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Abstract

Background: The Bean plataspid (Megacopta cribraria) (Hemiptera: Pentatomidae), native to Asia, is becoming an invasive
species in North America; its potential spread to soybean producing areas in the US is of great concern. Ecological niche
modelling (ENM) has been used increasingly in predicting invasive species’ potential distribution; however, poor niche
model transferability was sometimes reported, leading to the artifactual conclusion of niche differentiation during species’
invasion.

Methodology/Principals: We aim to improve the geographical transferability of ENM via environmental variable selection to
predict the potential distribution of Bean plataspid invasion. Sixteen environmental dimensions between native and
introduced Bean plataspid populations were compared, and classified into two datasets with different degrees of
discrepancy by the interquartile range (IQR) overlap in boxplot. Niche models based on these two datasets were compared
in native model prediction and invading model projection. Classical niche model approaches (i.e., model calibrated on
native range and transferred outside) were used to anticipate the potential distribution of Bean plataspid invasion.

Conclusions/Significance: Niche models based on the two datasets showed little difference in native model predictions;
however, when projecting onto the introduced area, models based on the environmental datasets showing low discrepancy
among ranges recovered good model transferability in predicting the newly established population of Bean plataspid in the
US. Recommendations were made for selecting biological meaningful environmental dimensions of low discrepancy among
ranges to improve niche model transferability among these geographically separated areas. Outside of its native range,
areas with invasion potential include the southeastern US in North America, southwestern Europe, southeastern South
America, southern Africa, and the eastern coastal Australia.
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Introduction

Ecological niche modelling (ENM) has been used increasingly in

predicting invasive species’ potential distribution [1–4], and other

aspects of ecology and evolution [5,6]. Based on integrating known

occurrence with environmental variables, ENM seeks to charac-

terize environmental conditions that are suitable for the species,

and then to identify where suitable environments are distributed

spatially [7]. The assumptions under which ENMs work are the

equilibrium between species’ distributions and ecological require-

ments, dispersal without limitation and niche conservatism [8].

The ecological niche of a species here can be defined as the set of

environmental conditions under which it is able to maintain

populations without immigrational subsidy [9,10].

The classical ENM approaches for invasive species prediction

are to calibrate niche models in species’ native range and then

transfer models to identify areas of potential invasion. Niche model

transferability here refers to the capability of species’ occurrence

prediction from niche models projected onto novel areas. Several

studies reported poor niche model transferability in predicting

species’ invasion (e.g., [11–14], leading to the conclusion of niche

differentiation during species’ invasion, which violates one of the

key assumptions of ENM (i.e., niche conservatism). However,

other studies have demonstrated that such differences might be

caused by sampling records [15,16], environmental datasets

[4,17,18], or the method of ENM analysis [19,20]. Since the

conclusions of niche differentiation can be due, in part, to poor

niche model transferability, we hypothesized that if environmental

dimensions were selected that reduced discrepancy between native

and introduced populations, then niche model transferability

might be improved among these areas. Some studies suggested

niche model transferability could be improved by selecting fewer

environmental dimensions for niche model calibration

[4,17,21,22]. However, fewer environmental dimensions also
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means fewer constraint on niche characterization (i.e., ENM

calibration), which might result in higher commission error

(predicted presence in areas of actual absence) (Personal commu-

nication with Dr. Peterson, Kansas University), although it indeed

shows lower omission error (predicted absence in areas of actual

presence).

Many true bugs (Hemiptera: Heteroptera) have extended their

distributions remarkably in the last century, and some of them

have increased their pest status after introduction beyond the

native range [4,23–26]. Native to Asia, the Bean plataspid

Megacopta cribraria (F.), also known as lablab bug or globular stink

bug, is the first species of the family Plataspidae to be introduced

into the Western Hemisphere [24]. The establishment was

confirmed by specimens collected in northeastern Georgia, and

by November 2010, it had been reported in Georgia, North

Carolina, South Carolina, Tennessee, and Alabama [26]. The

newly established US population has attracted much attention due

to the damage caused by the species in its native area. In Asia,

Bean plataspid is a serious pest of soybeans [27] where it damages

young leaves, stems, and newly developed pods [26]. In China, the

pest has caused soybean crop losses of 30–50% percent [28]. More

importantly, recently it was found infesting soybean production

areas in Georgia and South Carolina [29]. The only recent

detections may indicate that Bean plataspid is still in early stages of

invasion following introduction. Although the scope of the bugs’

status as a US crop pest has not yet been determined, their

potential for spread to large soybean producing areas in the US is

of great concern [29].

In this study, we aim to improve niche model transferability by

selecting biological meaningful environmental dimensions with

low discrepancy among ranges (i.e., native and introduced) to

predict the potential geographic distribution of Bean plataspid

invasion. The environmental dimensions occupied by native and

introduced populations were firstly compared, and classified into

high and low discrepancy datasets by the interquartile range (IQR)

overlap in boxplot. Principal component analysis was used to

further compare the classified datasets in reduced dimensions.

Classical niche model approaches (i.e., model based on native

range and transferring to introduced areas) were then used to

compare niche model transferability based on these two environ-

mental datasets. The preferred models were chosen to anticipate

the potential distribution of Bean plataspid across North America

and the world. Model transferability responding to niche space

comparison, and implications for variable selection to improve the

niche model transferability were discussed in this study.

Materials and Methods

Occurrence data
Species occurrence localities were assembled from the literatures

and from specimens deposited in the Institute of Entomology at

Nankai University. Localities with ambiguous or unclear descrip-

tions were excluded. All geographically recoverable localities were

georeferenced in Google Maps, Gazetteer of China [30] or

BioGeomancer (http://bg.berkeley.edu/latest/). Invasive records

in the U.S. were largely county-level [31] and converted to points

by digitizing the centroid of infested counties in Arc GIS 10

(ArcGIS, Environmental Systems Research Institute, Redlands,

CA, USA). This method has been used in previous studies, with

models based on random points not differing qualitatively from

models based on such centre points [4,12,14]. A total of 166 and

132 occurrence records were prepared for native and introduced

populations respectively.

Montandon described a species closely related to M. cribraria,

i.e., Megacopta punctatissima (as Coptosoma punctatissimum, [32]), before

later finding specimens that were intermediate between M. cribraria

and M. punctatissima [33]. In a revision of the family Plataspidae

from China, Yang considered M. punctatissima to be conspecific

with M. cribraria [34]. Hosokawa et al. reported that the two

species were capable of interbreeding and their offspring were

found to reproduce successfully [35]. Herein, we treated M.

punctatissima to be a junior synonym of M. cribraria and considered

M. cribraria as the taxonomic entity and utilized occurrence records

accordingly.

The native 166 occurrence points varied in spatial density due

to variable sampling intensity over geography. These data might

inflate measures of accuracy for presence-only niche models (e.g.,

Maxent or GARP, see below) [36]. As a result, and to avoid

overemphasizing heavily on sampled areas, we selected points for

model calibration using a subsampling regime to reduce sampling

bias and spatial autocorrelation. Following Nuñez and Medley

[37], we generated models using all available occurrence points

and measured spatial autocorrelation among model pseudo-

residuals (1 – probability of occurrence generated by model) by

calculating Moran’s I at multiple distance classes using SAM v4.0

[38]. Significance was determined using permutation tests. A

minimum distance of 150 km was detected, we therefore created a

grid with cell dimensions of 1.561.5u and selected the occurrence

point that close to the centroid of each grid cell. This procedure

reduced the number of native occurrences to 89 points used for

model calibration, leaving the remaining points used for model

testing. The procedure greatly reduced sampling bias and spatial

autocorrelation, resulting in evenly distributed occurrence points

across space [37].

Environmental variables
Environmental variables summarizing aspects of climate,

topography and habitat were prepared to represent ecologically

important factors known to impact the biological prosperity of

Bean plataspid [39–41] (Table 1). Climate variables represented

by bioclimatic factors of temperature and precipitation were

derived from WorldClim [42], and of sunshine from CliMond

[43]. Highly correlative variables were not included in the analysis.

Topography variable represented by elevation was also obtained

from the WorldClim database. Habitat variables were represented

by the Normalized difference vegetation index (NDVI) derived

from http://edit.csic.es/, re-calculated as the average of values for

12 months. All dimensions were set at a spatial resolution of 2.5

arc-min for analysis.

Direct comparison and Principal Component Analysis
(PCA)

Raw environmental data was extracted from environmental

rasters at species’ occurrence records using ArcGIS 10, and

compared in boxplot between native and introduced populations.

Boxplot gives a good sense of environmental data distribution

(median, minimum, maximum, and the first and third quartiles),

that indicate the extent to which the data lies near the median, or

near the extremes [44]. Here, the interquartile range (IQR)

overlap between native and introduced populations was used to

classify the environmental dimensions. The interquartile IQR is a

measure of statistical dispersion, it is equal to the difference

between the third (Q3) and first (Q1) quartiles (i.e.,

IQR = Q32Q1), which is represented by column in boxplot.

Unlike total range, the IQR is a robust statistic, having a

breakdown point of 25%, and is thus often preferred to the total

range [44]. All boxplots were prepared in Sigmaplot 11.0 (Systat
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Software Inc, Chicago, IL, USA), then classified into two datasets

by IQRs (or boxplot columns) overlaps between the two

populations. Of which, Dataset I with IQRs were not overlapped

(i.e., BIO 2, 6, 7, 13, 14, 15, 21 and 22), Dataset II with IQRs were

more or less overlapped (i.e., BIO 1, 3, 4, 5, 12, 20, DEM and

NDVI) (Table 1, Figure 1).

Therefore, the Dataset I represented environmental dimensions

of high discrepancy among the two ranges, and the Dataset II

represented dimensions of low discrepancy. A principle component

analysis (PCA) was then used to visualize the species niche space in

reduced dimensions. Two correlation matrixes were prepared for

the Dataset I and II to perform the PCA in SPSS 19 (IBM SPSS

Statistics, Chicago, IL, USA). To facilitate visualization, occurrence

records were grouped for native and introduced populations

respectively. The PCA provided a representation of the bug’s niche

space across both ranges. The spread of points representing native

and invasive populations in the PCA were compared [12,14]. If the

species’ niche is retained, invasive occurrences should cluster within

the cloud of native range occurrences; separation of the two ranges

in PCA space signifies a potential divergence from niche

conservation, in a strict sense [22,45].

Two variable sets comparison
All models were developed using maximum entropy algorithm

implemented in Maxent software (version 3. 3. 3k) [46–49]. In

exploring areas of potential invasion, another algorithm was used

(i.e., GARP, see below). Maximum entropy is a machine-learning

technique that predicts species distributions using detailed

environmental variables associated with species occurrence. It

follows the principle of maximum entropy and spreads out

probability as uniformly as possible, but subject to the caveat that

they must match empirical information such as known presence.

Analysis was run on default program conditions (Logistic output,

default convergence threshold (1025) and maximum number of

iterations (500)). The logistic output with suitability values ranging

from 0 (unsuitable habitat) to 1 (optimal habitat) gives an estimate

of probability of presence, assuming that the sampling design is

such that typical presence localities have probability of presence of

about 0.5 [46,47]. A jack-knife procedure was used to evaluate the

relative importance of each predictor variable and the ability to

correctly predict new ranges in the model [50].

Niche models were calibrated against native range environ-

mental data rasters clipped to appropriate size defined by a

bounding box containing all known native range occurrences (i.e.,

the area defined as the geographic space available to the species).

Constructed models using the above two environmental datasets

were then transferred onto the US (not include Hawaii and Alaska)

respectively. Maxent also calculates a Multivariate Environmental

Suitability Surface (MESS) map indicating areas where environ-

mental variables occur outside the range of values in the training

Table 1. Principal components analysis (PCA) of environmental variables associated with occurrence of Bean plataspid.

Dataset I Factor Loading

Variable Description PC-1 PC-2 PC-3

BIO2 Mean diurnal temperature range 20.70 0.54 0.12

BIO6 Minimum temperature of coldest month 0.79 0.01 0.57

BIO7 Temperature annual range 20.83 0.14 20.49

BIO13 Precipitation of wettest month 0.79 0.03 20.15

BIO14 Precipitation of driest month 20.77 20.18 0.46

BIO15 Precipitation seasonality 0.87 0.24 20.40

BIO21 Highest weekly radiation 20.23 0.90 0.16

BIO22 Lowest weekly radiation 0.87 0.37 0.09

Eigenvalue 4.58 1.34 1.00

Percentage variance 57.31 16.80 12.48

Cumulative percentage variance 57.31 74.11 86.59

Dataset II Factor Loading

Variable Description PC-1 PC-2 PC-3

BIO1 Annual mean temperature 0.91 20.12 20.29

BIO3 Isothermality 0.75 0.45 0.42

BIO4 Temperature seasonality 20.84 20.45 0.22

BIO5 Maximum temperature of warmest month 0.58 20.72 0.13

BIO12 Annual precipitation 0.10 0.39 20.78

BIO20 Annual mean radiation 0.66 20.10 0.26

DEM Elevation 20.16 0.82 0.03

NDVI Normalized difference vegetation index 20.06 0.54 0.50

Eigenvalue 2.88 2.04 1.24

Percentage variance 36.02 25.54 15.47

Cumulative percentage variance 36.02 61.56 77.04

Eigenvalues for the most important variables (.0.8) are in bold.
doi:10.1371/journal.pone.0046247.t001
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region, ENM suitability projections in these regions are unreliable,

and should be treated cautiously [51]. MESS of native dimensions

in contrast to the US (for Dataset I) and the world (for Dataset II)

were prepared.

Area Under Curve (AUC) of the receiver operating character-

istic (ROC) plot and omission rate were used for model evaluation.

AUC weights the omission error and commission error equally, it

is a threshold-independent measure that juxtaposes correct and

incorrect predictions over the spectrum of threshold. AUC values

range from 0 to 1, where 1 is a perfect fit. Useful models produce

AUC values of 0.7–0.9, and models with ‘good discriminating

ability’ produce AUC values above 0.9 [52]. Both AUC and

omission rate were used for native model evaluation. Success of

models transferred to the US to correctly capture Bean plataspid

occurrences was tested using omission rate. Omission rate assesses

prediction error calculated by the proportion of test points that

were not predicted at a particular threshold. We plotted omission

rate across the threshold spectrum of Maxent’s logistic output

values, specifically, we calculated omission rate at the increasing

rate of 0.05 degrees against the total 1.0 logistic output.

Exploring areas of potential invasion
To explore areas of potential invasion globally, the Dataset II

was used (Table 1). We calibrated models based on native range,

and transferred their predictions onto the other continents.

Considering that the record in the US does not characterize the

Figure 1. Direct comparison of Bean plataspid occurrence-associated variables between native and introduced distributional areas.
The Dataset I (variables without asterisk) with columns (i.e., IQR) were not overlapped between the two areas representing variables of high
discrepancy. The Dataset II (variables with asterisk) with columns were more or less overlapped representing variables of low discrepancy.
doi:10.1371/journal.pone.0046247.g001
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actual distribution, and the sample bias in native Asia, we used 89

occurrences of the reduced native sample for model calibration.

Although Maxent has appeared superior to GARP in some

previous studies [49], carefully assessments of model quality

showed no significant differences between the two [53]. Recent

studies suggested using multiple algorithms to infer a consensus

estimate of niche dimensions [5,50,54–56]. Hence, we further used

the Genetic Algorithm for Rule-set Prediction (GARP, [57]) to

explore areas of potential invasion (Text S1). For model

evaluation, we calculated binary omission rate of the remaining

occurrence (including native and introduced records) at the

threshold of the 10th percentile training presence, which assumed

a grid cell was suitable if its suitability score was greater than the

10th percentile of training points. The 10th percentile threshold is

highly conservative in estimating species’ presence and has been

more commonly used [2,58,59].

Results

Direct comparisons
Figure 1 summarized the sixteen environmental dimensions and

their ranges among native and introduced Bean plataspid

populations. PCA of environmental variables associated with

Bean plataspid occurrence revealed reduced dimensions that

accounted for the observed distribution (Table 1; Figure 2). The

first three components were significant and explained 86.59% and

77.04% of the variance in Dataset I and II, respectively (Table 1).

In Dataset I, the first component (PC-1) was associated with

precipitation seasonality, lowest weekly radiation, and temperature

annual range, the second (PC-2) was closely associated with

highest weekly radiation, while the third (PC-3) was less clearly

associated with single dimension. In Dataset II, the first

component was associated with annual mean temperature and

temperature seasonality, the second was associated with elevation

while the third was less clearly associated with single dimension

(Table 1). The niche space occupied by the introduced population

departed from that occupied by the native population in the

reduced dimensions in Dataset I, while in Dataset II, the

orientation of introduced occurrences all fell more closely within

those of native population (Figure 2). Comparing these two

environmental datasets, one that showed niche difference between

native and introduced populations (i.e., Dataset I), the other (i.e.,

Dataset II) did not.

Environmental datasets and model comparisons
In native predictions, models based on the two environmental

datasets all showed good model performance compared to random

predictions (Dataset I: AUC = 0.876; Dataset II: AUC = 0.867;

Figure 3), and models trained on the two datasets showed little

difference in omission rate across Maxent thresholds (Figure 4).

However, when transferred onto the US, models based on Dataset

II showed lower omission rates at the thresholds of 0.2 to 0.75,

comparing to that based on Dataset I. At the thresholds of 0.25 to

0.5, the omission rates rose significantly in Dataset I, but stayed

stable at a low level in Dataset II (Figure 4), suggesting good model

transferability in Dataset II. Areas of potential invasion identified

by Dataset I in the US include extensive areas of the lower Mideast

and Southeast, Florida was also identified as suitable in Dataset I.

In Dataset II projected model, the areas identified include most of

the infested counties in Georgia, North Carolina and South

Carolina, the other states including Mississippi, Alabama,

Tennessee and Virginia, and the coastal areas along the Atlantic

and Gulf of Mexico (Figure 3). All of these areas with

environmental variables were fell in that of the training data

(Figure S1, S2).

Areas of potential invasion
Niche models based on the reduced 89 native points yield zero

omission (Maxent) and 1.43% omission (GARP) of the indepen-

dent test points (total 209 points), suggesting good model

performance. Comparing to Maxent, the projection of GARP is

a little conservative in Europe in contrast to other continents

(Figure 5, Figure S3). Outside of native-range areas, high suitable

areas identified by both modelling algorithms include the

southeastern US in North America, southwestern Europe,

southeastern South America, southern Africa, and the eastern

coastal Australia (Figure 5, Figure S3). All of these areas with

environmental variables were fell in that of the training data

(Figure S2). Attention should be paid to quarantine and inspection

when engaging in interchanges with the south Asia in these areas.

Discussion

Niche difference
Across its native range, the biology of Bean plataspid has been

insufficiently studied to adequately understand the ecological

constraints of the species [39–41,60]. A species’ ecological niche

can be characterized through either mechanistic or correlative

approaches (i.e., ENM), with the former identifying the physio-

logical determinants of a species’ tolerance to environmental

conditions, and the later identifying the ecological niche by

associating known species’ environmental tolerances derived from

the conditions found at actual occurrences [7,18]. Correlative

methods are made increasingly possible through the availability of

species’ occurrence data and geographic information system (GIS)

data [6,7], which are particularly useful for poorly known species,

such as Bean plataspid. In PCA, the annual mean temperature,

temperature seasonality, temperature annual range, the highest/

lowest weekly radiation, and elevation showed their significance in

explaining the bug’s distribution. In ENMs, the annual precipi-

tation and radiation, temperature seasonality, the maximum

temperature of the warmest month, and precipitation of the driest

month appeared to be significant in model calibration.

However, care should be taken in interpreting their results, as

ENM approaches were based on observations that already include

effects of biotic interactions on species distributions [61], and thus

recovered the realized or potential niche [20,62]. This portion of

the fundamental niche, limited by biotic interaction or dispersal

limitations, is unlikely to capture the full ecological tolerances of

the species. In fact, the fundamental niche is rarely fully displayed

in geographic space [20,22,63]. The spectrum of host plants

available to Bean plataspid is limited due to an obligate

relationship with a bacterial endosymbiont which allows it to feed

on soybean and other legumes [26,35,64]. This association might

influence the bug’s potential for ecological expansion across the

invasive range, reducing the occupancy of the range predicted by

native range occurrences. It is unlikely that the current invasive

range is in a distributional equilibrium, as many areas identified as

suitable were not inhabited in the US. Therefore, our observed

niche difference can be considered as the realized niche difference,

the observed niche space in Dataset I and II can be considered as

the realized niche manifested in two ecological dimensions (i.e.,

Dataset I and II).

The ENM here is to characterize the realized niche [20,62],

whereas the PCA is to characterize the realized niche in specific

ecological dimensions. In fact, the observed niche difference might

tend to happen in the fine resolution environmental dimensions.

Improving Niche Model Transferability
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At small spatial extents, the fundamental niche might express

differently because of heterogeneity of the landscape. While at

broad spatial scale, the species interactions are weak, diffuse, or

non-specific, it will be unusual to see such niche difference [61].

The observed ‘‘conserved’’ or ‘‘relaxed’’ variables [21] might not

be simply because of their biological meaningful to the species (i.e.,

actually restricting species geographical range), but also because

whether they were released by the fundamental niche in the

heterogeneous landscape in which the species occur. In ecological

dimensions, the realized niche difference might be displayed in

some environmental axes, but not others [12]. The latter portion

dimensions were also biological meaningful and might be more

useful for niche model calibration. Actually, the other factors (e.g.,

sampling bias or environmental data quality) might also play a role

in the observed niche difference, although they are not the topic

here.

Environmental dimension and niche model
transferability

Environmental variable selection is very important for niche

model calibration. Apart from considering the biological factors

that may restrict species’ distributions, the resolution, extent of

study range, and correlation among variables have to be taken into

consideration [3,4]. In particular, comparing the ecological

envelopes occupied by native and introduced populations offers

useful information for variable selection prior to the modelling

[4,12,21]. Actually, environmental dimensions had been com-

pared using PCA and metrics summarizing differences between

niches [11,14,45]. Herein, we found that after direct comparisons

in boxplot, the environmental dimensions could be better classified

into groups before further comparisons were made in the reduced

dimensions of PCA. In the PCA, the realized niche in ecological

dimensions of Dataset II is less discrepancy than that of Dataset I

between native and introduced populations. Model projected onto

the US based on Dataset II showed good model transferability in

predicting the invasive occurrences (Figure 4), the niche model

transferability here was improved via the PCA selecting environ-

mental variables (i.e., Dataset II).

Model transfer outside the native range into the non-analog

conditions is a challenge for niche modelling algorithms [65–67].

Many model protocols have been proposed to improve niche

model transferability [56,68,69]. Putting the realized niche in

ecological dimensions, the realized niches between native and

introduced populations might be the same in some dimensions but

Figure 2. Principal component analysis of Dataset I (left) and II (right) associated with occurrences of Bean plataspid. Symbols
represent Bean plataspid occurrences in native and introduced areas.
doi:10.1371/journal.pone.0046247.g002

Figure 3. Niche model calibrated on native range and projected onto the US based on Dataset I (left) and II (right). Dark blue color
represents high suitability, light blue indicates low suitability. Green dots indicate the occurrence points used for model calibration, red dots indicate
the model testing point, white grids in the US indicate the infested counties.
doi:10.1371/journal.pone.0046247.g003
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different in other dimensions [12,21]. Niche space comparison

using PCA offers useful information on environmental dimensions

of low or high discrepancy among ranges prior to the modelling.

Our proposal was to select environmental dimensions with low

discrepancy to improve niche model transferability among these

distributional areas. When transferring niche models beyond the

native area onto a larger area (comparing to model calibrating

area) or globally, the environmental dimensions with low

discrepancy and reduced dimensionality might be preferable

(e.g., [4]). Our emphasis of selecting environmental dimensions of

low discrepancy to improve niche model transferability by no

means diminishes the importance of physiological relevance (e.g.,

[18]), or the effect of correlativeness of the variables (e.g., [3]).

Areas of potential invasion
High suitable areas were identified by Dataset II based model in

the US, including the infested states (i.e., Georgia, North Carolina

and South Carolina) and large portions of the surrounding states

(i.e., Alabama, Tennessee, Mississippi, Louisiana, and Virginia).

Other regions, such as Florida and Louisiana, were not supported

by Dataset II but by Dataset I. Considering the bug’s propensity to

fly, land on, and get inside vehicles, inspection and quarantine

should be considered for these states when engaging commercial

activity with the infested states. Currently, the U.S. Department of

Agriculture’s (USDA) Animal and Plant Health Inspection Service

(APHIS) is conducting surveys for the Bean plataspid to determine

the extent of infestation in Georgia, North Carolina and South

Carolina [31]. Attention should also be paid to the areas of high-

suitability that surrounding these infested states (Figure 3), and to

areas predicted around the world (Figure 5, S3). This should be

especially true for the developed areas where intensive trade

activity and commercial interchange might facilitate new inva-

sions.

While large areas of the US are proposed to be suitable to the

Bean plataspid, these areas represent niche space without

consideration of potential biotic interactions or the species

dispersal ability. Many additional factors may influence the

successful establishment of a non-indigenous species into a novel

community, including existing species richness, competitors,

predators, food availability, human footprint and climate similarity

compared with the source ecosystem [21]. Although the area

predicted as suitable for a species does not necessarily mean it will

establish populations there, it does offer useful information for

determining areas of potential invasion and spread.

Conclusion

Sixteen environmental dimensions occupied by native and

introduced Bean plataspid populations were compared and

classified into two datasets with different degrees of discrepancy

among the two ranges. Niche models based on the dataset showing

low discrepancy recovered good model transferability in the

Figure 4. Omission rates among niche models based on Dataset I and II. Omission rates were plotted in native Asia models and their
transferring in the US across the threshold spectrum of Maxent.
doi:10.1371/journal.pone.0046247.g004

Figure 5. Niche models based on Dataset II and transferred worldwide using Maxent. Dark green color represents high suitability, light
green indicates low suitability.
doi:10.1371/journal.pone.0046247.g005
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introduced areas, with low omission in recovering species

occurrences. Recommendations were made for selecting biological

meaningful environmental dimensions of low discrepancy among

populations to improve niche model transferability among these

geographically separated areas. When transferring niche model

onto a larger area or globally, environmental dimensions with low

discrepancy and reduced dimensionality were proposed. Outside

of its native range, areas with invasion potential include the

southeastern US in North America, southwestern Europe,

southeastern South America, southern Africa, and the eastern

coastal Australia. In the US, the states surrounding the current

infested states (i.e., Georgia, North Carolina and South Carolina),

including Alabama, Tennessee, Mississippi, Virginia and Florida

should be monitored carefully as a result.

Supporting Information

Figure S1 MESS map for Dataset I in model compari-
son. Areas in red indicate one or more environmental variables

outside the range present in the training data.

(TIF)

Figure S2 MESS map for Dataset II when transferred
the model worldwide. Areas in red indicate one or more

environmental variables outside the range present in the training

data.

(TIF)

Figure S3 Niche models based on Dataset II and
transferred worldwide using GARP. Dark green color

represents high suitability, light green indicates low suitability.

(TIF)

Text S1 GARP protocol in exploring area of potential
invasion.
(DOCX)
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