:

Za(n1, n2) = F−1(F (X(n1, n2) × φ1(k))) (5)

Similarly, the second to seventh modes are computed as follows:

Zq(n1, n2) = F−1(F (X(n1, n2) × ψq(k))) (6)

Where q = 2, 3, 4, 5, 6, 7 is denoted as the qth mode. The F (X(n1,
n2)) = YP(θ , |k|) is termed as the pseudo-polar FFT of the X-ray
image [44]. Similarly, the F−1 is called the inverse pseudo-polar
FFT. The modes evaluated using the FB2DEWT of X-ray images
for COVID19, pneumonia, and no-finding classes are shown in
Figs. 3(a), (d), (g), (j), (m), (p), (s), 3(b), (e), (h), (k), (n), (q), (t),
and 3(c), (f), (i), (l), (o), (r), (u), respectively. The X-ray image
information for each class is divided into different modes based
on the frequency range. These modes of X-ray images can be used
as input to the deep CNN model for the detection of COVID19.
4

5.3. Multi-scale deep CNN

Although deep neural networks eliminate the need for dedi-
cated feature extraction, information aggregation from different
modalities can improve the network’s predictive ability. There-
fore, while designing the deep model used in this study, mul-
tiscale deep CNN is adopted [34]. A unique classification model
is developed in this work to diagnose the COVID19 using two
different datasets, containing 1125 images and 9000 images. All
the learnable features, from a combination of different modes,
are combined and merged at a fully connected layer to pre-
dict the output. The robustness of the proposed multiscale deep
CNN model is evaluated using two datasets. In this deep CNN
model, the modes are fed to the different convolution layers as
channels individually. Each mode is passed through 14 layers
(block) individually and then merged with additional 4 layers.
Each block has one input layer followed by a convolution layer,
batch normalization, dropout, and max-pooling layer, and the
same setup is repeated three times in a successive form. These
blocks are then merged using a concatenate layer, subsequently
following two dense layers and one softmax layer for the correct
diagnosis. Each layer parameter and the feature map size are
shown in the deep CNN architecture block diagram in Fig. 4. The
feature map of the ith convolution layer is computed as [46],

F i
m,n = f [

p−1∑
a=0

r−1∑
b=0

K i
a,bF

i−1
(m+a,n+b) + bi] (7)

where F i
m,n is the output feature map from the ith convolution

layer, K i
a,b represents the 2-dimensional kernel that evaluates the

feature map, F i−1
(m,n) corresponds to the feature map output of the

previous layer. p and r denote the size of the 2D kernel (K), bi
is the bias, and f [•] corresponds to the ReLU activation. Followed
by the 2D convolution layer is the batch normalization (BN) layer.
This layer helps standardize the inputs as well as accelerates
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Fig. 3. The output of seven modes of a CXR image from dataset A obtained using fixed boundary based EWT for all the classes (COVID19, Pneumonia, No findings): (a)
COVID19 mode-1. (b) COVID19 mode-2. (c) COVID19 mode-3. (d) COVID19 mode-4. (e) COVID19 mode-5. (f) COVID19 mode-6. (g) COVID19 mode-7. (h) Pneumonia
mode-1. (i) Pneumonia mode-2. (j) Pneumonia mode-3. (k) Pneumonia mode-4. (l) Pneumonia mode-5. (m) Pneumonia mode-6. (n) Pneumonia mode-7. (o) No-findings
mode-1. (p) No-findings mode-2. (q) No-findings mode-3. (r) No-findings mode-4. (s) No-findings mode-5. (t) No-findings mode-6. (u) No-findings mode-7.
w
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training [47]. This is essentially done to put our output data into a
known scale, mainly between 0 and 1. In many cases, this can also
provide some regularization to reduce generalization error. BN is
computed by normalizing the output obtained from Eq. (7) [46],

Zm,n =
F i
m,n − µF

σF
(8)

where Zm,n is the new value of a single component, µF is the
mean within the respective batch and σF is the standard devi-
ation within a batch. After the Batch normalization layer, the
dropout layer is used for the proposed multiscale deep CNN
model [47]. The function of the dropout operation is to decorre-
late the weights in order to prevent the neurons from converging
to the same goal (overfitting) [47]. After the dropout layer, the
pooling layer feature map is evaluated as [46],

F i
m,n = max[F i−1

(m+a,n+b)] (9)

where a ∈ (0, p), b ∈ (0, q). Max[•] is the maximum value of
the elements in the feature map for the given range. One block
consists of the above computation successively done three times.
Later the blocks of all the modes are combined, and the output
of the merged layers is flattened to formulate a feature vector
(V). In our model, the output layer consists of three neurons,
 a

5

each representing one class, and the output is evaluated, using
a softmax function, as [46],

J(t) =
ewtv∑T
t=1 ewtv

(10)

here wt is the weight vector of the tth neuron of the output
ayer, and v is the feature vector for the previous fully connected
ayer. The proposed model is trained using 70 epochs for dataset
and 50 epochs for dataset B for both the schemes (binary

nd multiclass). Both the datasets use the 5-fold cross-validation
CV) approach to infer the robustness of the developed model,
hile the addition of holdout validation is adopted for dataset
[47]. The Hyperparameters of the proposed deep CNN model

or dataset A and dataset B are given in Table 1. To compare the
erformances of the multiscale deep CNN models with different
ombinations of modes, we have used accuracy, precision, recall,
nd F1-score measures, which are calculated from the confusion
atrix [48]. These metrics are calculated over 70 epochs with
-folds cross-validation for dataset A and 50 epochs with both
oldout validation and 5-folds CV for dataset B [48]. The valida-
ion and training accuracies are maximum, with epochs being 50

nd 70 for dataset A and dataset B, respectively.
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Fig. 4. Proposed multiscale deep CNN architecture developed for the detection of COVID19 (scheme 1: class 0: No-finding, class 1: Covid19, scheme 2: class 0:
No-finding, class 1: Viral pneumonia, class 2: COVID19).
Table 1
Hyperparameters table for the proposed multiscale deep CNN for the classification of COVID19.
Hyperparameters Values for dataset A Values for dataset B

COVID19 instances 125 3000
Pneumonia instances 500 3000
No-Findings instances 500 3000
Learning rate 0.001 0.001
Batch size 64 64
Epochs 70 50
Optimizer Adam Adam
Loss function Sparse categorical cross-entropy Sparse categorical cross-entropy
In our study, both multi-class and binary classification
chemes are performed using the CXR dataset. For multi-class
lassification, three classes such as COVID19 (cases having
OVID19), pneumonia (cases having pneumonia but not
OVID19), and no-Findings (cases that do not have COVID19 or
neumonia) are formulated [26,31]. The positives and negatives
f the classification change concerning the class that we are
eferencing. For example, if the precision of pneumonia is to
e determined, the positives will be the pneumonia cases, and
he negatives will be the Non-Pneumonia (which includes the
OVID19 and the no-Finding cases). Here, true positive (TP) and
rue negative (TN) will be the number of correctly diagnosed
neumonia and Non-Pneumonia cases, respectively. In contrast,
alse-positive (FP) and false-negative (FN) will represent the
umber of incorrectly diagnosed Pneumonia and Non-Pneumonia
ases, respectively [26,31]. Similarly, the performance indices
f all three classes are calculated. For binary classification, two
lasses of COVID19 and no-Findings were formed. In this, the
ositives and negatives were assigned to COVID19 and no-Finding
non-COVID19) cases, respectively. Hence, TP and TN represent
he number of correctly diagnosed COVID19 and non-COVID19
nfections, respectively. At the same time, FP and FN represent the
umber of incorrectly diagnosed COVID and non-COVID19 infec-
ions, respectively. An ANOVA test is performed to determine the
6

statistical significance of the obtained results using the proposed
model [47].

6. Results and discussions

This section presents the results obtained using the proposed
multi-scale deep CNN model with the modes extracted from the
FB2DEWT based decomposition of CXR images for both datasets.
The proposed model based on two datasets, two classifying in-
stances, and two CV parameters gave us six different sets of
results. These results are given as multi-class and binary clas-
sification of dataset A with 5-fold CV, multi-class and binary
classification of dataset B with 5-fold CV, and multi-class and
binary classification of dataset B with hold-out validation, re-
spectively. The hold-out cross-validation for dataset A is not
considered because the size was considerably small, and the
presence of a class imbalance would have fetched over-fitted
results. The accuracy versus epoch plots obtained based on the
training and validation of the multi-scale deep CNN models for
all six different sets of results are shown in Fig. 5. Here, for the
5-fold CV, we have shown the accuracy vs. epoch plot for one
fold. It has been observed that the training accuracy values are
obtained as 100% for both binary and multi-class classification
tasks using the proposed multi-scale deep CNN models with
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Fig. 5. Accuracy versus epoch graphs evaluated using multi-scale deep CNN for training and validation data of the best results obtained from the 6 models: (a)
multi-class classification of dataset A with 5-fold CV using mode 3 and mode 4. (b) multi-class classification of dataset B with 5-folds using mode 4, mode 5 and
mode 6. (c) multi-class classification of dataset B with hold-out validation using mode 4, mode 5 and mode 6. (d) binary classification of dataset A with 5-fold CV
using mode 1 and mode 2. (e) binary classification of dataset B with 5-fold CV using all seven modes. (f) binary classification of dataset B with hold-out validation
using the first six modes.
different combinations of modes. From Fig. 5 (d), it is seen that
both training and validation accuracy values are obtained as 100%
at each epoch.

Fig. 6 shows the confusion matrix plots for multi-scale deep
CNN model with hold-out validation and 5-fold CV for different
combinations of the modes of X-ray images. It is observed from
these results that for all cases, the accuracy values are obtained as
more than 0.94. For the binary-classification scheme (No-finding
versus COVID19), the multi-scale deep CNN model has achieved
100% accuracy using the combination of mode 1 and mode 2
of X-ray images. In the below two tables, the notations such as
ACC denotes the testing accuracy, PRE represents the precision,
REC shows the recall or sensitivity of the model, SPE denotes
the specificity, and F1 represents the obtained f1-score from
the proposed model. Table 2 shows the multi-class classification
performances of our model for different combinations of modes
extracted from the obtained CXR datasets. It is observed that the
combination of mode 3 and mode 4, has achieved the best perfor-
mance for COVID19 and Pneumonia detection (testing accuracy
of 0.96) in dataset A using 5-fold CV. It is also noticed that the
combination of mode 4, mode 5, and mode 6 of X-ray images
has produced the maximum accuracy values of 0.97 and 0.96
using 5-fold CV and hold-out validation, respectively, when the
model is evaluated using dataset B. It can also be seen from the
table that as the number of modes considered for the multi-scale
CNN model decreases, the testing accuracy vaguely increases. The
mode selection criteria helped select the discriminative local in-
formation of X-ray images at different frequency ranges, thereby
increasing the classification performance of multi-scale deep CNN
for the multi-class classification task. The maximum time for
execution for the multi-scale deep CNN model is 4205.29 s for
the multi-class classification task.

On the other hand, Table 3 shows the performance of the
multi-scale deep CNN model for binary classification tasks using
different combinations of modes. As can be seen, the model’s
7

overall performance for binary classification exceeds that of the
multi-class classification task. As perceived in the multi-class
classification task, there is no specific trend for the binary clas-
sifications, and the accuracies remain consistent with the change
in the number of modes considered. Combining all seven modes
with multi-scale deep CNN has achieved a remarkable perfor-
mance of training and testing accuracy of 1. The multi-scale
deep CNN has shown a precision of 1, the sensitivity of 1, and
the F1-score of 1 in detecting COVID19 using modes of the X-
ray images from dataset A with a 5-fold CV. While testing with
dataset B, an accuracy of 0.96 is obtained using multi-scale deep
CNN with all seven modes for 5-fold CV. For holdout validation,
the accuracy value of the proposed model is obtained as 0.93
using the combination of the first six modes of X-ray images.
The maximum time taken for a model to execute is 1969.33 s
for binary classification.

The objective of this work is to develop a multiscale deep CNN
model for the detection of COVID 19 using X-ray images. Both the
datasets used for the COVID19 classification in our study are cus-
tomized as mentioned in Section 4. Hence, all the datasets con-
sidered for the diagnosis of the disease in the comparison study
are different from the dataset taken for the proposed model. The
summary of the comparison of the proposed work with existing
techniques for the detection of COVID19 using X-ray images is
shown in Table 4. It can be observed from the table that most of
the models have adopted ResNet, Inception, VGG19 based trans-
fer learning algorithms to detect COVID19 using X-ray images.
In [18], the suggested model achieved an accuracy of 95.7% for the
binary classification scheme as COVID19 vs. No-finding. In [19],
authors have considered various standard models for their classi-
fication and have concluded that the ResNet50 has produced the
highest performance among the other four used models. In [20],
authors have successfully detected the presence of COVID19 us-
ing the ResNet50 plus SVM model and obtained an accuracy
of 95.33% using X-ray images. The paper implies that SVM is
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Fig. 6. Confusion matrices of the best results obtained from the 6 models.

8
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Table 2
Classification performance of multi-scale deep CNN for the multi-class classification task.

Multi-class classification of dataset A
(5-fold cross-validation)

Multi-class classification of dataset B
(5-fold cross-validation)

Multi-class classification of dataset B
(Hold-out cross-validation)

Modes ACC PRE REC F1 ACC PRE REC F1 ACC PRE REC F1

M-1+2 0.93 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.93
M-3+4 0.96 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.93 0.93 0.93 0.93
M-5+6 0.90 0.87 0.95 0.90 0.96 0.96 0.96 0.96 0.89 0.89 0.89 0.89
M-6+7 0.86 0.88 0.89 0.86 0.95 0.95 0.95 0.95 0.92 0.92 0.92 0.92
M-1+2+3 0.83 0.89 0.86 0.86 0.95 0.96 0.95 0.95 0.93 0.93 0.93 0.93
M-4+5+6 0.87 0.91 0.90 0.89 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96
M-5+6+7 0.95 0.95 0.96 0.95 0.94 0.94 0.94 0.94 0.92 0.93 0.92 0.92
M-1+2+3+4 0.78 0.87 0.82 0.82 0.93 0.94 0.93 0.93 0.95 0.95 0.95 0.95
M-4+5+6+7 0.84 0.90 0.87 0.87 0.92 0.94 0.92 0.93 0.93 0.94 0.93 0.93
M-1+2+3+4+5 0.88 0.91 0.89 0.89 0.95 0.96 0.95 0.95 0.75 0.85 0.74 0.71
M-3+4+5+6+7 0.85 0.90 0.87 0.87 0.90 0.93 0.90 0.91 0.93 0.94 0.94 0.93
M-2+3+4+5+6+7 0.86 0.90 0.88 0.88 0.93 0.91 0.93 0.94 0.87 0.88 0.87 0.87
M-1+2+3+4+5+6+7 0.74 0.79 0.80 0.79 0.86 0.93 0.86 0.89 0.96 0.96 0.96 0.96
Table 3
Classification performance of the multi-scale deep CNN for the binary classification task.

Binary-class classification for dataset A
(5-fold cross-validation)

Binary-class classification for dataset B
(5-fold cross-validation)

Binary-class classification for dataset B
(Hold-out cross-validation)

Modes ACC PRE REC F1 SPE ACC PRE REC F1 SPE ACC PRE REC F1 SPE

M-1+2 1 1 1 1 1 0.92 0.93 0.92 0.92 0.88 0.89 0.9 0.89 0.89 0.91
M-1+2+3 0.99 0.99 0.99 0.99 1 0.95 0.95 0.95 0.95 0.96 0.87 0.89 0.87 0.87 0.96
M-1+2+3+4 0.99 0.99 0.98 0.98 1 0.93 0.93 0.93 0.93 0.95 0.92 0.92 0.92 0.92 0.91
M-1+2+3+4+5 0.98 0.99 0.97 0.98 1 0.95 0.95 0.94 0.95 0.98 0.93 0.93 0.93 0.93 0.94
M-1+2+3+4+5+6 0.99 0.99 0.98 0.98 1 0.94 0.94 0.94 0.94 0.97 0.93 0.94 0.94 0.94 0.91
M-1+2+3+4+5+6+7 1 1 1 1 1 0.96 0.96 0.96 0.93 0.98 0.93 0.93 0.93 0.93 0.95
Table 4
Comparison of algorithms of the existing methods for the automated diagnosis of COVID19.
Ref. no. Method Classification scheme Accuracy Recall/sensitivity CV

Proposed model

COVID-19 vs. Pneumonia vs. No-findings
(Dataset A)

96% 96.67% 5-Fold

COVID-19 vs. No-findings
(Dataset A)

100% 100% 5-Fold

COVID-19 vs. Pneumonia vs. No-findings
(Dataset B)

97.17% 97.17% 5-Fold

COVID-19 vs. No-findings
(Dataset B)

96.06% 96% 5-Fold

[18] COVID-CAPS COVID vs. non-COVID 95.7% 90% Hold out

[19]

InceptionV3 COVID-19 vs. No-finding 96.2% 97.1% 5-Fold
ResNet50 COVID-19 vs. No-finding 96.1% 91.8% 5-Fold
ResNet101 COVID-19 vs. No-finding 96.1% 78.3% 5-Fold
ResNet152 COVID-19 vs. No-finding 93.9% 65.4% 5-Fold
Inception-ResNetV2 COVID-19 vs. No-finding 94.2% 83.5% 5-Fold

[20] ResNet50 plus SVM COVID-19 vs. Pneumonia vs. No-finding 95.33% 95.33% Hold out

[21]
VGG-19 COVID-19 vs. Pneumonia vs. No-finding 82.24% 83% Hold out
ResNet-50 COVID-19 vs. Pneumonia vs. No-finding 90.67% 90.6% Hold out
COVID-Net COVID-19 vs. Pneumonia vs. No-finding 93.34% 93.3% Hold out

[22] COVIDX-Net COVID-19 vs. No-finding 90% 90% Hold out

[23] Transfer learning with
convolutional neural networks

COVID-19 vs. Pneumonia vs. No-finding 94.72% 98.66% 10-Fold

[25] DarkCovidNet COVID-19 vs. Pneumonia vs. No-finding 87.02% 85.35% 5-Fold
COVID-19 vs. No-finding 98.08% 95.13% 5-Fold

[26] EfficientNet-B0 COVID-19 vs. Pneumonia vs. No-finding 95.24% 93.61% Hold out
2D curvelet
transform-EfficientNet-B0

COVID-19 vs. Pneumonia vs. No-finding 96.87% 95.68% Hold out

[27] Inception-V3 COVID-19 vs. Pneumonia vs. No-finding 85% 94% 5-Fold
more robust than other transfer learning approaches. In [22],
COVIDX-Net achieves an accuracy of 90%. This model includes
seven different architectures, such as VGG19 and MobileNet, and
other models. Using transfer learning with convolutional neural
networks [23], authors have extracted significant information
from the X-ray images and obtained an accuracy of 96.78% for
binary classification tasks. The DarkCovidNet model has obtained
an accuracy of 98.08% for binary classification and 87.02% for
9

multiclass classification tasks [25]. A rapid and high accuracy of
99.69% was observed in [26] using a new hybrid model consisting
of 2D curvelet transform and chaotic optimization algorithm. The
suggested transfer learning methodology (Inception-V3) trained
on the ImageNet database was used for the effective diagnosis
of COVID19 [27]. The model achieves an overall area under ROC
of 1 for the binary classification task. The models mentioned
above are compared with the proposed multi-scale deep CNN
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Fig. 7. ANOVA test statistics plot for the multi-class and binary classification tasks. (a) ANOVA test graph for the comparison between the proposed model and the
other models for multiclass classification, (b) ANOVA test graph for the comparison between the proposed model and the other models for binary classification.
Table 5
ANOVA test for multiclass classification from the comparison table.
ANOVA table

Source SS df MS F Prob > F

Columns 641.989 6 106.998 11.21 2.27610−06

Error 267.31 28 9.547
Total 909.299 34

Table 6
ANOVA test for binary classification from the comparison table.
ANOVA table

Source SS df MS F Prob > F

Columns 2107.95 3 702.652 52.46 1.68210−08

Error 214.3 16 13.394
Total 2322.25 19

model, for multiclass and binary classification tasks [47]. Tables 5
and 6 show the ANOVA results of multi-class and binary-class
classification tasks. Similarly, in Fig. 7, we have shown the graph
of the computed ANOVA results.

From Tables 5 and 6 results, it is observed that the p val-
es for multi-class and binary classification schemes are ob-
ained as less than 0.001, proving that the null hypothesis (H0)
s true. The difference in the classification results of existing
ethods and proposed multi-scale deep CNN model are signif-

cant for both binary and multiclass based COVID classification
chemes. The computational complexity of the proposed multi-
cale CNN is evaluated as follows. The model described in the
tudy (as shown in Fig. 4) consists of three convolution layers,
hree batch normalization layers, three dropout layers, and three
ooling layers for a single mode. The respective layers for each
ode are combined through three dense layers. The computa-

ional complexity of the three convolution layers is calculated
s O(Σ3

h=1P
(h)Q (h)p(h)q(h)N (h)M(h)) [49], where P (h) and Q (h)are

efined as the spatial dimensions of the hth convolution layer
ut of the three layers. In this study, we are considering the
D convolution layer, so P (h)=1. Similarly, p(h) and q(h)are the
patial dimensions of the kernel of the hth convolution layer.
s the 1D kernel is considered in this study, so p(h) is equal

to 1. The number of inputs and output feature maps of the
hth convolution layer is denoted as N (h) and M(h) respectively.
The computational complexities of a single batch normalization
layer, dropout layer, and pooling layer are Q (h), E(h), and R(h)
respectively. where Q (h) represents the size of the input to hth
10
batch normalization layer, E(h) represents the size of the input to
the hth dropout layer and R(h) represents the size of the input to
the hth pooling layer. Similarly, for the dense layer, the computa-
tional complexity is calculated as O(Σ3

h=1a
(h)b(h)c(h) log(c(h))) [49].

Here a(h) and b(h)are the size of the weight matrix in the hth
dense layer and c(h) is the number of output neurons in the
hth dense layer. The overall computational complexity of the
model depends on the number of modes considered for the
evaluation. Thereby, the computational complexity of the pro-
posed deep CNN model for a single-mode is calculated as follows
O(Σ3

h=1P
(h)Q (h)p(h)q(h)N (h)M(h)) + O(Σ3

h=1Q
(h)) + O(Σ3

h=1E
(h)) +

O(Σ3
h=1R

(h)) + O(Σ3
h=1a

(h)b(h)c(h) log(c(h)))
Compared to VGG16, ResNet-based models, the proposed

multi-scale CNN model has lower computational complexity due
to less convolution and dense layers. The advantages of the
proposed COVID detection work are as follows:

1. Fixed boundary-based EWT is used as a pre-processing step
for the mode extraction of the medical images.

2. A new deep CNN architecture is projected in the multiscale
domain for the diagnosis of COVID19.

3. The proposed model may assist medical experts in the
correct diagnosis of the virus.

The proposed model can also be used for the diagnosis of
COVID19 using CT scans. However, CT is a more expensive process
and is not readily available as it is used in only larger health care
centers [25]. Moreover, there is no point in conducting CT scans
for mild cases since one may find patches in CT scans even if the
subject is asymptomatic [50]. For such cases, X-rays would be
the optimal method for diagnosis. The subjects who are detected
positive by this model can be further tested using appropriate
medical techniques without delay. In addition, those who are
tested negative by the model can be restricted from undergoing
RT-PCR thereby eliminating the problem of medical kit shortage.
Furthermore, the proposed COVID19 detection system can be
implemented on a cloud-based platform for automated patient
monitoring and helps in the immediate reinstatement of the
affected patients.

7. Conclusions

In this paper, an intelligent healthcare model has been devel-
oped to detect COVID19 using EWT and multiscale deep CNN.
Our model has been constructed using two different publicly

available datasets, where dataset A consists of 1125 images and
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ataset B consists of 9000 images. The model has been compiled
sing 5-fold CV for dataset A and both 5-fold CV and holdout
alidation for dataset B. The X-ray Ray images have been first
plit into seven modes using the FB2DEWT filter-bank. A deep
NN model coupled with the extracted modes of an image has
een used to detect COVID19 disease. The proposed model has
een successfully able to differentiate COVID19 from viral pneu-
onia and no findings yielding the accuracy, precision, recall,
nd F1 score values of 0.96, 0.97, 0.99, and 0.98 respectively in
he multiclass classification model and 1 for all the above four
erformance indices in the binary classification model for dataset
with 5-fold CV. For dataset B, the model has produced accuracy,
recision, recall, and F1 score values of all 0.97 for multiclass
lassification task and 0.96 all for binary classification task using
-fold CV. Similarly, for holdout validation with dataset B, the ac-
uracy, precision, recall, and F1 score values achieved are 0.96 for
ulticlass classification and 0.93, 0.94, 0.94, and 0.94 for binary
lassification. Furthermore, an ANOVA test has been performed to
anifest no significant difference between the proposed model
nd the other novel architectures, thus demonstrating the ro-
ustness of the model. The shortcoming of this model is that
he obtained results are a cause of random combinations of the
xtracted modes. Therefore, the model has to be executed with
ll the combinations to obtain the desired result. In the future,
volutionary computing algorithms can be used to automatically
elect modes of X-ray images for the multiscale deep CNN to
etect COVID19 disease.
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