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The development of cancer is a dynamic evolutionary process in which intraclonal, genetic diversity provides a substrate
for clonal selection and a source of therapeutic escape. The complexity and topography of intraclonal genetic archi-
tectures have major implications for biopsy-based prognosis and for targeted therapy. High-depth, next-generation se-
quencing (NGS) efficiently captures the mutational load of individual tumors or biopsies. But, being a snapshot portrait of
total DNA, it disguises the fundamental features of subclonal variegation of genetic lesions and of clonal phylogeny.
Single-cell genetic profiling provides a potential resolution to this problem, but methods developed to date all have
limitations. We present a novel solution to this challenge using leukemic cells with known mutational spectra as a tractable
model. DNA from flow-sorted single cells is screened using multiplex targeted Q-PCR within a microfluidic platform
allowing unbiased single-cell selection, high-throughput, and comprehensive analysis for all main varieties of genetic
abnormalities: chimeric gene fusions, copy number alterations, and single-nucleotide variants. We show, in this proof-of-
principle study, that the method has a low error rate and can provide detailed subclonal genetic architectures and
phylogenies.

[Supplemental material is available for this article.]

Cancer clones evolve by a dynamic Darwinian process of muta-

tional diversification under selective pressures exerted by tissue

ecosystems, the immune system, and therapy (Nowell 1976; Merlo

et al. 2006; Greaves and Maley 2012). Not only do cancers of a

similar type differ in their genomic landscapes—indeed, each is

unique—but intraclonal genetic and phenotypic diversity is an

inherent feature of this disease (Marusyk et al. 2012). Progression

of disease (Merlo et al. 2010; Park et al. 2010) and possibly the

general intransigence of advanced disease may be attributable to

the genetic diversity within the cells of a tumor and/or within the

propagating or stem cells (Greaves 2013). The current vogue for

personalized medicine and targeted therapy could well be thwarted

or achieve only transient benefit if the targets are themselves sub-

clonally segregated (Greaves and Maley 2012; Swanton 2012).

Second- or next-generation sequencing (NGS) allows whole

exome or whole genome sequencing of bulk cancer cells (Stephens

et al. 2009; Yates and Campbell 2012), and with adequate depth of

parallel sequence reads, it is apparent that many acquired muta-

tions in the cancer genome are subclonally distributed (Nik-Zainal

et al. 2012). Subclonal genetic diversity of genome-wide copy

number changes has also been demonstrated in a variety of cancers

(Klein and Stoecklein 2009; Navin et al. 2010). Cancer cell genetic

heterogeneity at the single-cell level has long been recognized by

chromosome karyotyping (Wolman 1986) and by fluorescence in

situ hybridization (FISH) of tissue sections (Clark et al. 2008). The

use of multiplex targeted FISH with three or four colored probes to

interrogate the copy number of specific DNA targets facilitates

a deeper interrogation of clonal architecture in cancer cell pop-

ulations from which evolutionary relationships of subclones at

diagnosis and relapse can be derived (Anderson et al. 2011).

Whole-genome amplification of single cells allowing both se-

quence and copy number analysis at the single-cell level is now

providing even more subclonal information (Navin et al. 2011;

Baslan et al. 2012; Zong et al. 2012). These methods combined

provide a striking portrait of cancer cell diversity and clonal evo-

lution through the construction of phylogenetic trees character-

ized by a nonlinear, branching architecture (Anderson et al. 2011;

Navin et al. 2011; Gerlinger et al. 2012; Yates and Campbell 2012).

But the type of mutation that can be interrogated restricts this ap-

proach, and the complexity of clonal architectures is underestimated.

Ideally, what is required for a comprehensive interrogation of

the complex genomics of cancer cells is a methodology for single-

cell analysis that has the following attributes: (1) an unbiased cell

sample from the cancer; (2) highly efficient single-cell sorting; (3)

a relatively high-throughput analysis of at least a few hundred

cells; and (4) a method that allows the simultaneous detection of

multiple genetic alterations of different types, e.g., chimeric fusion

genes, copy number alterations (CNA), and single-nucleotide var-

iants (SNVs) in a single cell. We here provide proof-of-principle

data using single acute lymphoblastic leukemic (ALL) cells to

demonstrate that this is feasible using multiplex targeted DNA

amplification from flow-sorted single cells followed by high-

throughput Q-PCR using the BioMark HD microfluidic platform
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(Fluidigm). The versatility of Q-PCR allows simultaneous analysis

of a variety of DNA alterations, and coupling this technology with

a microfluidic platform capitalizes on a high-throughput system

with small reaction volumes that lends itself to single-cell analysis.

Q-PCR analysis combined with the BioMark HD has been used for

single-cell gene expression analysis (Citri et al. 2012; Pina et al.

2012) and single nucleotide polymorphism (SNP) allelic discrimi-

nation analysis with bulk DNA (Wang et al. 2009) but not, to date,

for single-cell mutational screening.

Results

Development of the method using the REH
leukemia-derived cell line

The established B-cell precursor cell line REH was first used to de-

velop and refine this single-cell analysis method. Our previous

FISH (Horsley et al. 2008) and more recent SNP array analysis (data

not shown) has characterized this cell line as ETV6-RUNX1 fusion

gene positive with multiple CNAs including CDKN2A and MX1

and single nucleotide polymorphisms. In this study, the EPOR SNP

(SNP rs318720) was adopted as a surrogate acquired heterozygous

SNV anticipated to be present in every cell.

Briefly, single carboxyfluorescein diacetate succinimidyl ester

(CFSE)–labeled REH and cord blood cells (normal diploid control)

were sorted into individual wells of a 96-well plate, lysed, and DNA

target amplification completed for regions encompassing the clo-

notypic ETV6-RUNX1 fusion genomic sequence, CDKN2A, MX1,

and the SNP rs318720. The B2M locus, located in a diploid region

of the genome, was used as a control. The resulting reaction mix

was then diluted and Q-PCR-completed using the 96.96 dynamic

array and the BioMark HD. The workflow for this method is shown

in Figure 1. A cell was deemed to be positive for a SNP (or SNV) if

the Q-PCR cycle threshold (CT) value was below 28. The presence

or absence of the signal from the probe complementary to the

wild-type sequence determined heterozygous or homozygous

mutations, respectively, but the copy number of each allele cannot

be inferred (Fig. 2A). The DDCT method (Applied Biosystems, Life

Technologies Ltd.) with modifications to incorporate the results

from multiple Taqman assays targeting the same region was used

to determine the relative copy number for each locus; the use of

multiple assays to target one region increased the accuracy of at-

tributed DNA CNAs (Fig. 2B).

Several approaches were adopted during this experiment to

optimize and confirm the presence of a single cell and ensure that

all assays performed efficiently under these experimental condi-

tions (details can be found in the Methods). Efficient FACS sorting

of single cells was initially confirmed by microscopy. The fluores-

cent cells were sorted onto a glass slide with the aim of collecting

48 independent single cells; this established the efficiency of the

BD FACSAria I (SORP) instrument (BD). In our hands, the failure

rate is 2%–4% (one to two occasions per 48 attempts), the majority

of which are a failure to sort a cell compared with two cells found in

0.002% of occasions (one in every 528 attempts to sort a single

cell). As it is not possible to visualize single cells in a 96-well plate,

we sought to quantify the DNA in each well to identify those with

high amounts (of the B2M gene) indicating that two or more cells

may have inadvertently been collected. These data were conse-

quently removed from the phylogenetic analysis but only consti-

tuted a maximum of two wells per plate.

To estimate the error rate of each assay (gene fusion, CNA and

SNV assays), a control experiment consisting of 48 cord blood cells

was completed for each patient-specific multiplex experiment.

Gene fusion and SNV assay false-positive error rates can be found

in Supplemental Table 2. Only two assays

(SNVs in EZH2 and BAZ2A) generated

false-positive results in 2% (1/48) of cord

blood cells. CNA assays had an error rate

ranging from 4.3% to 7.1% (Supplemen-

tal Table 3). False-negative errors rates

could not be directly determined as each

assay is patient-specific and no positive

single-cell control sample is available. How-

ever, when using allelic discrimination as-

says to detect SNVs, each assay generates

a signal either for the wild-type sequence,

the mutant sequence, or both (most com-

mon here). Each single cord blood control

cell produced a signal for the wild-type se-

quence confirming the assay efficiency in

the multiplex system. The SNP rs318720

analyzed in the REH cell line produced

a signal for the wild-type and polymorphic

sequence in each cell interrogated. The as-

say error rates were used to define a bona

fide minor subclonal population (Methods,

Defining Subclonal Populations at Low

Frequencies section). We were also careful

to compare the mutation allele burdens

generated by each approach used in this

study, including exome sequencing, 454

pyrosequencing, allelic discrimination by

digital PCR using bulk DNA, and geno-

typing of each single cell (Table 1).

Figure 1. Schematic workflow of the multiplex targeted Q-PCR approach for the simultaneous de-
tection of gene fusions, DNA copy number alterations, and mutations in single cells. Initially, CFSE-
labeled single cells are sorted into each well of a 96-well plate and then lysed. Multiplex DNA specific
target amplification is then completed to amplify a DNA region of interest (fusion gene, copy number
alteration, or SNV) from the two copies found in a single cell to an amount that can be detected by
Q-PCR using the BioMark HD. Amplified samples and assays are then loaded into a 96.96 dynamic array
that utilizes a valve-controlled capillary network to bring these two mixes together at nanoliter volumes
(completed in the IFC controller) for the Q-PCR reaction to take place. This final Q-PCR step determines
the gene fusion, mutation, or copy number alteration status for each single cell.
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Data from single cells that were removed from the Q-PCR

analysis included those wells that showed no data (no cell), those

wells in which all B2M assays did not have a strong signal (<28 CT),

and wells in which all CNA assays for a target region of interest did

not produce CT results within one CT. Data from suggested minor

subclonal populations that did not exceed assay error rates were

also removed. On average, 75% of interrogated single cells gener-

ated complete comprehensive results. A detailed breakdown of the

single-cell experiment data with explanations as to why data were

removed can be found in Supplemental Table 4.

All REH cells (n = 126 � single cells considered for phyloge-

netic analysis) scored positive for the ETV6-RUNX1 fusion gene

Figure 2. Single-cell genetic analysis of leukemic cells using the multiplex targeted Q-PCR approach and the BioMark HD platform. (A) Heatmap
depicting an example of raw Q-PCR data from the BioMark HD. The rows represent single cells including six cord blood cells and seven REH cells. The
columns represent assays, each completed in quadruplicate including B2M (one of three assays), MX1 (two of three assays), CDKN2A (two of three assays),
the ETV6-RUNX1 fusion gene assay, and the EPOR SNP (rs318720) assay containing two Taqman probes, one complementary to the wild-type sequence
(labeled with FAM) and the other complementary to the SNP sequence (labeled with VIC). The colored boxes at the junction of a row and column indicate
the raw CT value (according to the key on the right) obtained for a Q-PCR reaction involving the indicated cell and assay. Assays targeting a mutation or the
fusion gene provide a definitive positive or negative result indicating the presence or absence, respectively, of an alteration. The DNA copy number assays
provide a raw CT value that requires further analysis (standard DDCT method, Applied Biosystems) to attribute a DNA copy number to the target gene of
interest for a single cell; an example can be found in B (refer to the Single-Cell Analysis section in the Methods, and Supplemental Material). (Green arrow)
The Q-PCR amplification curves generated from each copy number assay for a single cord blood cell. (Black cross in a colored box) An inadequate
amplification curve. (B) Graph depicting the estimated DNA copy number of MX1 attributed reliably to 89 single cells given the assay results from B2M
(assay 3) and MX1 (assay 3); one of the nine estimated copy number results used to confidently attribute a DNA copy number to the gene of interest for
a single cell. The height of the bar indicates the estimated DNA copy number, and the color of the bar indicates the integer; (light blue) one copy; (dark
blue) two copies; (green) three copies; and (yellow) four copies. (CB) Cord blood. (C ) Subclonal genetic architecture of the REH cell line inferred by
multiplex targeted Q-PCR and confirmed by FISH analysis (126 and 100 cells, respectively); the percentages in parentheses are those obtained by FISH
analysis. All cells harbored the ETV6-RUNX1 fusion (F) and the EPOR SNP compared with cord blood cells. DNA copy number is indicated for each gene and
subclonal population. Representative FISH images are shown next to their respective subclone. (D) Subclonal genetic architecture of leukemic cells from
a child with Down’s syndrome and acute lymphoblastic leukemia (DS-ALL) generated by multiplex targeted Q-PCR and FISH analysis (115 and 100 cells,
respectively); 98% of cells harbored the P2RY8-CRLF2 fusion and the IL7R mutation (IL7Rm) by multiplex targeted Q-PCR. Of these, the majority were
heterozygous mutations (IL7Rm hete). A minor subclone (2%) had a homozygous IL7R mutation (IL7Rm homo). Loss of CDKN2A was subclonal to the IL7R
mutation and proceeded to homozygous loss in 11% of cells. FISH for the P2RY8-CRLF2 fusion and CDKN2A copy number confirmed these results
(percentages in parentheses); the IL7R mutation cannot be detected by FISH.

Genetic analysis of single cancer cells
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and the EPOR SNP rs318720. Major subclonal populations had

varying copies of the MX1 gene; 49% of cells retained two copies of

MX1 compared with 42% of cells that had gained either one or two

copies of this gene (Fig. 2C). The majority of cells showed loss of

both CDKN2A copies, but minor subclones were characterized by

either loss of MX1 and/or loss of only one copy of CDKN2A. These

DNA copy number data were independently confirmed by FISH

using BAC probes complementary to the ETV6-RUNX1 fusion

gene, CDKN2A, and MX1. The subclonal structure and percentages

obtained by FISH correlated well with the results obtained by sin-

gle-cell genetic analysis using multiplex targeted Q-PCR and the

BioMark HD (Fig. 2C).

Single-cell genetic analysis of a Down’s syndrome ALL case

We replicated this approach using leukemic cells from a child with

Down’s syndrome and acute lymphoblastic leukemia (DS-ALL) for

which we had previously characterized the genomic alterations

using SNP analysis and targeted Sanger Sequencing. This case was

expected to have a simple but informative clonal architecture in-

volving a P2RY8-CRLF2 fusion gene, loss of CDKN2A, and an IL7R

mutation involving the deletion of 8 base pairs and the insertion of

10 nonconsensus base pairs in exon 6.

The subclonal genetic architecture of this DS-ALL case was

more complex than suggested by SNP analysis. Using the single-

cell multiplex targeted Q-PCR approach, 115 single cells were an-

alyzed and compared with a further 100 cells using FISH (Fig. 2D).

Cells that did not harbor any alterations were present at 4%

and 2% by FISH and multiplex targeted Q-PCR experiments, re-

spectively, reflecting the 90% BLAST count/low nonleukemic cell

mix in this diagnostic sample. The P2RY8-CRLF2 fusion and the

IL7R mutation were present in 98% of cells by multiplex targeted

Q-PCR. A minor subclone (2%) had lost the IL7R wild-type allele

but retained the mutant allele. Loss of CDKN2A was subclonal to

the IL7R mutation and proceeded to homozygous loss in 11% of

cells. FISH for the P2RY8-CRLF2 fusion and CDKN2A copy number

confirmed these results with respect to these loci. The loss of the

wild-type IL7R allele in a minor subclone was not anticipated.

Subclonal segregation of a homozygous mutation would be very

difficult to clarify, except using single-cell analysis.

Single-cell genetic analysis of ETV6-RUNX1 positive ALL
cases with exome sequencing data

To expand our approach and confirm that it could be applied to

more complex genetic data sets, we selected two ETV6-RUNX1

positive ALL diagnostic bone marrow samples that had been sub-

jected to both whole-exome sequencing to identify SNVs (Table 1)

and SNP arrays for CNA (confirmed by exome analysis) (Table 2).

Variations in mutation allelic burden suggested the presence of

subclonal populations in both cases and was confirmed using

Digital PCR (Table 1). Each case also harbored varied chromosomal

alterations in both size and location, and known recurrent sec-

ondary CNAs in ALL (Mullighan et al. 2007) were identified in-

cluding loss of PAX5 and CDKN2A.

Genomic targets for Case A included SNVs in BCHE (exome

SNV read depth 713, variant reads 30), EZH2 (exome SNV read

depth 1393, variant reads 53), PIK3R1 (exome SNV read depth

673, variant reads 9), DAXX (exome SNV read depth 1313, variant

reads 14), and BAZ2A (exome SNV read depth 1133, variant reads

42) and CNAs in CCNC and TBL1X. Targets for Case B included

SNVs in KRAS (exome SNV read depth 653, variant reads 28), RB1

(exome SNV read depth 1293, variant reads 6), and SRSF11 (exome

SNV read depth 3023, variant reads 16) and CNAs in VPREB1,

PAX5, CDKN2A, and DPF3 (Tables 1, 2). SNVs were chosen based

on allelic burden encompassing both high, low, and intermediate

Table 1. Whole-exome sequencing results for two ETV6-RUNX1 positive acute lymphoblastic leukemia cases

Case Chr. Genea p.Change

Wild-
type
allele

Mutant
allele Effect

Allele burden
estimates by
NGS (%) (CI)

Allele burden
estimates by 454
pyroseqencing

(%) (CI)

Allele burden
estimates by

digital PCR (%)

Allele burden
estimates for
single cells

(%) (CI)

Case A 5 PIK3R1 p.E518Q G C Missense 13.43 (6.7–24.5) 4 (2.1–8.1) 4.30 1.33 (0.6–2.8)
6 DAXX p.Q565* G A Nonsense 10.69 (6.2–17.6) 4 (1.6–10.3) 1.70 0.76 (0.2–2.1)
7 EZH2 p.P577L G A Missense 38.13 (30.1–46.8) 56 (48.3–63.3) 36.70 46.58 (42.3–50.9)
2 FSIP2 p.N4564Y A T Missense 11.11 — — —

17 DNAH17 p.A559G G C Missense 33.82 — — —
7 PON3 p.R32Q C T Missense 85.71 — — —
5 DNAH5 p.G3653E C T Missense 45.31 — — —
1 TNR p.D1000D G A Silent 29.47 — — —
3 BCHE p.I141T A G Missense 42.25 (30.8–54.5) 48 (43.1–53.1) 37.10 46.58 (42.3–50.9)

12 BAZ2A p.P676L G A Missense 37.17 (28.4–46.8) 34 (25.8–42.3) 33.40 43.35 (39.1–47.7)
10 C10orf112 p.R545C C T Missense 9.48 — — —
8 DKK4 p.D95H C G Missense 52.80 — — —

13 SMAD9 p.P62P C T Silent 34.72 — — —
Case B 13 RB1 p.K810N G C Missense 4.65 (1.9–10.3) 4 (1.3–10.5) 1.60 2.39 (1.3–4.3)

12 KRAS p.G12C C A Missense 43.08 (31.1–55.9) 43 (38.2–47.1) 51.0 43.43 (39.1–47.9)
5 MAN2A1 p.T554M C T Missense 34.57 — — —
3 SLC7A14 p.G150A C G Missense 47.37 — — —
3 KALRN p.T1215M C T Missense 35.21 — — —
1 SRSF11 p.Q22E C G Missense 5.30 (3.2–8.6) 4.9 (2.4–9.4) 2.40 2.39 (1.3–4.3)
3 COL6A5 p.V32M G A Missense 40.00 — — —
8 TRHR p.I131M C G Missense 43.14 — — —

12 WDR66 T529FS > NS A TCCCC Nonsense 0.17 — — —

aMutation targets selected for single cell interrogation are shown in bold text.
Confidence intervals (CI) were established using binomial proportion test for each approach. As a guide, an allele burden of 50% confers either a het-
erozygous mutation in every cell or a homozygous mutation in 25% of cells.
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frequencies; not all SNVs were included. However, allelic discrim-

ination assays designed for DNAH17, MAN21, and SLC7A14 did

not show sufficient target specificity to wild-type and mutant se-

quence in the multiplex Q-PCR reaction, and the resulting data

were inconclusive. Only one attempt was made to design assays for

each chosen SNV. The patient-specific ETV6-RUNX1 genomic fu-

sion gene sequence was obtained by long-distance PCR (Wiemels

and Greaves 1999) guided by fusion break-point coordinates from

whole-exome sequencing. Comprehensive data were collected

from 261 single cells for Case A and 254 from Case B.

Derivation of phylogenetic trees using maximum parsimony

To uncover the clonal phylogeny from these single-cell data, we

used the maximum parsimony (MP) method (Page and Holmes

1998). The most parsimonious phylogenetic tree is the tree de-

scribing the best estimated phylogenetic relationships given the

included taxa (group of related cells or clones). Tree branch lengths

are directly proportional to the number of evolutionary changes

inferred, and the points at which the branches diverge (nodes)

represent the ancestor state of a clonal clade (a monophyletic

group that includes all descendants of the ancestor). A phylogeny

inferred using this criterion shows how the clonal expansion has

evolved from a common ancestor toward the observed states. In

the event that two (or more) trees hold equal parsimony, all trees

are accepted (Page and Holmes 1998). Detailed method explana-

tions of this approach can be found in the Methods and the Sup-

plemental Material.

Maximum parsimony searches for Case A resulted in one

maximum parsimonious tree (Fig. 3A). The phylogenetic archi-

tecture of the tree shows a quasi-linear structure with a direction

toward subclone A4 representing 87.4% of the clonal population;

the subclonal heterogeneity in this case is therefore modest, given

the number of genomic alterations investigated. The most recent

common ancestor (MRCA) of this tree, which is the most recent

ancestor from which all clones of the group directly descend, is

subclone A3. This clone harbors the ETV6-RUNX1 fusion in addi-

tion to BCHE and EZH2 mutations, suggesting that these alterations

were relatively early mutational changes in the pathogenesis of

this individual ALL. The major clone A4 may have a selective fit-

ness advantage over all other subclones associated with the

acquisition of CCNC deletions and a BAZ2A SNV. But, as this is

a single time point snapshot of a dynamic process, we cannot ex-

clude the possibility that subclone A4 was spawned before sub-

clones A5 and A2, which are characterized by heterozygous

mutations in PIK3R1 and DAXX, respectively. The maximum

parsimony algorithm shows the inferred MRCA of the A4–A5

clonal clade (Fig. 3A, gray box), a group of cells that has died out or

been outcompeted or if still present, exists at too low a frequency

to detect.

Maximum parsimony searches for Case B produced two

equally parsimonious trees with identical topological structures

(Fig. 3B). Both trees show complex branching structures with

a marked subclonal heterogeneity of seven clones that differ only

for the position of subclones B4 and B5. The MRCA of the clonal

expansion is represented by subclone B2, which shows a homo-

zygous deletion of VPREB1 in addition to the ETV6-RUNX1 fusion.

This subclone is the biggest clonal group after clone B3 (at di-

agnosis) despite the genetic diversity of the progressive subclonal

populations, suggesting that this subclone may be quiescent or

Table 2. DNA copy number data for two ETV6-RUNX1 positive acute lymphoblastic leukemia cases

Case CNA Type Chr. Cytoband start Cytoband end Size (bp) Genesa

Case A 1 Loss 3 p21.31 p21.31 736.86 ELP6, CSPG5, SMARCC1, DHX30, MIR1226, MAP4,
CDC25A, CAMP

1 Loss 3 p21.31 p21.31 222.80 PFKFB4, UCN2, COL7A1, MIR711, UQCRC1,
TMEM89, SLC26A6, CELSR3, NCKIPSD, IP6K2,
PRKAR2A

1 Loss 3 p21.31 p21.31 383.99 RHOA, TCTA, AMT, NICN1, DAG1, BSN, APEH, MST1,
RNF123, AMIGO3, GMPPB, IP6K1

1 Loss 3 p21.31 p21.2 634.70 RBM5, SEMA3F, GNAT1, . . ., CACNA2D2, C3orf18,
HEMK1, CISH, MAPKAPK3, DOCK3

1 Loss 6 q14.1 q27 91165.16 Many genes including CCNC
0 Loss 7 p14.1 p14.1 49.85 TRG
1 Loss 8 p23.1 p23.1 217.17 SgK223b

1 Loss 9 p24.3 p24.3 65.91 SMARCA2
1 Loss 9 p24.3 p24.3 126.76 DMRT1, DMRT3, DMRT2
1 Loss 21 q22.11 q22.11 255.24 MRPS6, SLC5A3, LINC00310
1 Loss X p22.33 q25 121029.37 Many genes including TBL1X

Case B 1 Loss 4 q31.3 q31.3 283.60 FBXW7
1 Loss 4 q28.3 q28.3 260.02
1 Loss 4 q33 q33 95.85 MFAP3L, AADAT
1 Loss 7 p14.1 p14.1 116.23 TRG
1 Loss 7 q34 q34 140.04 TRB
1 Loss 8 q24.11 q24.11 58.36 EXT1
1 Loss 9 p21.3 p21.3 511.07 LOC554202, IFNE, MIR31, MTAP, C9orf53, CDKN2A
1 Loss 9 p13.3 p13.2 1572.02 CREB3, GBA2, RGP1, MSMP, NPR2, SPAG8, . . .,

RNF38, MELK, PAX5, ZCCHC7
1 Loss 10 q21.1 q21.1 53.17 BICC1
1 Loss 11 q13.4 q13.4 55.52 CHRDL2
1 Loss 14 q24.2 q24.2 123.19 DPF3
1 Loss 22 q11.22 q11.22 818.48 VPREB1, LOC96610, ZNF280B, ZNF280A, PRAME,

LOC648691, POM121L1P, GGTLC2, MIR650

aTarget genes selected for single-cell analysis located in regions of loss are shown in bold text.
bAccording to COSMIC (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/).
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reside in a niche environment. The acquisition of the KRAS mu-

tation presumably provides selective advantage as a secondary

driver event. A minor subclone was also identified in which the

wild-type KRAS allele was lost, suggesting the acquisition of ho-

mozygosity for the KRAS mutation. The number of mutant gene

copies (one or two) in each single cell cannot be determined using

the Taqman KRAS SNV assay used here, but the increased allele

burden characterized by whole-exome sequencing, 454 pyrose-

quencing, and digital PCR validates this conclusion.

The position of subclones B4 or B5 indicates that these pop-

ulations are equally parsimonious ancestors of the clonal clade

constituted by subclones B3, B7, and B8, representing ;65% of all

examined cells. This represents the reiteration of either PAX5 or

CDKN2A loss independently in two different branches. Reiterated

CNA of the same gene is a feature of the subclonal genetic archi-

tecture in pediatric ALL (Anderson et al. 2011; Waanders et al.

2012), suggesting that these deletions may not only provide se-

lective advantage but may be a target for DNA level breakage via,

for example, RAGS (Kitagawa et al. 2002; Waanders et al. 2012) or

AID (Longerich et al. 2006; Klemm et al. 2009).

Discussion
Cancers have complex patterns of acquired mutations, and pa-

tients with closely related subtypes of cancer have unique or clone-

specific mutation patterns. Additional complexity clearly exists

within each individual cancer, as mutations are acquired serially

and with a variegated pattern of distribution in subclones. As

mutational profiles are increasingly used for differential diagnosis,

prognostication, and therapeutic targeting, this multidimensional

complexity is of some consequence.

Systematically interrogating subclonal genetic complexity

poses a considerable technical challenge. A clonal architecture or

phylogeny can be inferred bioinformatically by analysis of high-

depth NGS data (Nik-Zainal et al. 2012; Yates and Campbell 2012).

Nik-Zainal et al. (2012) reconstructed clonal phylogenies through

the development of novel algorithms that rely on whole-genome

sequencing data (2003 coverage) to phase mutations with germline

polymorphisms and define clonal and subclonal phylogenies.

This is in marked contrast to the exome sequencing data used

in this study, which do not offer the opportunity of continuous

genomic information that would allow one to reconstruct such

phylogenies with confidence. Additionally, exome data in leuke-

mias show low total mutation burden (on average 10), which

renders them further limited to differentiate clonal phylogenies. It

is, in fact, this limitation of exome sequencing data and to a lesser

extent whole-genome sequencing that the present study is pre-

cisely addressing where, as shown in the example of Case B, two

SNVs of close allele burden estimates RB1 and SRSF11 (4.65 and

5.30, respectively) could be in the same (or separate) subclone with

equal probability. Without single-cell data, this level of phyloge-

netic resolution is not possible. We conclude that single-cell

genetic analysis is required for a robust and definitive designation

of the segregation pattern of mutations within cancer clones.

Theoretically, the best approach might be to sequence the ge-

nomes of individual cells. Significant progress has recently been

made in this regard (Baslan et al. 2012; Zong et al. 2012), but error

rates and low cell throughput are, currently, significant limita-

tions. We adopted the alternative strategy of analyzing single cells

from cancers whose genomic, mutational profile at the cell pop-

ulation level was already established by high-resolution SNP arrays

and whole-exome sequencing.

Using the strategy outlined here, we were able to detect all

three categories of mutational change—fusion gene, CNA, and

SNV—in a single cell. Our method is amenable to high-throughput

analysis: In each case, we were able to analyze 200–300 leukemic

cells. We assume that the profiles that emerge from these numbers

of cells are representative of the patients’ leukemias. This would be

more demanding with adult carcinomas where the topographical

segregation of distinct subclones could result in selective sampling,

but clearly multiple small biopsies could be assessed (Park et al.

2010; Gerlinger et al. 2012). The screening of many thousands of

single cells is possible by the method we report but is restrained at

present by cost.

The phylogenetic trees inferred from the cellular distribution

of SNVs in larger numbers of cells provide additional evidence

that cancers evolve within a branching architecture of subclones.

These detailed and complex subclonal architectures would not be

detected by other genetic techniques. Prior studies on ALL sug-

gested that the latter is generated and sustained by genetically di-

verse cancer propagating or stem cells (Anderson et al. 2011; Notta

et al. 2011), and it will be important to confirm this using the

current microfluidic platform.

This proof-of-principle study using leukemic cells illustrates

that it is possible to assess single cells simultaneously for different

types of genetic lesions—fusion genes, copy number alterations,

and single nucleotide variants—and from these data to construct

a clonal, evolutionary phylogeny. Leukemias are likely to be sig-

nificantly less complex in this respect than carcinomas (Vogelstein

et al. 2013), but nevertheless, the subclonal architectures

we illustrate here for ALL are likely to be a significant un-

derestimation of complexity. Higher definition of clonal

structure, including minor clones at <1%, is however achievable

by both increasing the depth of initial sequencing and by

screening larger numbers of single cells. Also, informative

though these clonal analyses are, they remain single time point

snapshots of a very dynamic evolutionary process. Ideally,

single-cell genetics and phylogenetic tree construction should

be applied to serial samples from individual patients, i.e., di-

agnosis versus relapse, primary versus metastases, and pre-

versus post-chemotherapy. It is known that these major tran-

sitions can involve selective sweeps or stringent clonal selection

(Mullighan et al. 2008; Liu et al. 2009; Anderson et al. 2011;

Diaz et al. 2012).

Figure 3. Phylogenetic analysis results for Cases A and B. In each case the observed clone is indicated by a circle. Yellow circles indicate tumor
clones, and black circles indicate the normal cell population. The alterations are listed below each subclone; excluding ETV6-RUNX1, those without
a number indicate the presence of a mutation and those with a number indicate DNA copies accordingly. The boxed subclone in gray is inferred;
a group of cells that has died out or been outcompeted, or if still present, exists at a low frequency that cannot be reliably detected by this approach.
The number in italics at each node indicates the jackknifing value. The distance unit is indicated. (A) One parsimonious tree was found for Case A
consisting of four subclones with modest heterogeneity. The major clone (A4) represents 87.4% of the population. The size of each circle is pro-
portional to the number of single cells included in the subclone except A4, which has been reduced by a third in this tree. (B) In Case B, there are two
equally parsimonious trees composed of seven subclones. These two trees differ by the position of subclones B4 and B5, which are equal parsi-
monious ancestors to subclones B3, B7, and B8. This case shows increased heterogeneity with the major clone representing 54.9% of the population
(B3). The major clone B3 is reduced by half in this tree.
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Dissecting the detailed clonal architecture of cancer has sig-

nificant clinical implications. The extent of intraclonal genetic

diversity may be predictive of progression of disease (Maley et al.

2006) or clinical outcome (Mroz et al. 2013). Cancer genomics

holds the promise of personalized medicine with therapy targeted

at products of recurrent ‘‘driver’’ mutations (Chin et al. 2011).

Subclonal segregation would not be a desirable credential of any

candidate target. Targeting even a major branch of the phyloge-

netic tree rather than the founder lesion would be predicted to

have only transient benefit and, moreover, provide selective

pressure for the emergence of previously minor clones (Greaves

and Maley 2012; Swanton 2012).

Methods

Samples
The precursor B-cell leukemic cell line, REH, was purchased from
American Type Culture Collection (ATCC, Virginia, USA) and cul-
tured in RPMI-1640 medium, 10% FCS.

The patient samples studied in this investigation were col-
lected from Italian or UK hospitals, with local ethical review
committee approval (CCR 2285, Royal Marsden Hospital NHS
Foundation Trust). Bone marrow aspirates or peripheral blood
samples underwent lymphoprep separation and were viably fro-
zen in 10% DMSO, 90% FCS and stored in liquid nitrogen (10%
DMSO, 90% FCS).

Bulk sample analysis

Single nucleotide polymorphism and DNA copy number array analysis
for Case A and Case B

To define DNA copy number alterations and SNVs for these cases,
we used the Affymetrix Cytogenetics Whole Genome 2.7M Array
(Affymetrix). Briefly, 100 ng of genomic DNA from both diagnostic
and remission samples was whole-genome amplified (WGA) using
the Affymetrix Cytogenetics Reagent Kit and the Affymetrix assay
protocol according to the manufacturer’s instructions. Samples were
then fragmented to generate small products (<300 bp), which were
subsequently biotin-labeled, denatured, and loaded into the arrays.
After hybridization, the chips were washed, stained (streptavidin-
PE), and scanned using the GeneChip Scanner 3000. CEL files were
generated using Affymetrix GeneChip Command Console (AGCC)
v3.1 and analyzed by Chromosome Analysis Suite (Affymetrix)
software, version 1.2.2. Quality-control metrics for each case can
be found in Supplemental Table 1A. SNP and DNA copy number
analysis for REH and the DS-ALL sample was completed using the
Affymetrix Genome-Wide Human SNP Array 6.0. The method
details can be found in the Supplemental Material.

ETV6-RUNX1 fusion breakpoints

Genomic sequences for the ETV6-RUNX1 positive samples (REH
cell line and patient Cases A and B) were cloned using long-distance
inverse PCR using DNA from bulk cells as described before (Wiemels
and Greaves 1999). P2RY8-CRLF2 fusions were sequenced according
to Mullighan et al. (2009).

Whole-exome sequencing

Matched genomic DNA (3–5 mg) from leukemic and complete re-
mission samples from the two cases with childhood acute lympho-
blastic leukemia was prepared for Illumina paired-end sequencing
(Illumina). Exome enrichment was performed using the Agilent
SureSelectXT Human All Exon 50Mb kit (Agilent Technologies Ltd.)

as per the manufacturer’s guidelines but without the pre-enrich-
ment PCR amplification ENREF_1. Solid phase reversible immo-
bilization (SPRI) bead cleanup was used to purify products in
preparation for sequencing (Agencourt AMPure XP beads, Beckman
Coulter). Flow-cell preparation, cluster generation, and paired-end
sequencing (75 bp reads) were performed according to the Illumina
protocol guidelines on an Illumina GAII Genome Analyzer. The
target coverage per sample was for 70% of the captured regions at
a minimum depth of 303 sequencing coverage.

Sequencing reads were aligned to the human genome (NCBI
build 37) using the BWA algorithm on default settings (Li and
Durbin 2010). Duplicate reads derived by PCR were removed using
Picard, and reads mapping outside the targeted region of the ge-
nome were excluded from the analysis. Standard internal quality-
control evaluation of sequencing data including the percent of
uniquely mapped reads, the percent of target region covered, the
percent of unmapped reads, sequence quality metrics, and total
sequencing output (in GB) was performed for all samples. The
remaining uniquely mapping reads (;60%) provided 60%–80%
coverage over the targeted exons at a minimum depth of 303.
Leukemic sample identity relative to the matched remission sam-
ple was controlled by digital genotyping of 100 genome-wide SNP
markers prior to variant calling.

In house-variant caller CaVEMan (cancer variants through
expectation maximization) was used to call single nucleotide
substitutions (Varela et al. 2011). To call insertions and deletions,
split-read mapping was implemented as a modification of the
Pindel algorithm (Ye et al. 2009). Copy number and loss of het-
erozygosity (LOH) analysis was performed using ASCAT (Van Loo
et al. 2010). Further details of these steps can be found in the Sup-
plemental Material. For validation, all putative somatic indels were
confirmed by capillary sequencing via 454 pyrosequencing (Roche) of
both tumor and remission samples from each patient. Mutant allele
burden estimates were derived from the fraction of reads reporting the
mutant allele over the total read depth at each genomic location, and
confidence intervals were derived using the binomial distribution.

Commercial and custom primers for Q-PCR and digital PCR

Primer Express Software (Applied Biosystems) was used to design
custom genotyping Taqman Q-PCR assays for an SNV that could
distinguish the mutant allele from its wild-type counterpart. Each
SNV assay contained allele-specific minor-groove binder (MGB)
probes for the wild-type allele (FAM-labeled) and the mutant allele
(VIC-labeled) (Supplemental Table 2). These assays were tested
to ensure specificity and reliability (refer to the Assay Validation
section in the Supplemental Material). Assays to detect a fusion
breakpoint were designed using a similar approach with an FAM-
labeled MGB probe straddling the fusion break point. DNA copy
number Taqman assays were purchased from Applied Biosystems
as these have been designed for uniform amplification efficiency
and have been commercially validated. Three CNA assays were
chosen within each DNA target region of interest and the diploid
reference region encompassing B2M.

Digital PCR

Digital PCR was used to quantify target sequences and estimate
mutant allele burdens within bulk DNA from each patient at di-
agnosis and in cord blood. This was completed using the 12.765
digital array (Fluidigm) and the BioMark HD. This digital array
contains 12 panels each with 765 individual microfluidic cham-
bers (6 nL volume per chamber). Six targets were simultaneously
interrogated according to the manufacturer’s instructions; 5 ng of
DNA per panel. The number of target molecules per panel was de-
termined using BioMark HD Digital PCR software; SNV frequencies
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were calculated by dividing the number of mutant allele copies by
the total number of copies for the wild-type and mutant alleles.

Single-cell analysis

Single-cell labeling and flow sorting

Single-cell sorting was performed on a BD FACSAria I (SORP) in-
strument (BD) equipped with an automated cell deposition unit
using the following settings: 100-mm nozzle, 1.4 bar sheath pres-
sure, 32.6 kHz head drive, and a flow rate that gave one to 200
events per second. Details of viable cell thawing, single-cell CFSE
staining (according to the manufacturer’s instructions), cell sorting
parameter explanations, and the assessment of single-cell sorting
efficiencies can be found in the Supplemental Material. Two 96-
well plates of single cells were collected for REH and the DS-ALL
Case, and four plates were collected for the two ALL Cases. The
plates were composed of a no template control (NTC), 11 control
cord blood cells, and 84 target cells (REH or patient cells).

Single-cell multiplex targeted pre-amplification and Q-PCR

Labeled single cells were sorted into 2.5 mL of lysis buffer composed
of 1 mg/mL proteinase K (Qiagen) and 0.5% Tween 20 in HEPES-
buffered saline (Sigma-Aldrich). Lysis was carried out for 50 min at
60°C followed by 10 min at 98°C. Specific (DNA) targeted ampli-
fication (STA) was then performed prior to Q-PCR. This multiplex
STA reaction was composed of 5 mL of pre-amplification master
mix (Life Technologies) and 2.5 mL of 1:40 primer mix (containing
all primers for the gene targets of interest). Denaturation was
completed for 15 min at 95°C, followed by 24 cycles of amplifi-
cation for 15 sec at 95°C and for 4 min at 60°C. The STA product
was then diluted 1:6 using DNA suspension buffer (Teknova). Fi-
nally, 2.7 mL of the single-cell target amplified DNA was in-
terrogated by Q-PCR for each DNA target of interest using the
96.96 dynamic microfluidic array and the BioMark HD as recom-
mended by the manufacturer; thermal phase for 1800 sec at 70°C,
for 60 sec at 25°C, followed by a hot start phase of 60 sec at 95°C.
This was followed by 35 cycles of 5 sec at 96°C and 20 sec at
60°C. CNA assays were completed in quadruplicates, and SNV or
fusion assays were completed in duplicates.

Single-cell Q-PCR analysis

The BioMark HD generates a CT value for each reaction. A het-
erozygous mutation was considered to be present if the signals
from the mutant and wild-type sequence probes (FAM and VIC,
respectively) had a CT value <28 in a single cell. A homozygous
mutation was considered to be present if there was no wild-type
sequence signal.

To ensure robust DNA CNA data from a system that can be
influenced by assay efficiency and experimental variation, we used
the DDCT method (Applied Biosystems) to determine a copy
number for each locus with modifications to incorporate data from
three distinct assays targeting the control region (B2M) and the
region of interest. The DDCT value was calculated for every target
gene assay using each of the three reference gene CT values gen-
erating nine estimated DNA copy number results for a region of
interest. A confidence metric was assigned to the estimated copy
number inferring the confidence with which an estimated copy
number could be deemed true (according to Applied Biosystems
CopyCaller Software v2) (details of this approach can be found in
the Supplemental Material). The weighted mean of the nine esti-
mated DNA copy numbers (for a region of interest) was used as the
final DNA copy number taking into consideration the confidence
metric attributed to each. This reduced the contribution of less-
reliable estimated DNA copy numbers to the final DNA copy

number. Estimated copy number results were not considered if the
confidence value was <50% or the estimated copy number was
greater than four (with only quadruplicates per assay, the results
are not robust enough to accurately detect DNA copy numbers
greater than four) (Weaver et al. 2010). At least two of the nine
estimated copy numbers must have a confidence value above 50%
to calculate the final copy number for a region of interest.

Defining subclonal populations at low frequencies

Each assay type (gene fusion, CNA, or SNV) varied in error rate
demanding careful consideration when defining subclonal pop-
ulations at low frequencies. Gene fusion assays and SNV assays did
not yield any false-positive results in the control experiments,
except EZH2 and BCHE for which we saw one cell (Supplemental
Table 2). However, CNA assays had an average error rate of 5.4%
(Supplemental Table 3). Consequently, the following criterion was
used to define a bona fide subclonal population: An observed sig-
nal pattern (character state) must be attributed to four or more cells
(in this experiment, the equivalent of ;1%). A population present
at less than the error rate for a given CNA assay cannot be defined
by that single CNA alone, but if two CNA alterations define
a subclonal population, it was deemed to be true. A single fusion
event or SNV can distinguish a minor subclonal population. For
example, in Case B, subclonal B6 is defined from the ancestral
subclone B2 by a KRAS mutation.

Interphase fluorescence in situ hybridization (FISH)

Methanol–acetic acid fixed cells, prepared by standard cytogenetic
techniques, were used for all FISH studies. Interphase FISH for the
ETV6–RUNX1 fusion gene in combination with probes for regions
of copy number alteration was performed using a commercial LSI
ETV6-RUNX1 extra signal (ES) probe (Vysis, Abbott Laboratories) as
previously described (Horsley et al. 2008; Bateman et al. 2010). The
P2RY8-CRLF2 gene fusion was identified using a dual color break-
apart probe consisting of two bacterial artificial chromosome
(BAC) probes flanking the CRLF2 locus (Supplemental Table 5).
BAC and fosmid probes for this and other regions of interest were
obtained from the BACPAC Resource Center (Children’s Hospital,
Oakland Research Institute) (http://bacpac.chori.org). Probes were
labeled by nick translation with either biotin-16-dUTP (Roche
Ltd.), SpectrumRed, or SpectrumOrange (Vysis) and hybridized in
combination. FISH was performed by standard protocols (Horsley
et al. 2008; Bateman et al. 2010) with a single detection layer of
streptavidin-Cy5 for biotinylated probes. Fluorescent signals were
viewed using an Olympus AX2 fluorescence microscope equipped
with narrow bandpass filters for FITC, SpectrumOrange, TexasRed,
and Cy5. Images were captured and analyzed using a charge-
coupled device (Photometrics) and SmartCapture 3 software ver-
sion 3.0.4 (Digital Scientific UK). In each case, 100 nuclei were
scored for the presence of the fusion gene and other targets of in-
terest. Nuclei from karyotypically normal cells (peripheral blood
samples from normal individuals) were used to assess probe hy-
bridization efficiency. The percentage of cells with the expected
normal signal pattern was 97%–100% (mean = 98%) for each probe
(Supplemental Table 5).

Phylogenetic analysis and clonal evolution

Clonal groups

Copy numbers and genotypes for each interrogated cell were
concatenated in a linear array of nine characters and then aligned
to identify the same motif in the array. Cells sharing identical al-
terations were grouped together in the same clonal group. Clones
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were then aligned and used to infer the evolutionary history of
each patient’s leukemia.

Maximum parsimony

Maximum parsimony searches were conducted using heuristic
searches. Heuristic searches were performed with a series of 1
million random additional clones and tree branch-swapping using
a bisection-reconnection (TBR) algorithm. All characters except
the initiating genetic lesion (ETV6-RUNX1 fusion gene) were
weighted equally, and state graphs and step matrices were used to
assign equal costs to each character state transition in different
genes. The cost assigned for each transition is linear and results
from the equation yi = 2xi. We assigned a transition cost equal to 1
(y0 = x0) only to the transition 0 (no fusion) to 1 (one fusion) for the
ETV6-RUNX1 fusion. The character state graphs and correspond-
ing matrices used are shown in Supplemental Table 6. The normal
clone (according to the alterations interrogated) found in each case
was assumed to be the ancestral clone and included in the analysis
as the root of the tree/trees. All parsimony analyses were performed
using the computer software PAUP* version 4.0b10 for Linux
(Swofford 2005). Trees were visualized using Dendroscope Soft-
ware version 3 (Huson and Scornavacca 2012).

Node support: jackknife

Support for the internal branches was assessed in PAUP* by jack-
knife with 1000 pseudo-replicates. Heuristic searches with ran-
domly added taxa followed by applying tree bisection and recon-
nection algorithms were used for each jackknifing iteration deleting
12.5% of the characters in each pseudo-replica. A jackknife 50%
majority-rule consensus tree (Margush and McMorris 1981) was
used to support the node of phylogenetic trees inferred.

Mimicking the bootstrap procedure

We wrote an R in-house script to mimic the bootstrap resampling
method. The script samples without replacement from the aligned
clones and generates replicas with columns shuffled in different
orders.

The script was run on 50 separate occasions for Cases A and B,
using R software for statistical computing version 2.15 (R Core
Team 2013). Each resulting replica was used as input for a maxi-
mum parsimony search employing the same settings as described
in the Supplemental Material.

Data access
The whole-exome sequencing data generated in this study
have been submitted to The European Genome-phenome Archive
(EGA; http://www.ebi.ac.uk/ega/) under accession number
EGAD00001000636. Single nucleotide polymorphism and copy
number analysis by SNP array data have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE49215.
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