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Simple Summary: Glioblastoma is the most common adult malignant brain tumor. It is an aggressive
tumor that returns even after surgical removal and temozolomide-based chemotherapy and radiation.
Our goal was to understand what genes are altered by temozolomide and how those genes may
contribute to tumor return. Our work shows that one of the genes altered is LNX1, which increases
the expression of Notch1, a gene important for glioblastoma progression. We further showed that the
elevation of LNX1 and Notch1 results in an increase in the tumor stem cell population, a subpopulation
of cells thought to help propagate a more aggressive tumor. Finally, we showed that forced reduction
in LNX1 expression results in increased survival of animals implanted with glioblastoma. Together,
these results suggest that LNX1 may be a novel therapeutic target that would allow modulation of
Notch1 activity and the stem cell population, potentially resulting in increased patient survival.

Abstract: Glioblastoma (GBM) is the most common primary brain malignancy in adults, with a 100%
recurrence rate and 21-month median survival. Our lab and others have shown that GBM contains a
subpopulation of glioma stem cells (GSCs) that expand during chemotherapy and may contribute to
therapeutic resistance and recurrence in GBM. To investigate the mechanism behind this expansion,
we applied gene set expression analysis (GSEA) to patient-derived xenograft (PDX) cells in response
to temozolomide (TMZ), the most commonly used chemotherapy against GBM. Results showed
significant enrichment of cancer stem cell and cell cycle pathways (False Discovery Rate (FDR) < 0.25).
The ligand of numb protein 1 (LNX1), a known regulator of Notch signaling by targeting negative
regulator Numb, is strongly upregulated after TMZ therapy (p < 0.0001) and is negatively correlated
with survival of GBM patients. LNX1 is also upregulated after TMZ therapy in multiple PDX lines
with concomitant downregulations in Numb and upregulations in intracellular Notch1 (NICD).
Overexpression of LNX1 results in Notch1 signaling activation and increased GSC populations.
In contrast, knocking down LNX1 reverses these changes, causing a significant downregulation of
NICD, reduction in stemness after TMZ therapy, and resulting in more prolonged median survival in
a mouse model. Based on this, we propose that during anti-GBM chemotherapy, LNX1-regulated
Notch1 signaling promotes stemness and contributes to therapeutic resistance.
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1. Introduction

Glioblastoma (GBM) is an extremely aggressive primary brain malignancy in adults. It has a close
to a 100% fatality rate, largely due to an almost inevitable regrowth of the tumor after treatment [1,2].
The current standard of care is a combination of surgical resection, tumor treating fields, temozolomide
(TMZ)-based chemotherapy, and radiation treatment. However, even with that standard of care,
patients have a median survival of approximately 21 months with a significant decline in their quality
of life throughout the treatment regimen [3–5]. The incredibly low survival time is driven by the fact
that the recurrent tumor is resistant to our current therapeutic strategies, necessitating the investigation
of the mechanism of therapeutic resistance.

It is now well-established that GBM contains a subpopulation of cells known as glioma stem cells
(GSCs) that contribute to the therapeutic resistance displayed by the recurrent tumor [6–10]. We and
others have demonstrated that, during therapy, expansion of the treatment-resistant GSC pool appears
to play a crucial role in therapeutic resistance [11,12]. In order to prevent this expansion, it is necessary
to understand exactly how GSC populations are enriched during and after treatment. Previous studies
have suggested that GSCs expand through both symmetric and asymmetric cell division [13,14].
Symmetric cell division is when one GSC gives rise to two more GSCs, whereas asymmetric cell
division is when a GSC gives rise to one GSC and one differentiated cell. However, it is not clear if
cell division patterns play a role in post-therapy stemness in GBM. Here, we examine if anti-GBM
chemotherapy TMZ influences polarized cell division to enhance the post-therapy cellular plasticity in
GBM [14].

Notch1 has consistently been shown to play a role in cell division and stemness, and resulting
therapeutic resistance, both in GBM and in other cancers [15–19]. Unfortunately, clinical trials directly
targeting Notch1 have consistently failed due to unacceptable side effects from Notch1 inhibitors [20].
Here, we examine LNX1 as a regulator of Notch1 signaling to ultimately control the expansion of the
stem cell compartment after TMZ therapy. This allows us a novel pathway through which to target the
oncogenic activity of Notch1 in the GBM—a pathway that is much more targeted to tumor cells and
therefore, may be much less likely to be toxic to patients.

2. Results

2.1. LNX1 Expression and Symmetric Cell Division Are Enriched after TMZ-Based Chemotherapy

To investigate the mechanism of chemoresistance in GBM, we performed a gene expression
analysis during TMZ therapy in a treatment-naïve patient-derived xenograft (PDX) model. Cells were
treated with the physiologically relevant dose of TMZ (50µM) or with equimolar vehicle control
dimethyl sulfoxide (DMSO) [12]. After 4 days of treatment, cells were harvested and analyzed for
gene expression. Gene set enrichment analysis (GSEA) revealed significant enrichment for stemness,
hypoxia [21], and cell cycle (FDR = 0.0001) gene networks after therapy with TMZ, indicating that
cells alter their division patterns and upregulate their stemness phenotype upon treatment with TMZ
(Figure 1A).
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increased after TMZ therapy. (D) Image analysis showed that LNX1 and CD133 reliably colocalize 
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cells treated with DMSO vs. 50 µM TMZ. Similar results to prior were observed, where TMZ 
significantly increased the proportion of symmetrically dividing stem cells as compared to control. 
Data were analyzed using ImageStreamX software or Prism 8, as appropriate. Student’s t-test was 
used to calculate significance between 2 groups. Analysis of variance (ANOVA) was used for greater 
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Figure 1. Polarized LNX1 Expression during temozolomide (TMZ) therapy. (A) Gene set expression
analysis (GSEA) analysis comparing GBM43 cells treated for 4 days with dimethyl sulfoxide (DMSO)
or 50 µM TMZ showed significant enrichment of cell division and stemness pathways. (B) RNA-Seq
analysis of a panel of genes involved in polarized cell division in GBM43 cells treated with DMSO vs.
50 µM TMZ showed significant enrichment of LNX1 expression after TMZ therapy. (C) Analysis of
GBM6 cells by ImageStreamX technology revealed that expression of LNX1/CD133 significantly
increased after TMZ therapy. (D) Image analysis showed that LNX1 and CD133 reliably colocalize and
that TMZ therapy significantly increases the percentage of symmetric stem cell divisions as compared
to DMSO. (E) U251 cells were analyzed manually in an experiment comparing dividing cells treated
with DMSO vs. 50 µM TMZ. Similar results to prior were observed, where TMZ significantly increased
the proportion of symmetrically dividing stem cells as compared to control. Data were analyzed using
ImageStreamX software or Prism 8, as appropriate. Student’s t-test was used to calculate significance
between 2 groups. Analysis of variance (ANOVA) was used for greater than 2 groups.; *** p < 0.001; ns,
not significant.

Our lab, along with others, has previously demonstrated that stresses generated by chemo-
and radiotherapy can promote the expansion of the GSC population by differentiated GBM cells
dedifferentiating and acquiring a stem-like phenotype [10,12,22]. Previous reports also demonstrate
that GSCs are capable of maintaining stemness in GBM through symmetric cell division [8]. Further,
in low-grade oligodendrogliomas, defects in asymmetric cell division are associated with neoplastic
transformation [14]. These reports raise the possibility that cell polarity may contribute to the
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post-therapy expansion of the GSC subpopulation and promote therapeutic resistance. To examine
this, we first analyzed gene expression patterns for a panel of known genes controlling asymmetric vs.
symmetric cell division by performing an RNA-Seq experiment comparing GBM43 cells treated with
DMSO and TMZ for 4 days [13,23–25]. This RNA-Seq experiment was first analyzed to assess sample
similarity and screen quality, and we were able to show that samples were similar among replicates
and different between treatments, with appropriate quality for analysis (Figure S1). The expression of
LPAR1, PARD3, LNX1. and DLG1 were approximately three to four times more elevated as compared
to other genes after treatment with TMZ (Figure 1B).

LNX1 is an E3 ubiquitin ligase that is thought to promote symmetric cell division of stem cells by
acting through Numb to regulate Notch signaling [26]. To further investigate this in glioma stem cells
(GSCs) specifically during therapy, we used ImageStreamX analysis, which allows for simultaneous
cell imaging and flow cytometry. These images could then be analyzed for cell division patterns
and categorized into symmetric self-renewal, symmetric differentiation, or asymmetric division.
Cells were treated with DMSO or TMZ for 4 days before being analyzed by ImageStreamX technology.
Flow cytometry analysis of the cells showed that LNX1 and CD133 expression were definitively
colocalized after TMZ therapy (p < 0.001, Figure 1C). Furthermore, visual analysis of these images
revealed that LNX1 had a propensity to be segregated with CD133 in dividing cells. As CD133 is a
phenotypic marker of GSCs, these together provide evidence that segregation of LNX1 is associated
with possible maintenance of stemness phenotype during TMZ therapy [8]. Quantitative analysis of
LNX1/CD133 expression showed that cells exposed to TMZ significantly upregulated the proportion
of symmetric expression of LNX1/CD133 expression, thus suggesting the possibility that expansion of
the GSC compartment is through symmetric division in response to TMZ exposure (Figure 1D).

In order to further confirm our ImageStreamX result using another experiment, we performed
immunofluorescence in PDX GBM cells for LNX1 after treating cells with TMZ for 4 days. The identity
of the cells was confirmed by performing Sox2/LNX1 co-staining, validating that the LNX1 expressing
cells are also stem cells (Figure S5). The cells were then stained for LNX1 independently, and the
fluorescence intensity of LNX1 was calculated for all sets of dividing cells, as identified by phalloidin
staining. Dividing cells with a fluorescence ratio of greater than 1.5 were considered to be dividing
asymmetrically while the rest were classified as dividing symmetrically (Figure 1E). This ratio was
determined based on other similar studies [8]. Those cells that were not dividing or could not be
measured accurately were classified as indeterminate. This analysis also showed that the proportion of
symmetric cell division is increased after therapy with TMZ, reflecting that TMZ therapy both increases
LNX1 expression and promotes a concurrent increase in the percentage of symmetric segregation of
LNX1 expression, thereby possibly contributing to the expansion of the GSC compartment during
TMZ therapy.

2.2. LNX1 Expression Is Elevated in Post-Therapy Recurrent GBM and Negatively Correlated with Survival
with Patients with GBM

Our next step was to examine the clinical significance of LNX1 in gliomagenesis by examining
various GBM patient datasets as well as GBM tissue. Analysis of the Cancer Genome Atlas (TCGA)
data through the GlioVis portal showed that LNX1 mRNA expression increases progressively with
GBM recurrence (Figure 2A). In addition, it was negatively correlated with patient survival in two
different datasets (Figure 2B) [27]. We next validated these results by further examining existing
publicly available GBM patient datasets. Analysis of TCGA data through the cBioPortal interface
showed that LNX1 was amplified in 10% of patients, independent of their IDH-1 status (TCGA Cell
2013, 543 samples; Figure 2C) [28,29]. Finally, to investigate the LNX1 protein expression in the
GBM tissue, we performed immunohistochemistry for LNX1 on de-identified patient samples from
consenting patients at Northwestern Medicine. The sections were then scored for LNX1 presence
within the tumor body. A score of 1 corresponded to low expression, while a score of 3 corresponded
to high expression (Figure S2). These scores were then plotted alongside patient survival (Figure 2D).
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The analysis showed an increase in LNX1 expression scores corresponded to a decrease in patient
survival (p = 0.04).
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Figure 2. LNX1 is elevated in Glioblastoma (GBM) patients and correlates with patient outcomes.
(A) LNX1 expression was approximated in the Chinese Glioma Gene Atlas (CGGA) dataset and was
shown to elevate significantly with each recurrence (B) In two datasets, using optimal cutoff analyses,
elevated LNX1 expression was shown to be correlated with significantly worsened survivals for patients.
(C) LNX1 expression was tabulated across over 500 patient samples, based on the Cancer Genome
Atlas (TCGA) data, and showed amplification in 10% of samples, with no correlation to the IDH status
of the patient. (D) LNX1 expression was scored in patient samples by a certified neuropathologist
and scores were plotted against survival, with a significant difference in survival between high and
low LNX1 expression. Significance was calculated in Prism 8 using Student’s t-test for 2 samples or
ANOVA for greater than 2 samples. Tukey’s Honest Significance Difference was applied to determine
significance for TCGA expression data and log-rank testing was used to compare survival curves.
* p < 0.05; ** p < 0.01; *** p < 0.001.

2.3. LNX1 Influences Notch1 Expression through an LNX1-Numb-Notch1 Axis during TMZ Therapy

Multiple studies have shown that LNX1, which is an E3 ubiquitin ligase, acts on Numb in the
cell by ubiquitinating Numb and tagging it for degradation [28,29]. Furthermore, many other papers
have focused on the importance of Numb in modulating Notch1 activity and thus further modulating
downstream proteins, especially for regulation of cell proliferation and expansion [30]. As Notch has
been established as a critical signaling hub for glioma progression, we next set out to examine the effect
of LNX1 elevation after TMZ therapy on this axis [18].

We treated the PDX cell line GBM43 with 50 µM TMZ and equimolar DMSO vehicle control for 4
and 8 days. We then harvested and processed samples to first assess levels of mRNA by quantitative
PCR (qPCR). Results showed that LNX1 mRNA levels were elevated in both timepoints post-therapy,
and that Notch1 downstream markers (Hes1, p21, and RBPSUH) were additionally elevated, at either
day 1 or 4 following therapy (Figure 3A). The differences noted here in timing of elevation are likely
due to differences in specific gene function and activation mechanics
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Figure 3. The LNX1-Numb-Notch1 axis controls is activated after TMZ therapy in GBM. (A) Examination
of mRNA levels by RT-PCR at 4 and 8 days after therapy with TMZ compared to a DMSO control showed
elevations in LNX1, Hes1, p21, and RBPSUH after therapy. (B) Western blotting across multiple GBM
patient-derived xenograft (PDX) cell lines and U251 cells showed that LNX1 was upregulated compared
to control after 4 days of TMZ therapy, corresponding with Numb downregulations, and intracellular
Notch1 (NICD) upregulations. Following Notch1 upregulation, Notch1 downstream markers p21,
Hes1, and RBPSUH were also elevated. Beta-actin was included as a loading control for all blots
performed. Analysis was performed in Prism 8, using ANOVA to compare row-means to determine
significance * p < 0.05; ** p < 0.01; **** p < 0.001.

We next assessed differences in gene expression at the protein level following therapy in three
GBM PDX lines. We used GBM6 (classical subtype, MGMT unmethylated), GBM43 (proneural subtype,
unmethylated MGMT, TMZ-resistant), and GBM5 (mesenchymal subtype, MGMT methylated,
TMZ-sensitive) to evaluate the expression of the LNX1-Numb-Notch1 axis following TMZ therapy.
Analysis of all three subtypes showed that LNX1 increased with a corresponding decrease in Numb
levels and an increased in intracellular Notch1 (NICD) levels (Figure 3B). In addition, LNX1 and
NICD levels were assessed in GBM43 following other forms of therapeutic stress (radiation, radiation,
and TMZ), and we found that both LNX1 and NICD were elevated after these therapeutic stresses as
well (Figure S3).

In addition to the LNX1-Numb-Notch1 axis, we also assessed the expression of Notch1 downstream
targets (Hes1, p21, RBPSUH) after therapy. Within these downstream markers, there was generally
an increase in Notch downstream marker expression following TMZ therapy. However, there were
subtype-specific differences in whether or not specific genes were elevated in specific cell lines.
For example, in GBM6, Hes1 was robustly elevated, whereas, in GBM43 and GBM5, p21 and RBPSUH
were robustly elevated. This is likely a consequence of known genetic differences, termed heterogeneity,
between various subtypes of GBM, and is one of the aspects of GBM that makes it so difficult to find a
universal therapy that can affect all subtypes.

In addition to investigating in vitro at the mRNA and protein levels, we also investigated the
LNX1, Numb, and Notch1 transcript distribution in the different cellular compartments within GBM
tissues using the IvyGap dataset, which relies on in-situ hybridization of patient tumor samples to
identify expression patterns. We noted a similar pattern here—LNX1 upregulations were associated
with Numb downregulations and NICD with upregulations (Figure S4). Furthermore, we examined
correlations between the expression of LNX1 and the GSC markers CD133 (PROM1) and L1CAM,
both of which were significantly positive correlations, showing that LNX1 elevations are associated
with increased stemness in patient samples (Figure S6).
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2.4. LNX1 Interacts with Numb during TMZ Therapy

Next, we assessed the interactions between LNX1, Numb, and Notch1 in the cell. In order to
do this, TMZ-treated GBM 6 and 43 PDX cell lines were subject to an immunoprecipitation Western
blot (IP-WB) analysis with the antibody of interest to assess levels of interaction between two target
proteins. First, we immunoprecipitated samples with an antibody for LNX1. Western blot analysis of
these intraperitoneal (IP) samples revealed that there was an increase in binding of Numb and LNX1
in the presence of TMZ, as well as an increase in the ubiquitination of LNX1 in the presence of TMZ.
From these results, we inferred that LNX1 is likely transferring ubiquitin to Numb at an increased
frequency in the presence of TMZ. A similar analysis with Notch1 pulldown samples showed that
Numb–Notch1 interactions were elevated in GBM43 following therapy with TMZ and decreased in
GBM6 (Figure 4A). Once again, we believe this is a subtype-specific response. Normally, the presence
of Numb would prevent cleavage of Notch1. In the presence of LNX1 and the absence of Numb,
Notch will be cleaved more and therefore NICD concentrations in the cell will increase. However,
Notch can be ubiquitinated as an alternative mechanism of modulating Notch1 levels. Therefore,
we believe that the differences were seen in Notch–Numb interactions and ubiquitination likely reflect
a subtype-specific differential response to Notch modulation. Overall, these IP blots reflect that there is
an interaction between LNX1 and Numb and a further interaction between Numb and Notch in some
cell lines during therapy.

Cancers 2020, 12, x 7 of 19 

 

Notch will be cleaved more and therefore NICD concentrations in the cell will increase. However, 
Notch can be ubiquitinated as an alternative mechanism of modulating Notch1 levels. Therefore, we 
believe that the differences were seen in Notch–Numb interactions and ubiquitination likely reflect a 
subtype-specific differential response to Notch modulation. Overall, these IP blots reflect that there 
is an interaction between LNX1 and Numb and a further interaction between Numb and Notch in 
some cell lines during therapy. 

 
Figure 4. LNX–Numb and Numb–Notch1 interactions were upregulated after TMZ therapy. (A) An 
intraperitoneal (IP) injection was performed for LNX1 in GBM6 and GBM43 cells. Samples were then 
probed for Numb and Ubiquitin. An increase in Numb–LNX interactions and an increase in LNX–
Ubiquitin interactions were noted after TMZ therapy, compared to the DMSO control. An additional 
IP injection was performed for Notch1 and samples were probed for Numb and ubiquitin levels. A 
mild increase was noted for Notch1–Numb interactions. IgG controls were performed for all IP 
injections. (B) GBM43 and GBM6 cells were implanted in mice, following our mouse model for 
intracranial tumors. Tissue samples were isolated from these mice were then stained for LNX1 and 
Notch1 expression. The tumor area was imaged and colocalization analysis was performed for LNX1 
and Notch1 expression. Results showed that LNX1 and NICD colocalization was significantly 

(A)

(B)

DMSO TMZ 
0.0

0.2

0.4

0.6

0.8

1.0

GBM43 In Vivo LNX:Notch

Treatment Group

P
ea

rs
on

's
 C

or
re

la
tio

n 
C

oe
ff

ic
ie

nt

****

DM
SO

TM
Z

GB
M

43
DM

SO
TM

Z
GB

M
6

DMSO TMZ 
0.0

0.2

0.4

0.6

0.8

1.0

GBM6 In Vivo LNX:Notch

Treatment Group

P
ea

rs
on

's
 C

or
re

la
tio

n 
C

oe
ff

ic
ie

nt

*

DAPi NICD LNX Merge Magnified

Ig
G

 
IB

 : 
LN

X1
IB

 : 
U

b
IB

 : 
N

um
b

Ig
G

 
IB

 : 
N

ot
ch

1
IB

 : 
U

b
IB

 : 
N

um
b

Figure 4. Cont.



Cancers 2020, 12, 3505 8 of 19

Cancers 2020, 12, x 7 of 19 

 

Notch will be cleaved more and therefore NICD concentrations in the cell will increase. However, 
Notch can be ubiquitinated as an alternative mechanism of modulating Notch1 levels. Therefore, we 
believe that the differences were seen in Notch–Numb interactions and ubiquitination likely reflect a 
subtype-specific differential response to Notch modulation. Overall, these IP blots reflect that there 
is an interaction between LNX1 and Numb and a further interaction between Numb and Notch in 
some cell lines during therapy. 

 
Figure 4. LNX–Numb and Numb–Notch1 interactions were upregulated after TMZ therapy. (A) An 
intraperitoneal (IP) injection was performed for LNX1 in GBM6 and GBM43 cells. Samples were then 
probed for Numb and Ubiquitin. An increase in Numb–LNX interactions and an increase in LNX–
Ubiquitin interactions were noted after TMZ therapy, compared to the DMSO control. An additional 
IP injection was performed for Notch1 and samples were probed for Numb and ubiquitin levels. A 
mild increase was noted for Notch1–Numb interactions. IgG controls were performed for all IP 
injections. (B) GBM43 and GBM6 cells were implanted in mice, following our mouse model for 
intracranial tumors. Tissue samples were isolated from these mice were then stained for LNX1 and 
Notch1 expression. The tumor area was imaged and colocalization analysis was performed for LNX1 
and Notch1 expression. Results showed that LNX1 and NICD colocalization was significantly 

(A)

(B)

DMSO TMZ 
0.0

0.2

0.4

0.6

0.8

1.0

GBM43 In Vivo LNX:Notch

Treatment Group

P
ea

rs
on

's
 C

or
re

la
tio

n 
C

oe
ff

ic
ie

nt

****

DM
SO

TM
Z

GB
M

43
DM

SO
TM

Z
GB

M
6

DMSO TMZ 
0.0

0.2

0.4

0.6

0.8

1.0

GBM6 In Vivo LNX:Notch

Treatment Group

P
ea

rs
on

's
 C

or
re

la
tio

n 
C

oe
ff

ic
ie

nt

*

DAPi NICD LNX Merge Magnified
Ig

G
 

IB
 : 

LN
X1

IB
 : 

U
b

IB
 : 

N
um

b

Ig
G

 
IB

 : 
N

ot
ch

1
IB

 : 
U

b
IB

 : 
N

um
b

Figure 4. LNX–Numb and Numb–Notch1 interactions were upregulated after TMZ therapy.
(A) An intraperitoneal (IP) injection was performed for LNX1 in GBM6 and GBM43 cells. Samples were
then probed for Numb and Ubiquitin. An increase in Numb–LNX interactions and an increase
in LNX–Ubiquitin interactions were noted after TMZ therapy, compared to the DMSO control.
An additional IP injection was performed for Notch1 and samples were probed for Numb and ubiquitin
levels. A mild increase was noted for Notch1–Numb interactions. IgG controls were performed for
all IP injections. (B) GBM43 and GBM6 cells were implanted in mice, following our mouse model
for intracranial tumors. Tissue samples were isolated from these mice were then stained for LNX1
and Notch1 expression. The tumor area was imaged and colocalization analysis was performed for
LNX1 and Notch1 expression. Results showed that LNX1 and NICD colocalization was significantly
elevated after TMZ therapy. Image analysis was performed in ImageJ, using the coloc2 package.
Statistical analysis was performed in Prism 8, using the Student’s t-test to compare 2 groups and
calculate significance. * p < 0.05; **** p < 0.0001 Scale bars correspond to 50 µM on DAPi, NICD, LNX,
and merge image panels and 10 µM on the magnified panel.

To examine this interaction further in vivo, we implanted the GBM43 and GBM6 PDX lines into
nu/nu mice, following our previously established tumor mouse model [12]. One week following
implantation, mice were treated with 2.5 mg/kg of TMZ for 5 days, delivered once daily. Once the
mice reached our clinical endpoint, the animals were sacrificed, and brains were harvested for further
experimentation. These brains were sectioned and stained for LNX1 and NICD expression, and images
were analyzed for percent colocalization using Pearson’s correlation coefficient. Results showed
that therapy with TMZ significantly increased LNX1-NICD colocalization in both cell models,
further supporting the modulation of Notch1 levels by LNX1 expression (p < 0.05; Figure 4B).

2.5. Induction of a Stem-Cell-Like State through LNX1 Overexpression Increases Notch1 Activity

Thus far, we have established that LNX1 is a symmetric cell division regulator that is significantly
elevated in TMZ. We have further shown that LNX1 acts through interactions with Numb and affects
intracellular NICD expression levels. Given that LNX1 regulates Notch signaling, which can further
induce expansion of the GSC niche, we hypothesized that elevations in LNX1 during TMZ therapy
could be associated with increases in overall stemness of the tumor population [15,19,31]. To examine
this, we cultured GBM43 and GBM6 PDX lines in neurobasal media to induce a stem-like state and
in differentiation media (1% FBS media). We then assessed levels of LNX1, Numb, and Notch1 by
Western blot. This analysis demonstrated that LNX1 and Notch1 levels are increased when cells are
pushed towards a stem-like state and that there is an increased formation of spheres, representative of
a stem state, associated with the neurobasal media condition (Figure 5A,B).
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Figure 5. LNX1 overexpression results in notch activation and increased stemness. (A) GBM6 and
GBM43 cells are cultured in neurobasal media vs regular 1% media. Neurobasal media showed
an increase in LNX1 expression corresponding with a decrease in Numb and an increase in NICD
expression. (B) GBM43 cells in neurobasal media demonstrated sphere formation. (C) Overexpression
of LNX1 in multiple cell lines resulted in decreases in Numb and increases in NICD. (D) NICD increases
are matched with an increase in activation of Notch1 downstream markers Hes1, p21, and RBPSUH,
measured by quantitative PCR in multiple cell lines. (E) Notch is cleaved to NICD which then
trans-locates within the cell and activates transcription, in this case, of our fluorescent reporter proteins.
Readout of green fluorescent protein (GFP) and red fluorescent protein (RFP) reporters separately by
flow cytometry shows that LNX overexpression definitively results in activation of Notch1 activity.
(F) Limiting dilution neurosphere assays show that LNX1 overexpression results in an increase in
functional stemness across multiple cell lines Statistical analysis was performed in Prism 8, using the
Student’s t-test to compare 2 groups and calculate significance. Chi-squared testing is used to calculate
significance for limiting dilution assays. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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Having observed that LNX1 elevations are indeed associated with the induction of a stem-like
state, we wanted to assess the effect of overexpression of LNX1 on the “stemness” of the tumor cell
population in the differentiation media. To this end, we subcloned the LNX1 cDNA into an existing
lentiviral vector. We then generated lentiviral particles from this plasmid and were able to stably
overexpress LNX1 in U251 cells as well as in the GBM43 and GBM6 PDX lines, as validated by Western
blot analysis. We further noted that Numb expression correspondingly decreased while Notch1
expression increased across all of our cell lines (Figure 5C). At the RNA level, gene-level activation of
Notch downstream targets RBPSUH, p21, and Hes1 were also observed upon overexpression of LNX1
(p < 0.05; Figure 5D).

To confirm that Notch1 activation following LNX1 overexpression was functional and could act
as a transcription activator, we next used a Notch1 reporter system to read out activity in the LNX
overexpressed GBM cells. For this experiment, two separate Notch1 reporters were obtained, each with
a different fluorescent tag. It is known that Notch1 is activated by cleavage and that cleaved Notch1
(NICD) can enter the nucleus and act as a transcription factor. Therefore, these reporter plasmids
work by being activated by the cleaved Notch transcription factor to produce either green fluorescent
protein (GFP) or red fluorescent protein (RFP). Each was transfected separately into a population of
U251 and GBM43 PDX cells, with and without LNX1 overexpression. The cells were then cultured for
4 days in order to allow activation of the reporter and were subsequently analyzed by flow cytometry.
Results showed significant elevations of Notch1 activity in the LNX1 overexpression population across
both vectors and across both cell lines, as measured by GFP or RFP expression in the population
(Figure 5E). This confirms our hypothesis that LNX1 overexpression results in increased Notch1 activity,
which subsequently results in an increasingly stem-like phenotype of the cells.

Finally, after validating that LNX1 overexpression resulted in Notch1 increase, we examined
whether LNX1 overexpression promotes stemness in GBM by performing a functional limiting dilution
assay in U251 cells as well as the PDX lines GBM43 and GBM6. Our results showed that overexpression
of LNX1 significantly increased the stem cell frequency of the population across all three cell lines as
stem cell frequency almost doubles in the overexpression condition (p < 0.05; Figure 5F). This result
suggests that there is a significant increase in the stemness of the population after overexpression
of LNX1.

2.6. Knockdown of LNX1 Activity Results in Reduced Stemness and Increased Animal Survival

Overexpression of LNX1 shows an expansion of the stem cell compartment. The expansion
of the GSC compartment has been closely linked to tumor aggressiveness and poor prognosis for
patients [9,32]. Therefore, we wanted to assess the effect of knocking down LNX1 expression in
gliomagenesis. These knockdowns were established using shRNA constructs in the U251, GBM43,
and GBM6 cell lines. Lentiviral particles were generated from the plasmids carrying shRNA and cells
infected with particles to produce an LNX1 knockdown.

Our first step was to validate our knockdown by Western blot. Our results showed that the
induction of LNX1 expression in response to TMZ leads to a reduction in Numb expression and induction
of NICD (left panel, scramble shRNA, CT, Figure 6A). However, when we knocked down the LNX1
with shRNA, GBM cells failed to reduce NUMB expression in response to TMZ. In response, the level
of NICD was significantly lower during TMZ therapy (right panel, LNX1 shRNA, sh4, Figure 6A).
Furthermore, mRNA levels of Notch1 downstream targets genes RBPSUH, Hes1, and p21expression
were elevated as normal following TMZ therapy but were no longer elevated following knockdown
of LNX1 (Figure 6B). Cells with the knockdown also showed to be increasingly susceptible to TMZ
therapy as compared to control populations (Figure 6C).
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Figure 6. Knockdown results in notch downregulation, reduced stemness, and longer survival.
(A) LNX knockdown results in increased Numb and reduced Notch1 activation with TMZ therapy,
where D represents DMSO and T represents TMZ therapy. (B) Knockdown of LNX1 resulted in reduced
activation of Notch1 downstream markers, as measured by quantitative PCR. (C) LNX1 knockouts were
increasingly sensitive to TMZ as compared to controls exposed to the same doses. (D) Limiting dilution
assays in showed that the knockdown was no longer able to induce stemness. (E) Representative
images showed sphere formation controls but limited sphere formation in our knockdowns.
(F) LNX1 knockdown in our animal tumor model showed significant increases in survival over
our control population. Statistical analysis was performed in Prism 8, using the Student’s t-test to
compare 2 groups or ANOVA for more than 2 groups. Chi-squared testing was used to calculate
significance for limiting dilution assays and log-rank testing was used to compare survival curves.
* p < 0.05; ** p < 0.01; *** p < 0.001.

Next, we examined stemness by a functional limiting dilution assay following LNX1 knockdown
by performing a limiting dilution neurosphere assay. In the LNX1 knockdown condition, we noted a
reduction in stemness. Visual examination showed a similar trend, with a reduction in neurosphere
frequency in the knockdown condition (Figure 6D). The stem cell frequency observed in control cells
was 1/46, with a decrease to 1/165 after knockdown (p < 0.0001). Overall, this supports our hypothesis
that knocking down LNX1 results in a significant decrease in stemness, which can result in a less
aggressive tumor.
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Finally, we performed an in vivo experiment comparing our LNX1 knockdown to our control
population in the GBM6 PDX line. For this experiment, our previously described animal model of
GBM was used. Control or knockdown cells were implanted orthotopically in mice, which were
subsequently monitored for the development of clinical symptoms. Mice were sacrificed when it
was determined that they were unlikely to survive to the next day by two independent investigators,
and their survival times were recorded. Analysis of this experiment showed that the LNX1 knockdown
resulted in significantly increased survival times, likely due to the reduced aggressiveness of the GBM
cells (p = 0.006; Figure 6E,F).

3. Discussion

GBM is a devastating disease that currently carries a dismal prognosis for patients. As such, it is
desperately in need of novel therapies that may provide improved outcomes for patients. Previously,
our lab and others have shown that there is a subpopulation of cells in GBM termed GSCs that likely
drive the aggressive nature of GBM by driving its therapeutic resistance and recurrence. We have
further shown that treatment of tumors with TMZ results in expansion of the GSC compartment,
which we believe is occurring due to plasticity-dependent mechanisms within the tumor.

Here, we have shown that cell cycle and stemness programs are significantly upregulated in GBM
cells following TMZ therapy. This result has been corroborated by other studies across many different
cancers, further bolstering the idea that cell division and expansion of the stem cell compartment are
key for tumor progression after therapy [8,13,24]. We have additionally shown that polarized cell
division regulators are specifically altered after TMZ therapy in GBM, suggesting that the expansion
of the stem cell compartment observed after TMZ therapy in part driven by changes in regulators of
polarized cell division. Of these regulators, we were able to identify LNX1 as a novel target that is
significantly upregulated after TMZ therapy.

Other studies have shown that LNX1 regulates Numb and Notch1 and may have a role in cell
division programs [26,33]. However, no study has examined the specific role of this entire axis and
how it may contribute to the expansion of the stem cell compartment, specifically in GBM post-therapy.
We were able to show that LNX1 does negatively regulate Numb, which in turn negatively regulates
Notch1 expression in GBM cells. In response to TMZ, LNX1 was elevated, resulting in elevations in
Notch1 and corresponding gene-level activation of Notch1 downstream genes, which further results in
an increased stemness phenotype in cells. This axis was validated both by overexpression studies and
by knockdown studies. Furthermore, from a clinical perspective, we were able to show both that LNX1
enrichments do occur in patients and that they are associated with decreases in survival. We were also
able to show that loss of LNX1 expression can result in longer survival times in our clinically relevant
animal model.

Given that we know GSCs are a major driver of GBM’s aggressiveness, this increased stemness
phenotype associated with LNX1 activation suggests that LNX1 may be a promising therapeutic target
to block Notch signaling in GBM. Targeting LNX1 may allow for more nuanced modulation of Notch1,
which may result in significantly improved outcomes for patients. Notch1 is a well-known modulator
of GBM and many clinical trials have been attempted to target Notch1. This is a gene known to be
significantly elevated across all GBM tumors and known to be involved in promoting cellular plasticity
as it has a multitude of functions in determining cell fate, differentiation, and proliferation. As such,
it is able to promote more aggressive cell states. Unfortunately, all therapies developed to target
Notch1 have failed due to the unbearable toxicities associated with these inhibitors and the involved
dosing schedules required of patients. LNX1 therefore could be a way to target Notch1 more simply.
Furthermore, since LNX1 is only elevated in GBM cells, it also provides a more nuanced and targeted
approach to reducing Notch1 activity.
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4. Materials and Methods

4.1. Gene Expression Analysis

RNA was extracted from samples using the RNEasy kit (Qiagen, Hilden, Germany), as per
manufacturer’s instructions. For each analysis, 1ug of RNA was utilized with Human HT12
(48,000 probes, RefSeq + Expressed Sequence Tag (EST)), again as per the manufacturer’s directions
(Illumina, San Diego, CA, USA). All microarrays were performed in triplicate to ensure appropriate
replicates for the experiment.

These data were analyzed for gene expression pre- and post-TMZ, looking at genes involved in
cell division and stemness pathways. This work was performed by a trained biostatistician using an
established gene set enrichment analysis algorithm [34]. Briefly, this algorithm identifies biological
pathways as a whole and assesses their enrichment over different conditions as well as the significance
of that enrichment (FDR value). It also generates fold change for expression for specific genes based on
the microarray data.

4.2. RNA-Seq Analysis

Cells were treated for four days with 50µM TMZ or equimolar DMSO in triplicate. Cell pellets were
then harvested and are sent to Novogene’s sequencing lab (UC Davis, CA, USA). Novogene performed
extractions and sequencing and returned results of sequencing.

These data were analyzed for gene expression pre- and post-TMZ, looking at genes involved in
polarized cell division, as identified in Drosophila studies [14]. This work was performed by applying
the DESeq2 algorithm as previously described across our genes of interest [35]. Briefly, this algorithm
estimates the dispersion of gene counts as compared to an overall mean and thus generates a fold
change and a p-value for each gene of interest.

4.3. Cell Lines and Culture

U251, a human glioma cell line, was obtained from the American Type Culture Collection
(Manassas, VA, USA). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; HyClone,
Thermo Fisher Scientific, San Jose, CA, USA), with 10% fetal bovine serum (FBS; Atlanta Biologicals,
Lawrenceville, GA, USA) and 1% penicillin-streptomycin antibiotic mixture (Cellgro, Herndon,
VA, USA; Mediatech, Herndon, VA, USA).

Our patient-derived xenograft (PDX) glioma cells (GBM43, GBM5, and GBM6) were obtained from
Dr. C. David James at Northwestern University and maintained according to published protocols [36].
They were cultured in DMEM, supplemented with 1% FBS and 1% penicillin-streptomycin. Cells were
used for a maximum of 4 passages before being replenished from frozen stock. Frozen cells were
maintained in pure FBS supplemented with 10% dimethyl sulfoxide (DMSO) in liquid nitrogen
at −180 ◦C.

4.4. Immunofluorescence Staining

For in vitro experiments, cells were cultured as described above. In preparation for staining,
they were re-plated in Lab-Tek II 8-well chambers (Thermo Fisher Scientific, Waltham, MA, USA)
and then treated with the appropriate drug (DMSO or TMZ 50 µM) 24 h after being plated.
After treatment duration was complete, cells were washed once with PBS and then fixed for 10 min at
room temperature with cold 4% PFA (Thermo Fisher Scientific). They were washed after fixation and
then blocked in 10% BSA + Triton-X (Thermo Fisher Scientific) for 2 h. Cells were then maintained
in the appropriate primary antibodies—LNX1 1:200 (Invitrogen, Carlsbad, CA, USA) or Numb 1:200
(Thermo Fisher Scientific)—an diluted in 1% BSA overnight at 4 ◦C. The next day, cells were washed
3 times for 8 min each and then placed in the secondary antibodies conjugated to either Cy3 or
FITC (Thermo Fisher Scientific) at a dilution of 1:1000 in 1% BSA for 2 h. Following secondary
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incubation, cells were washed 3 times for 10 min and then mounted with DAPI-containing mounting
media (Invitrogen).

For in vivo experiments, mice were perfused with ice-cold PBS (Gibco, Waltham, MA, USA)
following euthanasia. They were then frozen in cryoprotectant on ethanol and dry ice and were
subsequently stored at −80 ◦C until required for experimentation. For staining, samples were sectioned
at a thickness of 8 µM and then stained as per standard immunohistochemistry protocols [37]. In brief,
sections were thawed for 30 min at 37 ◦C. They were washed with PBS 3 times for 5 min each following
thawing to remove additional cryoprotectant. The cells were then fixed in cold 4% PFA (Thermo Fisher
Scientific) at room temperature for 15 minutes and were once again washed with PBS 3 times for 5 min
each. Sections were then incubated in 10% BSA + Triton-X for 2 h to block and were then incubated in
the appropriate primary antibodies, as above, overnight at 4 ◦C. Following this, sections were washed
in PBS 3 times for 10 min each and then incubated in secondary antibodies as above at 1:1000 for 2 h at
room temperature. Finally, samples are thoroughly washed (3–4 times for 10 min each) and mounted
with DAPI-containing mounting media.

All slides were imaged using a Leica confocal and images were analyzed using ImageJ software [38].
Where relevant, counts of cell division were performed by calculating relative intensity values in
ImageJ. In addition, where relevant, colocalization correlation coefficients (i.e., Pearson’s correlation
coefficient) were calculated by using the in-built Coloc2 package in ImageJ [39].

4.5. Immunohistochemistry of Human Samples

Human glioma samples (primary and recurrent) were obtained from Northwestern University’s
Nervous System Tumor Bank. All patients gave consent as per the defined Institutional Review
Board (IRB) policies prior to obtaining samples. Staining was performed as per standard
immunohistochemistry protocols, previously established in that lab [37]. Briefly, samples were
formalin-fixed and paraffin-embedded (FFPE). They were then sectioned at a thickness of 4 µM,
after being heated at 60 ◦C for at least 1 h. Antigen retrieval was performed with a BioCare Medical
Decloaking Chamber using high (LC3) or low pH antigen retrieval buffer from Dako (Agilent,
Santa Clara, CA, USA). Primary antibodies were incubated for 1 hour at room temperature followed
with horseradish peroxidase (HRP)-tagged secondary antibodies as appropriate. Slides were scored for
LNX1 expression on a scale of 1 (lowest) to 3 (highest) by a board-certified neuropathologist (CMH),
and scores were plotted alongside survival data.

4.6. Quantitative PCR

Cells were harvested and RNA extraction was performed using Qiagen RNA extraction kits
(Qiagen), as per the manufacturer’s protocol. cDNA was generated from RNA samples using iScript
kits (BioRad, Hercules, CA, USA), as per the manufacturer’s protocol. Once generated, cDNA was
diluted 1:10 to use for downstream qPCR. PCR reactions were set up with a standard amount of
cDNA, SyberGreen, forward and reverse primers, and ddH2O. All primers were generated from
Primer-BLAST using the native settings. Reactions were all performed in biological triplicate and
technical duplicate.

4.7. Western Blot

Cells were harvested and protein was extracted using mPER lysis buffer (Thermo Fisher Scientific)
with protease and phosphatase inhibitors (Cell Signaling Technologies, Danvers, MA, USA). Cells were
then sonicated 3 times for 30 s each with 10 s intervals in between. Next, they were incubated on
ice for 10 min and then centrifuged for 10 min at 13,000 rpm. The clear supernatant was recovered
and used for protein assays. Samples were equalized using the Pierce BSA Protein Assay Kit
(Thermo Fisher Scientific), as per the manufacturer’s instructions. Prepared samples were incubated
at 95 ◦C for 10 min and were then cooled to room temperature and loaded into a pre-poured 10%
SDS-PAGE gel. Gels were run for 30 min at 40 V and then 95 V until samples had run all the way
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through. Gels were then transferred to nitrocellulose membranes for 1 h at 14 V, blocked for 1 h in
5% milk (Thermo Fisher Scientific), and incubated overnight in primary antibody diluted in 5% BSA
(Thermo Fisher Scientific). Primaries used include LNX1 1:1000 (LSBio, Seattle, WA, USA) and Numb,
Notch1, Hes1, p21, MAML, and beta-Actin, all used at a dilution of 1:1000 (Cell Signaling Technologies).
The next morning, membranes were washed 3 times for 10 min in TBS-T buffer and then incubated in
secondary antibodies made against mouse and rabbit as appropriate in milk at a dilution of 1:4000
(Cell Signaling Technologies). Membranes were washed again 3 times for 20 min and then developed
using the BioRad imaging system (BioRad).

If immunoprecipitation was required prior to Western blotting, cells were thoroughly washed
and then protein was isolated using mPER and protease/phosphatase inhibitors as described above.
However, prior to equalization and further blotting, an immunoprecipitation was performed using the
antibody of interest and the Protein A/G Plus Ultralink Resin Kit (Thermo Fisher Scientific), as per the
manufacturer’s instructions. Briefly, the protein extract and relevant antibody were incubated together
overnight with gentle rotation at 4 ◦C. The next day, a coupling with UltraLink resin was performed for
2 h at room temperature, also with gentle rotation. Following that, IP buffer was added, and samples
were centrifuged for 3 min at 2500× g, after which the supernatant was discarded. This step was
repeated 3 times. Finally, the binding protein was eluted with 50 µL of elution buffer and Western blot
samples were then prepared as above.

4.8. Neurosphere Assays and Extreme Limiting Dilution Analysis (ELDA)

Cell lines were cultured as described. They were then harvested, washed with PBS, and plated
in serial dilutions, specifically 200, 150, 100, 50, 25, 12, 6 and 3 cells per well. Each dilution was
performed in 12 replicates. Cells were maintained in neurobasal media (Gibco) supplemented
with B27 (no Vitamin A; Invitrogen, Carlsbad, CA, USA), basic fibroblast growth factor (bFGF;
10 ng/mL; Invitrogen), epidermal growth factor (EGF; 10 ng/mL; Invitrogen), and N2 (Invitrogen).
Cells were treated either with 50 µM TMZ or equimolar DMSO. A blinded experimenter examined
the wells after 7 days. The number of formed neurospheres with a diameter greater than 20 cells was
counted. Counts were analyzed using the Walter + Eliza Hall Institute of Medical Research platform
(http://bioinf.wehi.edu.au/software/elda/). This platform allows for the determination of stem cell
frequency and quantification of significant differences between groups. In addition, the absolute
number of spheres was plotted visually, and images were taken of the wells using a Leica confocal
microscope (Buffalo Grove, IL, USA).

4.9. Notch Reporter Transfection

Cells were plated at approximately 60% confluency, 24 h prior to transfection. High Efficiency
DNA transfection reagent (Sigma Aldrich, St Louis, MO, USA) was used to perform transfections,
as per the manufacturer’s protocols. Briefly, transfection reagent and Notch reporter plasmids (#44211,
47684, 47683; Addgene, Cambridge, MA, USA) were combined in serum free OptiMEM media (Gibco).
Specifically, 2 µg of plasmid was used per well for a 6-well plate and transfection reagent was added at
a ratio of 1:3. The mix was incubated for 30 min with a thorough vortex every 10 min. Then, it was
distributed dropwise to plated cells. Cells were maintained for 48–72 h and were then harvested for
downstream analysis by flow cytometry, as described below.

4.10. Flow Cytometry

Cells were cultured as described above. At relevant time points following transfection or
transduction as needed, cells were collected, and fresh surface staining was performed. Cells were first
washed with sterile PBS (Gibco). Next, they were detached from the plate using 0.05% trypsin/0.53 mM
EDTA (Corning, Corning, NY, USA). Trypsin was neutralized using an equal amount of culture media,
and cells were collected in appropriately sized tubes. Cells were then incubated with conjugated
antibodies against CD133-APC (Miltenyi Biotc, Bergisch Gladbach, Germany) for 30 min at room

http://bioinf.wehi.edu.au/software/elda/
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temperature. They were washed thoroughly with PBS (3 washes for 5 min each) and were analyzed
using the flow cytometer. Further analysis and quantification of results was performed using the
FlowJo software.

4.11. Viability Assays

Viability assays were conducted using the MTT assay. In brief, cells were plated at a density
of 3000 cells per well in a 96-well plate with 8 replicates plated for each condition. After 24 h,
media was changed to media supplemented with the appropriate drug concentration. Three days
later, cells were thoroughly washed with phosphate buffered saline (PBS) and incubated with the MTT
reagent (Thermo Fisher Scientific) diluted 10% in regular culture media. Cells were then maintained
for 4 h at 37 ◦C. After this period, the MTT reagent was removed and samples were thoroughly
re-suspended in DMSO. The absorbance of each well was assessed using a standard plate reader and
results were tabulated as per standard protocols [40].

4.12. Generation of Viral Particles

Low passage 293T cells (ATCC, Manassas, VA, USA) were used to generate lentiviral particles.
Briefly, cells were plated at 90% confluency in preparation. After 6 h, they were transfected with a
mix of HP DNA Transfection Reagent (Sigma Aldrich) diluted in OptiMEM media (Gibco) as well as
appropriate packaging plasmids and CRISPR-Cas9 plasmids, as per the manufacturer’s instructions.
Inducible Cas9 was obtained from Addgene (Cambridge, MA, USA) and guide RNA plasmids were
obtained from Genecopoeia (Rockville, MD, USA). The transfected 293T cells were maintained in
culture for 48–72 h, after which the virus-containing supernatant was harvested. The supernatant
was centrifuged at 1200 rpm for 5 min to remove cell debris. It was additionally filtered with a
45-micron filter to sterilize. It was then ultra-centrifuged at 288,000× g for 3 h to pellet virus particles.
Particles were resuspended in 200 µL of PBS and frozen at −80 ◦C until use.

4.13. Transduction of Cell Lines with Lentiviral Particles

U251 and GBM43 lines were obtained and maintained in culture as detailed above. For infection,
cells were harvested and resuspended in a small volume of media (~50 µL). Appropriate lentivirus
amounts were added (~10–20 multiplicities of infection per sample). Polybrene (4 ug/mL) was added to
the virus-cell mixture. The tubes were incubated for 30 min at room temperature and were then plated
in appropriately sized flasks. Cells were maintained in culture with regular media changes for 48–72 h.
Efficiency of the resulting modifications was assessed by western blotting, as previously described.

4.14. Animal Studies

The mice used in this study were athymic nude mice (nu/nu; Charles River, Skokie, IL, USA).
They were housed in accordance with all Institutional Animal Care and Use Committee (IACUC)
requirements and in compliance with all applicable federal and state statutes. Animals were housed in
shoebox cages with food and water available and with a strict 12 h light and dark cycle.

Our lab has a previously established glioblastoma mouse model, where an intracranial implantation
of glioblastoma cells was performed [21]. Briefly, animals received an injection of buprenex and
metacam by intraperitoneal (IP) injection. Next, they received a second injection of ketamine/xylazine
anesthesia (Henry Schein; New York, NY, USA). Complete sedation of the mice was confirmed by
pinching the foot. To protect the mice, artificial tears were then applied to each eye and the scalp
was sterilized with ethanol and betadine. A small incision was made using a scalpel, exposing the
skull. A drill was used to make a ~1mm burr hole above the right frontal lobe. A stereotactic rig
and a Hamilton syringe loaded with cells were used to implant 5 µL of cell solution 3 mm from the
dura. Injections occurred over a period of one minute. The needle was then raised slightly and left for
an additional one minute to ensure release of the cell suspension. Finally, the syringe was carefully
removed, and the scalp was closed with sutures (Ethicon; Cincinnati, OH, USA). Head position was
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maintained throughout the closing process. Animals were maintained on heat pads until awake and
reactive following surgery.

Any drug treatments necessary were started one week following the implantation.
Animals received IP injections of either TMZ (2.5 mg/kg) or equimolar DMSO for 5 consecutive days,
once per day. Animals were monitored daily for any signs of tumor progression (i.e., weight reduction,
reduced body temperature, hunching, etc.). Animals were euthanized when it was determined that
they would likely not survive to the next morning by two independent researchers. These sacrifices
were performed according to Northwestern University and IACUC guidelines.

4.15. Statistics

Statistical analyses were performed with GraphPad Prism v8 (GraphPad Software; San Diego,
CA, USA). Data are presented as mean for continuous variables and number or percentage for categorical
variables. Differences between two groups were assessed using Student’s t-test. Differences between
multiple groups were assessed using analysis of variance (ANOVA) with Turkey’s post-hoc correction.
Survival curves were graphed with the Kaplan-Meier method and compared by log-rank test. All tests
are two-sided and a p-value of under 0.05 is considered significant for the purposes of our study.

5. Conclusions

Here, we have shown that the LNX1, an E3 ubiquitin ligase, plays a key role in expansion of the GSC
compartment in GBM. During TMZ therapy, we found that LNX1 is upregulated. This upregulation
results in increased levels of Notch1 expression through the ubiquitination of Numb. We further show
that this upregulation results in a functional increase in stemness within the tumor, and that reduction
in LNX1 levels is associated with decreased stemness and improved outcomes in animal models.
Overall, we believe that this study provides a novel target for treating recurrent GBM. Much of the
aggressive nature of GBM has been tied to the expansion of the GSC compartment. Preventing this
expansion with novel therapeutic strategies could very much change the course of this otherwise
devastating disease.
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