
ARTICLE

Integrative discovery of treatments for high-risk
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Despite advances in the molecular exploration of paediatric cancers, approximately 50% of

children with high-risk neuroblastoma lack effective treatment. To identify therapeutic

options for this group of high-risk patients, we combine predictive data mining with

experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, Target-

Translator, integrates data from tumour biobanks, pharmacological databases, and cellular

networks to predict how targeted interventions affect mRNA signatures associated with high

patient risk or disease processes. We find more than 80 targets to be associated with

neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines

derived from high-risk patients to demonstrate reversal of risk signatures and malignant

phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as

promising candidates for the treatment of high-risk neuroblastoma. We expect that our

method, available as a public tool (targettranslator.org), will enhance and expedite the dis-

covery of risk-associated targets for paediatric and adult cancers.
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Neuroblastoma is a cancer of the sympathetic nervous sys-
tem, which accounts for 7% of all childhood cancers and
15% of childhood cancer-related deaths1. Mostly diag-

nosed before 2 years of age, it can lead to a broad range of clinical
outcomes, from spontaneous regression of the tumour to meta-
static disease with poor prognosis2,3. Clinical manifestations and
genetic markers help identify the children with high-risk disease
and guide the treatment3. Sequencing of neuroblastoma genomes
has uncovered actionable mutations, particularly ALK, present in
8% of neuroblastoma cases4,5. Still, the clinical management of
high-risk cases remains difficult, with survival rates <50%6.

The goal of this study is to identify additional therapeutic targets
against high-risk neuroblastoma. To achieve this, we combine
integrative data analysis with experimental evaluation in cell lines
from patient-derived xenografts. Specifically, we explore the
hypothesis that the clinical risk of a neuroblastoma patient, as
defined by established clinical and genomic markers, can be well
approximated by an mRNA signature. By integrating such sig-
natures with recent pharmacogenomic data from cancer and non-
malignant cell lines7 and drug-to-target networks8, we then propose
that such high-risk signatures can be associated to drugs that share
common and statistically enriched therapeutic targets. Supporting
this idea, recent work on neuroblastoma has identified risk sig-
natures defining differentiation, patient outcome, and 1p36.3 dele-
tion9–12. Such signatures may reflect important druggable processes
in tumour cells that are not readily implied by standard DNA
sequencing (c.f. ALK). Integrative modelling across data sets enables
the detection of genetic and epigenetic regulators of risk sig-
natures13–15. Predicting drug targets for high-risk neuroblastoma
with broad-scope integrative algorithms thus seems a promising
strategy that has not yet been explored. We expect such large scale
integration to be particularly productive when based on RNA data,
partly because RNA signatures are well supported as indicators of
neuroblastoma disease processes, but also because it is available in
higher quantities than, for instance, protein profiling data.

When the mRNA signature is known, search tools16–19 can be
used to propose drugs that match the gene markers. By com-
parison, performing an analysis that links clinical risk factors and
disease signatures to protein targets is an analytical task of a
different dimension, and requires additional integration and
analysis steps. Therefore, a second goal of this work is to provide
a generally applicable tool (not specific to neuroblastoma) that
will facilitate the association between cancer risk factors, sig-
natures and therapeutic targets.

We propose an algorithm, TargetTranslator, to systematically
identify targets for high-risk neuroblastoma. Using data from US
and EU patient cohorts, our algorithm finds 10 mRNA signatures
of neuroblastoma risk and differentiation, which are mapped to
19,763 unique compounds in 14 cell line models, revealing
88 statistically significant protein targets against high-risk neu-
roblastoma. We then characterise selected targets by more than
700 RNA profiling experiments in drug-treated neuroblastoma
cells and show that interfering with two drug targets, the
mitogen-activated protein kinase 8 (MAPK8) and the cannabi-
noid receptor 2 (CNR2) suppress tumour growth in both zebra-
fish and mouse xenograft models. Together, these results deepen
our understanding of neuroblastoma vulnerabilities and provide a
tool for data-guided cancer target discovery.

Results
Discovery approach and data sources. Previous work provides a
strong rationale for exploring neuroblastoma by RNA signatures,
which can serve as proxy indicators of oncogene activation,
patient risk, and tumour cell differentiation status9–12. The over-
riding goal of our strategy is, therefore, to identify targets with

potential to modulate such RNA signatures and thereby suppress
malignant phenotypes of neuroblastoma cells, potentially resulting
in a reduction of tumour growth. Exploring this idea, our dis-
covery approach has two key steps. First, we estimate mRNA
signatures of neuroblastoma from patient omics data, which are
optimised for integration with public data sources to predict
therapeutic targets (Fig. 1a). Second, we evaluate the predicted
targets in patient-derived neuroblastoma cells (Fig. 1b). Specifi-
cally, the experiments evaluate (i) if mRNA disease signatures
change as predicted after drug treatment, (ii) if treatment affects
malignant phenotypes in cells, and (iii) if treatment inhibits
in vivo tumour growth. To facilitate the evaluation of multiple
targets at a reasonable cost, we propose two methods: 384-well
SMART-Seq2-based RNA sequencing (RNA-Seq), and automated
imaging of GFP-tagged cells in zebrafish embryos (Fig. 1b).

We integrated three different levels of large scale data (Fig. 1a).
The first level of data comprised neuroblastoma omics data from
the R220, NIH-TARGET21 and SEQC22 biobanks, with a total of
833 cases. From the clinical, genetic and transcriptional parts of
these data, we established 16 disease-associated risk factors,
oncogenes, and signatures (Table 1, Supplementary Data 1).
Among these, stage, age, MYCN and 11q deletion are routinely
used for clinical management3,23, and ALK mutation for targeted
therapy24. We also added gene signatures of patient risk11,
oncogene activation25 and differentiation level9,12. (Because they
were not genotyped in all three data sets, mutations of TERT and
ATRX were not part of the analysis.) The two other levels of data
were pharmaco-transcriptomic data from the LINCS/L1000
database of drug-induced mRNA changes in human cells7 and
drug-to-protein target information from the STITCH5 database8.
To gain predictive power, we used a version of the LINCS/L1000
data, in which the transcriptional effect of a drug is estimated
from multiple replicates (Supplementary Fig. 1). The full data set
thus comprised data for 833 cases, annotated with 16 risk factors,
oncogenes and disease signatures, mRNA drug response data for
19,763 unique chemical compounds (we will use the term ‘drug’
below, for a more concise presentation) and 452,782 links
between drugs and protein targets, involving 3421 unique LINCS/
L1000 drugs and 17,086 unique targets.

Association between risk factors, signatures and targets. Our
algorithm, TargetTranslator, estimates mRNA signatures by sol-
ving a linear least squares problem, in which each risk factor (e.g.
MYCN amplification) or genetic aberration is fitted by linear
weights (i.e. the signature) to match the expression levels of the
978 genes in the LINCS/L1000 data (Eqs. (1)–(3) in Methods, and
Supplementary Figs. 1 and 2). Applying this method to the
neuroblastoma data, we confirmed the quality of the fitted sig-
natures by cross-validation, whereby we checked the consistency
(correlation) of signatures between the three different cohorts.
For example, signatures of MYCN amplification estimated from
each of the R2, TARGET and SEQC cohorts were all highly
correlated, with an average Pearson correlation (r) of 0.86. Out of
our 16 mRNA signatures, 10 were correlated (average r > 0:4;
Fig. 2a), and were thus considered robust and used for further
analyses. The consistency across cohorts was higher with our
method than using the previously reported Characteristic Direc-
tion26 algorithm (Fig. 2a). We conclude that many, but not all,
clinical, genetic or transcriptional markers associated with neu-
roblastoma are well approximated by TargetTranslator signatures
fitted to the L1000 genes. A principal component analysis (PCA)
of our RNA signatures also indicate that they separate largely into
differentiation (PC2) and risk-related (PC1) factors (Fig. 2b).

Mathematically, target discovery is done in two steps.
TargetTranslator first computes a match score (between 0 and 1)
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between each neuroblastoma signature and the drug-induced
expression profiles in LINCS/L1000 (Eq. (4) in Methods). The
scores (one score per drug) are summarized to an empirical
cumulative distribution function (ecdf) plot and their signifi-
cances are assessed via permutation tests (Fig. 2c). For each
protein target in STITCH5, we then separate the drugs in LINCS/
L1000 into two groups: those that have a link to the target and
those that do not (by link, we mean a STITCH score above a
stringent threshold, see Methods). A two-sample, one-tailed,
Kolmogorov–Smirnov test is subsequently used to compare
scores for the two groups of target-associated vs non-associated
compounds (Fig. 2d). Proteins for which the null hypothesis is
rejected are predicted to be targets. We correct for multiple
testing across targets and report FDR adjusted q-values. This
procedure is repeated twice, with alternating sign (−/+) of the
signature, to identify targets likely to be associated with
suppression (−) and enhancement (+) of each signature. Both
cases can be therapeutically relevant since we both seek to

suppress signatures associated with risk (like MYCN) and
enhance signatures likely to be associated with slower tumour
growth (like differentiation).

Identification of 88 targets for high-risk neuroblastoma. Fol-
lowing this strategy, TargetTranslator gave a rich set of predic-
tions of druggable targets for high-risk neuroblastoma. Applied to
the three neuroblastoma cohorts, we obtained a total of 88
enriched drug targets that have a q-value of <0.0001 for at least
one risk factor (Fig. 3). First, we noted that already-established
targets, including MTOR and PIK3 isoforms27, EGFR28 and
CDK229, were associated with several of the molecular and
clinical risk signatures, as indicated by a shift in the ecdf curve
(Fig. 3, example of MTOR in Fig. 2c). Second, there was a
spectrum of targets that have limited evidence of neuroblastoma
effect in the literature which still had a strong enrichment.
Notable examples include MAPK8 and the cannabinoid receptor
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Fig. 1 Integrative discovery of treatments for high-risk neuroblastoma. a Step 1: Data integration. We combined omics data from three cohorts of high-
risk neuroblastoma (R2, TARGET and SEQC) to construct risk signatures, which were linked to pharmaco-transcriptomic (L1000) and drug target
(STITCH) data, resulting in associations between disease signatures and therapeutic targets. b Step 2: Experimental evaluation. Using tumour cells from
high-risk cases, we combine RNA sequencing, cell-based assays, and animal models to confirm targets.

Table 1 Clinical data and signatures used for target predictions.

Clinical/genetic Description Gene signatures Description Signature source

COG Risk classification system Differentiation 1 Adrenergic vs mesenchymal van Groningen et al.9

INSS Neuroblastoma stage Differentiation 2 Nuclear hormone receptors Ribeiro et al.12

Age Age of patient Differentiation 3 Selected differentiation markers See Supplementary Data 1
Risk score Cox regression risk score Risk Signature of survival outcome De Preter et al.11

MYCN amp MYCN amplification 1p36 RNA Signature of 1p36 deletion White et al.10

ALK mut ALK mutation ALK Signature of ALK mutation Lambertz et al.25

11q del 11q deletion 11q RNA Genes on chromosome 11q Molecular Signatures Database
17q gain 17q gain 17q RNA Genes on chromosome 17q Molecular Signatures Database
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Fig. 2 Detection of multiple targets linked to neuroblastoma risk factors. a Validation of neuroblastoma risk signatures by each signature's agreement
across three independent cohorts (R2, TARGET and SEQC). Dark grey= signatures constructed by TargetTranslator, using high variance genes; grey=
TargetTranslator, L1000 landmark genes; white= L1000 landmark genes, using the Characteristic direction algorithm. b Principal component analysis of
the 10 most reproducible signatures, showing risk factors at unit length and marker genes as points; note collinearity between signatures and the distinct/
opposing direction of differentiation signatures. Blue: signatures associated with disease pathways or poor outcome. Red: signatures associated with
differentiation. c Left: Matching compounds and drugs in L1000 to neuroblastoma signatures; score empirical cumulative distribution function (ecdf) for
19763 drugs, based on L1000 from 14 cell lines (dashed line= permutation control). Right: Detection of enriched targets by shifts in the ecdf curve. L1000
compounds were mapped to drug targets using the STITCH database. Examples of drugs with a common target are highlighted (coloured curve). Note
examples of confirmed (AKT1, MTOR, HDAC1), predicted (HMGCR, MAPK8, CNR2) and control targets (MYC, RARB, associated to MYCN and differentiation
signatures, respectively). q are FDR-controlled p-values of a Kolmogorov–Smirnoff test that compares target-specific compounds (coloured curve) vs other
compounds. d Visualization of pathway dependencies for all targets with q-value < 0.0001, mapped to the minimal spanning tree (MST) of all STRING links
between targets. (MST facilitates visualization, by removing redundant links).
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CNR2 (Fig. 2c), as well as MCL1 (Fig. 3). As further validation of
our method, we found that MYC was detected as a target selec-
tively associated with the MYCN amplification signature and that
the RARB receptor of retinoic acid (which induces a differ-
entiation phenotype in neuroblastoma30), was significantly asso-
ciated to differentiation signatures (Fig. 2c). Inspecting the results
further, we also found a number of interesting drugs, which had a
high ranking match score for at least one risk factor, but where
LINCS/L1000 contained too few similar drugs (fewer than 4 with
the same STITCH5 target) to motivate target enrichment with the
Kolmogorov–Smirnov test. Notable examples were drugs target-
ing glycosylceramide synthase UGCG (DL-PDMP), the benzo-
diazepine receptor TSPO (PK11195) and ROCK (fasudil).

Taken together, TargetTranslator detected targets and small
molecules that merit further consideration for neuroblastoma
therapy. The detected targets show differential association with

molecular risk and differentiation signatures (Fig. 3). Minimal
spanning tree (MST) analysis of highly scoring drug targets visualized
possible relationships between predicted targets (Fig. 2d), suggesting
possibilities for single-agent or multiple agent interventions.

RNA profiling confirmed TargetTranslator predictions. To
explore the therapeutic potential of our predictions, we selected a
set of representative inhibitors or agonists against 11 targets
for experimental evaluation (Table 2a). Of these, four were
known targets and under clinical development: PI3K
(trial NCT03458728), MTOR (NCT03213678), CDK4/6
(NCT01747876, NCT02644460) and HMGCR (NCT02390843).
Three, in turn, show some promise in preclinical animal studies
(PPARG31, CDK229, ROCK32 and four were comparatively less
studied (MAPK8, CNR2, UGCG, TSPO).
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Enriched (predicted) target Enriched (predicted) target

ABCG2 34 SLC6A2 32
CASP3 63 CXCL8 35
HDAC1 12 ESR1 36
HTR2C 77 RPS6KB1 8
MCL1 16 OPRD1 28
NR3C1 36 HRH4 24
TP53 42 UGT1A1 12
ABCB1 34 HTR1F 29
ADRA1A 60 PRL 19
DRD2 93 CHRM3 36
DRD3 81 CNR2 22
EGFR 25 OPRK1 34
ERBB2 15 GPER1 12
HRH1 81 POMC 24
HTR2A 116 ADCY6 5
HTR6 41 PIK3CG 15
KDR 20 CDK2 15
KIT 23 GAL 13
MAPK8 19 CNR1 24
PDGFRA 17 ADRB2 42
PDGFRB 19 ADCY2 11
SRC 21 ADCY5 9
VEGFA 26 ADCY1 5
ADRA1B 42 RAF1 10
ADRA2C 64 PIK3CD 7
DRD4 45 GRM3 7
HTR1A 87 HMGCR 12
HTR7 46 OPRM1 30
AKT1 52 SLC6A3 34
CYP3A4 105 GSK3B 15
NOS3 37 AVP 12
ADRA2A 62 OPRL1 18
FLT4 11 CCR5 14
ADRA1D 45 TMIGD3 20
CSF1R 10 HRH3 21
HTR2B 59 ADORA1 25

28MTOR 16 PPARG
FLT1 15 PARP1 19
CHRM2 36
CHRM4 35
DRD5 29 q-value significance level
AR 37
HTR1B 56 Suppression of signature
IL6 27 q < 0.01
SLC6A4 40 q < 0.001
CHRM1 43 q < 0.0001
RET 17
AURKA 9 Induction of signature
AURKB 12 q < 0.01
HTR1E 28 q < 0.001

q < 0.0001

Fig. 3 Drug targets predicted by TargetTranslator for neuroblastoma signatures. 88 drug targets predicted by TargetTranslator. Red: target is associated
with induction of signature; Blue: target is associated with suppression of signature. Shades represent strength of q-value.
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In a first experiment, we tested if neuroblastoma cells treated
with these compounds would change their gene expression
pattern as predicted (i.e. by suppression or induction of the risk
signatures, c.f. Fig. 3). As a representative model, we selected two
patient-derived xenograft (PDX) cultures from two high-risk
patients with MYCN amplified neuroblastoma, termed NB-PDX2
and NB-PDX3. Both cell lines were treated with 13 drugs (the 11
targeted drugs above, plus the differentiation agent retinoic acid
and the BET bromodomain inhibitor JQ1, which downregulates
MYCN33), at three concentrations equivalent to IC10, IC20 and
IC50, for 6 and 24 h, followed by RNA profiling using smart-Seq2
(Fig. 4a). The drug-induced transcriptional changes in NB-PDX2
and NB-PDX3 cells were observable as distinct directions in the
principal component space (Fig. 4b). The magnitude of
transcriptional change along the principal components was
proportional to drug dose and drug exposure time (Supplemen-
tary Table 1); drug-induced vectors were also relatively conserved
between the NB-PDX2 and NB-PDX3 cultures (Supplementary
Fig. 3). In both cell cultures, MTOR/PI3K and CDK4/6 inhibitors
(omipalisib, torin-2 and palbociclib) induced a change along PC1,
shifting the transcriptome away from the risk signatures. Lipid
metabolism targeted agents (lovastatin, DL-PDMP and rosiglita-
zone) had high magnitudes along PC2, and PC3 was led by
MAPK8 inhibitor AS601245. PC 4, finally, contained the
differentiation-inducing agents RA and JQ1, shifting the
transcriptome towards the differentiation signatures.

To formally assess the accuracy of our predictions, we
performed a receiver operating characteristic (ROC) analysis.
First, we identified all (n= 24) cases in which one of the 11 drugs
either induced (n= 8) or suppressed (n= 16) a risk signature in
the neuroblastoma patient-derived cells. Next, we computed the
sensitivity and specificity of TargetTranslator with respect to
detecting these associations. ROC analysis showed an excellent
sensitivity vs specificity curve for both negative associations (vs
no association) and positive associations (vs no association), with
an average area under the curve (AUC) of 0.916 (Fig. 4c). The
reproducibility of the scores was on a comparable level when
contrasting the two PDX cultures (AUC 0.848, Supplementary
Fig. 3E, F).

Pathways affected by the tested compounds were consistent
with drug mechanism of action. Specifically, Gene Set Enrich-
ment Analysis (GSEA) revealed that cholesterol homoeostasis was
altered upon lovastatin and rosiglitazone treatment, the suppres-
sion of MYC targets by JQ1 and the inhibition of MTOR pathway
members following torin-2 treatment (Fig. 4d). Most of our
predictions, including the CNR2 inhibitor GW405833, the UGCG
inhibitor DL-PDMP, the TSPO antagonist PK11195, and the
MAPK8/JNK inhibitor AS601245, downregulated the expression
of genes induced during the cell cycle, implicating effects on
neuroblastoma cell growth (Fig. 4d).

Together, these data show that the effects in neuroblastoma
cells were dose-dependent, correlated well with our predictions,
consistent with known targets and affected therapeutically
relevant pathways.

Predicted compounds suppress malignant phenotypes. The
observed transcriptional changes suggested that treatment with
our predicted compounds should also produce phenotypic effects.
Indeed, all 11 tested compounds suppressed viability of neuro-
blastoma cultures, as determined by dose–response curves after
72 h of drug exposure. For 10 compounds, the reduction in via-
bility was more marked in neuroblastoma cells (NB-PDX2, NB-
PDX3, SK-N-BE(2) and SK-N-SH) when compared with glio-
blastoma reference cells (U3013MG), the difference being largest
for the CNR2 modulator GW405833 (Fig. 5a). Using the BET
inhibitor JQ1, which suppresses MYCN transcription33, and the
differentiation agent retinoic acid as positive controls, we found
that reduced viability coincided with an induction of apoptosis
markers for seven compounds, as observed by live-cell monitor-
ing (Fig. 5b, c).

The predicted compounds also produced significant effects on
N-Myc protein levels and cell differentiation, both of which are
prognostic in neuroblastoma patients3 and are mechanistically
linked34–36. Specifically, N-Myc protein was suppressed by all
compounds except torin-2, omipalisib and rosiglitazone (Fig. 5d,
e). Neurite outgrowth—a proxy for differentiation—was observed
following treatment by four compounds (palbociclib, DL-PDMP,

Table 2 Compounds used to evaluate TargetTranslator predictions.

Compound Ligand of enriched target Top 50 hit Reference compound Target

a
AS601245 x x MAPK8 and MAPK9,10
Torin-2 x x MTOR
GW405833 x x CNR2 agonist
Omipalisib x x PIK3
AZD5438 x x CDK2
Lovastatin x x HMGCR
Rosiglitazone x x PPARG
Fasudil x ROCK
DL-DPMP x UGCG
PK11195 x TSPO
JQ1 x x MYCN, MYC
Retinoic acid x x RARA, RARB

b
JWH133 x x CNR2 agonist
HU308 x x CNR2 agonist
ACEA x x CNR1 agonist
SR144528 x x CNR2 antagonist
JNK-IN-8 x x JNK inhibitor (MAPK8,10 selective)
SP600125 x x JNK inhibitor (MAPK8,9,10)
CC-930 x JNK inhibitor (MAPK9,10 selective)

Compounds used to evaluate predictions (a) and to assess CNR2 and MAPK8 as targets (b). ‘x’ indicates that a compound is a ligand of an enriched target, a top 50 hit for at least one risk signature, or
included as a reference compound
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lovastatin and GW05833) as well as the positive control retinoic
acid (Fig. 5f, g).

Jointly, these results support the conclusion that compounds
against predicted targets were active against in vitro growth of
neuroblastoma cell lines and patient-derived cultures, with (for
some compounds) concurrent effects on N-Myc protein levels
and differentiation.

Cellular action of CNR2 agonists and MAPK8 antagonists. The
finding that a CNR2 agonist GW405833 and a MAPK8 inhibitor
AS601245 were active in neuroblastoma cells, motivated

experiments to evaluate their on-target selectivity. For cannabi-
noid receptors, a number of agents are available to target both
CNR237 and its pharmacologically relevant paralog CNR138,39

(Table 2b). In experiments on NB-PDX3 cells, two additional
specific CNR2 agonists, JWH133 and HU308, reduced neuro-
blastoma cell viability, whereas the CNR1 agonist ACEA did not
(Supplementary Fig. 4A), nor did antagonists of either CNR1 or
CNR2 suppress neuroblastoma cell growth (Supplementary
Fig. 4B). We further found that neuroblastoma cells that were
pre-treated with a CNR2 antagonist (SR144528) were protected
against GW405833 (p= 0.014, Student’s t-test), while pre-
treatment with a CNR1 antagonist (otenabant) had no
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protective effect (Supplementary Fig. 4C, D). Together, these
findings were consistent with CNR2 activation as the key mole-
cular pharmacological mechanism.

We similarly investigated the effect of multiple agents targeting
MAPK8 and its pharmacologically relevant homologues MAPK9
and MAPK10, against which AS601245 has reported activity.
Neuroblastoma cells were sensitive to JNK-IN-840 and
SP60012541, but not the MAPK9/10 selective compound CC-

93042, which lacked effect even at high doses (Supplementary
Fig. 4E, F). The three compounds with anti-neuroblastoma effect
(AS601245, JNK-IN-8 and SP600125) have higher affinity for
MAPK8 than at least one of the other isoforms, while CC-930 has
a 12-fold lower affinity for MAPK8 than the other isoforms
(Supplementary Fig. 4F). As a complementary analysis based on
genetic methods, we considered a public data set of RNA
interference data from the Broad institute DepMap43, in which
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the tested neuroblastoma cell lines (n= 9) are more vulnerable to
MAPK8 knockdown than non-neuroblastoma cell lines (n=
704), but not MAPK9 or MAPK10 (Supplementary Fig. 4G).
Jointly, these results indicated that MAPK8 is an important
protein in the response to AS601245.

Targeting MAPK8 and CNR2 reduces tumour growth in zeb-
rafish. Following the promising in vitro results, we evaluated the
in vivo potential of the compounds predicted by Target-
Translator. First, we implemented a high-throughput zebrafish
xenograft assay of neuroblastoma. As the interrenal gland (the
fish homologue of the human adrenal gland) is too small for high-
throughput and consistent tumour injections, we chose the
developing brain as the site to inject PDX-derived neuroblastoma
cells. This injection site was also motivated by the fact that 8% of
all neuroblastomas and 20% of progressive neuroblastomas
spread to the brain44,45. NB-PDX3 cells were GFP-tagged using a
lentiviral construct, FACS sorted to enrich for highly fluorescent
cells and ~150 cells per fish were injected into the midbrain of 1-
day post fertilization (dpf) Casper zebrafish embryos (Fig. 6a).
This resulted in consistent engraftments with 90% of the tumours
localized to the midbrain/hindbrain (Fig. 6b). Neuroblastoma
proliferation was not affected by either decrease in temperature or
GFP-tagging and xenografts contained MKI67-positive human
cells at 5 dpf (Supplementary Fig. 5A–D). GFP signal highly
correlated with confluence over time (n= 15, Supplementary
Fig. 6E) and was used as a proxy for tumour growth.

Next, we determined the tolerance to each compound by
exposing 2 dpf embryos to increasing (IC20, IC50 and IC80)
doses of the predicted drugs (Fig. 6c). Of the 12 tested
compounds, 8 were well tolerated at neuroblastoma-inhibiting
doses (AZD5438, omipalisib, palbociclib, fasudil, GW405833,
torin-2, AS601245 and positive control doxorubicin) whereas
4 showed signs of toxicity (lovastatin, DL-PDMP, PK11195 and
rosiglitazone). The latter group corresponds to drugs implicated
as modifiers of lipid metabolism (c.f. PC2 in Fig. 4b), and their
toxicity likely reflects essentiality of these processes in this
particular model system, as both statins and rosiglitazone are
clinically approved drugs and PK11195 has been used as a
positron emission tomography (PET) radiotracer in humans46.

Focusing on the CNR2 and MAPK8 targeted compounds,
zebrafish xenografts were treated for 72 h by adding drug
(GW405833 or AS601245) to the surrounding water. Before (2
dpf) and after (5 dpf) treatment, zebrafish were imaged both
dorsally and laterally using a Vertebrate Automated Screening
Technology (VAST) system (Fig. 6d), and each fish was scored for
the increase in GFP signal. MAPK8 inhibitor AS601245 inhibited
tumour size to 21% of DMSO treated control after 3 days
(p < 0:0001, Dunnett’s multiple comparison test), while
GW405833, which was the most neuroblastoma-selective inhibitor
in vitro, reduced the tumour size to 75% of control (p= 0.0335,
Dunnett’s multiple comparison test (Fig. 6e, f). The lower
temperature in the assay did not potentiate NB cells to either

compound (Supplementary Fig. 5F). Together, these first in vivo
results supported TargetTranslator as a viable tool for predicting
neuroblastoma targets with significant observed effects on tumour
size in a zebrafish model.

CNR2 agonist GW405833 reduces tumour growth in mice. To
evaluate the in vivo effect of AS601245 and GW405833 in a
mammalian model, we performed a treatment study on the
MYCN amplified SK-N-BE(2) flank-injected mouse xenografts.
Mice were monitored during 8 days of treatment, with assessment
of tumour growth rate, tumour weight after 8 days and immu-
nohistochemistry as endpoints (Fig. 7). After 8 days,
GW405833 significantly reduced tumour size to 75% of vehicle-
treated animals (p= 0.034, linear mixed model), with no indica-
tions of toxicity in any of the 10 treated mice (Fig. 7a–e). Con-
sistent with the in vitro results (c.f. Fig. 5b–c), GW405833 caused
elevated apoptosis in treated tumours, measured by immunohis-
tochemistry of cleaved PARP (Fig. 7f–h). AS601245, and reduced
growth rate (p= 0.048, linear mixed model), but showed signs of
toxicity in 3 of 8 mice, after which the treatment group was dis-
continued and remaining mice were sacrificed (Supplementary
Fig. 6). Together, these data provided an independent set of data
to support the potential of a CNR2 agonist against neuroblastoma,
and encourage investigation to define MAPK8 (JNK1) inhibitors
with improved toxicity profile as a future direction.

The TargetTranslator tool. So far, we have used our method to
study neuroblastoma; to facilitate the application of Target-
Translator to other cancer diagnoses as well, we have imple-
mented a web version of TargetTranslator, which comprises a
simple workflow, in which users (i) select data sets of interest, (ii)
identifies risk factors and signatures of interest and (iii) run the
pipeline to find risk-associated drugs and therapeutic targets. The
current implementation enables users to upload their own data
but also lets users analyse pre-uploaded data sets of R2, TARGET,
and SEQC neuroblastoma patient cohorts and an additional 33
clinically annotated cancers from the cancer genome atlas
(TCGA) consortium47. TargetTranslator is also available as a
standalone R package, intended for expert users.

Discussion
This study aimed to identify treatment options with in vivo rele-
vance for high-risk neuroblastoma. A tailored algorithm, Target-
Translator, estimated robust mRNA signatures of neuroblastoma,
which were associated with drug targets. These, in turn, were
characterized by multiplexed RNA-Seq, tested in cells and xenograft
models, and resulted in leads for neuroblastoma treatment. Possible
applications include target discovery for tumours other than neu-
roblastoma, particularly to discover druggable cancer targets not
found by standard methods such as DNA sequencing.

Taken together, our computational and experimental results
strongly support neuroblastoma therapy development through

Fig. 5 Predicted targets suppressed malignant phenotypes in patient-derived neuroblastoma cells. a Viability response of four neuroblastoma (red) and
one glioblastoma (blue, U3013MG) cell lines after 72 h of treatment. Asterisks indicate the level of significance for each neuroblastoma cell line compared
with U3013MG. (When applicable, IC50 was used for statistical comparisons, otherwise, the dose is indicated by the arrow.) b, c Apoptotic response
(cleaved CASP3/7) of each compound (mean, n= 3) and comparison of compounds at 96 h time point (mean, standard deviation). d Reduction of N-Myc
levels after 48 h drug exposure at IC50 concentrations, cropped image. The full image is found in the Source Data file. e Quantified N-Myc levels for both
NB-PDX2 and NB-PDX3 (mean, 95% confidence interval; JQ1, GW, n= 16; lovastatin, n= 8; omipalisib, RA, AZD5438, rosiglitazone, fasudil, AS601245,
n= 6; palbociclib, DL-PDMP, Torin-2, n= 5; one-sample t-test with Benjamini–Hochberg FDR correction). f IC10 drug effects of neurite outgrowth for NB-
PDX2 (blue) and NB-PDX3 (yellow), bootstrapping estimates (n= 1000). A higher morphological differentiation score indicates longer cell protrusions.
Stars show significance levels compared with negative control for the respective cell lines. g Representative image of cell protrusions (white arrow) after
72 h of treatment. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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RNA risk signature modulation (Fig. 4). The observed tran-
scriptional changes were concurrent with the suppression of
malignant phenotypes associated with elevated risk in patients
(N-Myc protein levels, proliferation), and induction of favourable
features (cellular differentiation, the onset of apoptosis). Con-
ceptually, we remark that using mRNA signatures to approximate
risk factors rests on specific assumptions that must be met. Above
all, we assume a causative link between gene expression in
tumours and observable disease outcome. One example where
this is true is MYCN amplification, which is causatively linked to
neuroblastoma outcome, in a manner that depends on mRNA
expression48. The Differentiation 1 signature of adrenergic
(ADRN) cells, here linked to several targets, also has a well
understood mechanistic basis9. A second key assumption is that
modulation of mRNA levels is possible, either by suppressing a
signature driven by an oncogene, such as MYCN, or shifting a

plastic cell state towards a more favourable one, such as forcing
differentiation. When these conditions are met, TargetTranslator
makes logical sense as a tool for target discovery. By contrast, in
the minority of cases where there is no reproducible RNA sig-
nature (i.e. limited consistency between cohorts, Fig. 2a), further
exploration will be needed. For instance, while localized oncogene
amplification of MYCN yields consistent signatures, our analysis
speaks against the use of broad chromosomal regions, like 11q
and 17q. TargetTranslator also depends on a sufficient number of
patient cases to produce robust signatures, as seen for ALK
mutation status in this study. In these particular cases, better
definition of functionally important markers, and more extensive
patient cohorts would be needed to gain analytical power.

Our in vivo results highlight a possible therapeutic potential of
two targets: MAPK8/JNK1 and the cannabinoid receptor 2 (CNR2).
Signalling pathways upstream of MAPK (receptor tyrosine kinases
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Fig. 6 Targeting MAPK8 and CNR2 suppressed neuroblastoma xenografts in zebrafish. a Workflow: patient-derived neuroblastoma cells were tagged
with green fluorescent protein (GFP), sorted, and injected into the midbrain of 1-day post fertilization (dpf) zebrafish embryos. b Tumour localization 24 h
following injection (n= 266) (mean, standard deviation). c 2 dpf zebrafish embryos were exposed to drug concentrations corresponding to IC20, IC50 or
IC80. Toxicity was noted after 24h , and score between 0 (no toxicity, white) and 5 (instant, lethal toxicity, red). d Automated image-based assay of
tumour growth in xenotransplanted zebrafish embryos. e Tumour area increase from 2 to 5 dpf (mean, standard deviation). f Representative image of the
same zebrafish embryos before and after treatment.
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and RAS) are commonly altered in relapse neuroblastoma49 and
activated pathways are correlated with poor prognosis in primary
tumours50. The role of MAPK8/JNK1 is less well understood,
although it has been linked to neuroblastoma progression51. Based
on our in vivo results, we propose that MAPK8 partly regulates
neuroblastoma growth. The cannabinoid receptor CNR2 (encoded
by a gene in the commonly deleted 1p36 region) is a relatively
unexplored target in cancer. Our computational analysis identified
CNR2-targeting compounds linked to multiple neuroblastoma risk
signatures (Fig. 2c, Supplementary Fig. 7). Extending results in
serum-cultured cells52, we found that activation of CNR2 by three
different agonists reduces viability in patient-derived cell cultures
in vitro (Fig. 5a, Supplementary Fig. 4A) and induces apoptosis
in vivo (Fig. 7g). Interestingly, we noted that the CNR2 ligand
GW405833 activated genes regulated by the rhodopsin-like G-pro-
tein coupled receptors (GPCRs), which is a family of GPCRs that
includes the cannabinoid receptors (Supplementary Fig. 4H), and
the effect on neuroblastoma cells could be blocked by CNR2
antagonist (Supplementary Fig. 4C, D). We speculate that
GW405833 acts by downregulation of N-Myc protein leading to

apoptotic onset. A more exact mechanism of action of cannabinoid
receptor 2 in high-risk neuroblastoma will be reserved for future
work. However, judging from the absence of specific mutations or
clear molecular patterns connected to the CNR2 biology in neuro-
blastoma, atypical targets like CNR2 would most likely be missed by
common data mining strategies. This supports the idea that inte-
grated data analysis spanning both multi-patient cohorts and robust
statistical methods that detect latent factors in the data will play a
crucial role in the future exploration of patient molecular data.

The rapidly growing use of RNA data as a readout in molecular
pharmacological experiments motivates further analysis to define
how drug action is manifested transcriptionally. Our analysis of
selected drugs in neuroblastoma cells revealed consistent drug-
specific patterns between cell lines, the magnitude of which was
dose-dependent and time-dependent (Fig. 4, Supplementary
Table 1). As in previous pharmaco-transcriptomic experiments
(e.g. ref. 7), targeted drugs generally induce changes in their
primary targeted pathway, as well as secondary pathways (Fig. 4,
yellow circles). At this point, it is not known whether drugs exist
that induce transcriptional changes entirely outside of the L1000
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Fig. 7 GW405833 reduces neuroblastoma growth in vivo. aMice were engrafted with 15 ´ 106 SK-N-BE(2) cells s.c. and randomized to receive a daily i.p.
injection of GW (45mg/kg; n= 10) or vehicle (n= 12) for 8 days, starting at the appearance of palpable tumours of >0:2 cm3. b GW405833 significantly
impaired the growth of established human tumours (hierarchical linear model). c Point comparison of day 8 tumour volume. d Tumour volume increase
from day 0 to day 8. e Post-mortem tumour weight after 8 days of treatment. f Cell proliferation marker MKI67, counted using ImmunoRatio plugin for
ImageJ from 10 to 15 representative fields per specimen (DMSO, GW405833, n= 5; AS601245, n= 4). g Apoptosis marker cleaved PARP, counted in
using ImmunoRatio plugin for ImageJ from 10 to 15 representative fields per specimen (DMSO, GW405833, n= 5; AS601245, n= 3). h Representative
images of tumour histology (HE), MKI67 and c-PARP localization, bar= 100 μm. Statistics: b Mean, 95% confidence interval, p-value computed from a
mixed effects model and corrected for multiple testing using bonferroni correction. c–g Mean, standard deviation, Student’s t-test.
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gene space or which would only be detected in other layers of data
(e.g. protein profiles). We regard this as a possibility and expect
that future databases that span the entire transcriptome or sub-
stantial parts of the proteome will have increased power to disease
signatures in neuroblastoma and other cancers.

The zebrafish xenograft system based on GFP-tagged NB-
PDX3 cells developed herein provides a complementary tool to
assess candidate therapeutics in neuroblastoma. Implemented in
an automated 96-well format, it provides toxicological informa-
tion, as well as a first assessment of tumour growth and invasion,
as determined by the relative increase of observed GFP signal,
with an assay time of 5 days. The assay should be used with
awareness of the possible impact of reduced temperature condi-
tions, and the intrinsic limitations of measuring tagged tumour
cells by imaging methods. Since zebrafish embryos are small and
carry their food supply up to 5 dpf, these short term studies
require little handling. The assay thereby presents a com-
plementary tool to prioritize candidate treatments for further
studies in genetically predisposed animal models of neuro-
blastoma such as the TH-MYCN mice48, the LIN28B transgenic
mice53 or the Dβh-EGFP-MYCN zebrafish harbouring coexpres-
sion of activated ALK and MYCN54.

Our computational method extends and complements current
tools for pharmacological data mining. Our specific goal has been
to build a pipeline that takes risk factors as input and provides
targets to the user. We solve this problem by a 3-step algorithm:
(i) estimation of mRNA signatures directly into the 978 gene
space of L1000, (ii) match scoring of mRNA signatures and drug-
specific L1000 expression profiles and (iii) deconvolution of tar-
gets using STITCH5 data. Some of the individual steps have
counterparts in existing methods, others do not. Two interesting
search engines have been proposed that carry out a task similar to
the second step of our pipeline: L1000CDS2 and CREEDS18,19.
Both web tools match pre-defined gene expression signatures to
pharmaco-transcriptomic databases. L1000CDS2 makes use of
the L1000 compendium and CREEDS uses expression profiles
manually extracted and curated from public repositories.
Acknowledging that an increasing number of studies are
exploring possible relevance of LINCS/L1000 or related data to
disease7, our methods will thus complement existing tools and
adds an evaluated algorithm that helps the user through the
multi-step process of linking risk phenotypes to therapeutic tar-
gets. Users of TargetTranslator can also opt to prioritize target
discovery for specific cell lines by weighing their contribution to
the pipeline. An example of this is given in (c.f. Supplementary
Fig. 8). Looking ahead, emerging data from, e.g. the St Jude Cloud
or recent paediatric cancer genome atlases5 will likely strengthen
the analysis further.

In summary, TargetTranslator improves our understanding of
neuroblastoma interventions and provides a practical tool for
drug discovery. Users can upload their own data, which makes
TargetTranslator easy to extend to other research areas where
phenotype-drug-target relations are of interest, e.g. in other types
of cancer or in the reprogramming of cell states (compare ADRN/
MES in this paper).

Methods
Data sources. We obtained 835 neuroblastoma patient molecular and clinical data
from the R2, TARGET and SEQC data sets (download links in Supplementary
Methods). All mRNA data were log-transformed (log Affymetrix gene signal for R2
and TARGET, log(FPKM+1) for SEQC) and row centred. Clinical data, genetic
aberrations were obtained for each data set and gene signatures of differentiation
used markers (listed in Supplementary Data 1). Level 3 LINCS/L1000 data were
processed by the Remove Unwanted Variation (RUV) algorithm to remove batch
effects and pooling of replicates to yield drug-specific log2 fold change profiles for
each drug, relative to vehicle (DMSO) control (Supplementary Methods and 55).
We used RUV to pool information across doses and time points, to yield integrated

fold change profiles for each drug that were used for analysis (Supplementary
Methods and benchmarking in Supplementary Fig. 1B). We obtained
protein–protein and drug-protein network data from string-db.org and stitch.embl.
de defining a combined score above 900 of 1000 as a link (Supplementary Meth-
ods). The processed data can be accessed at targettranslator.org/downloads.

TargetTranslator method. Data from profiled and clinically annotated tumour
samples are arranged into two types of matrices. The first, which we term the
disease data, contains uni- or multivariate data, available for all patients, which is
relevant for risk or outcome, i.e. all items in Table 2. The second contains the
corresponding RNA data for these tumour samples, restricted to the gene set in
LINCS/L1000. We denote disease data matrices by YðiÞ and RNA-matrices by ZðiÞ,
for cohorts i ¼ 1; 2; ¼ . The disease data matrices thus have dimensionality
dimðYðiÞÞ ¼ pdisease ´ ni , where the same set of pdisease risk-associated factors are
considered across all cohorts. The RNA data are of dimension
dimðZðiÞÞ ¼ pLINCS ´ ni . We assume that the risk data in YðiÞ can be summarized
with a low-rank feature such that

YðiÞ ¼ HðiÞFðiÞ þ ϵY ðiÞ; ð1Þ
where dimðHðiÞÞ ¼ pdisease ´ k; dimðFðiÞÞ ¼ k ´ n. FðiÞ represents a k-dimensional
feature across patients in cohort i that summarizes the patient variability across
patients with respect to the pdisease outcome associated factors. TargetTranslator
extracts these features through a low-rank matrix decomposition (SVD). Next, we
project data ZðiÞ onto the extracted features FðiÞ;

ZðiÞ ¼ BðiÞFðiÞ þ ϵZðiÞ ð2Þ
where diðBðiÞÞ ¼ pLINCS ´ k; dimðFðiÞÞ ¼ k ´ ni . The matrix BðiÞ are the k-
dimensional signatures for the L1000 landmark genes. These are obtained through
the regression

bBðiÞ ¼ ZðiÞFðiÞT ðFðiÞFðiÞT Þ�1
: ð3Þ

TargetTranslator can also be run in a supervised setting; here, the user provides
the latent variables HðiÞ, typically as gene signatures (c.f. Supplementary Data 1),
whereby FðiÞ is found by least squares. In another special case, the method can
accommodate left-censored survival data. For this, the feature F is defined to be the
log-proportional hazard of each patient, as obtained by a Cox regression model
(Supplementary Methods).

Next, we are concerned with the matching between the signatures bBðiÞ; i ¼
1; 2; ::: and the full LINCS/L1000 compendium, which we have organised into a 3-
dimensional table, in which the pLINCS rows are genes, columns C ¼ 19763 are
drugs (or shRNAs) and S ¼ 14 layers are cell lines (we use the N ¼ 14 cell lines in
LINCS/L1000 with at least 1000 unique drugs). We use gr;s to denote the (z-
transformed) gene expression vector for drug r in cell line s and the function
σðg; hÞ ¼ σðgThÞ to denote the similarity between any two profiles, where gTh is
the scalar product between g and h. The explicit form for σð�; �Þ is given in the
Supplementary Methods. Finally, we compute the match score of a perturbation r,
is defined as:

SðrÞ ¼ �σðrÞ 1
N

X
N

s¼1

σðgr;s; ±Bð1ÞÞ ´ σðgr;s; ± Bð2ÞÞ ´ ¼ ; ð4Þ

where ±B denotes that the score is computed either with respect to �1 ´B, to
detect drugs that suppress the signature, or þ1 ´B, to detect drugs that enhance the
signature. �σðrÞ denotes the drug-specific propensity for signatures to match across
cell lines, estimated from LINCS/L1000 data (precise definition in the Supplement).
This is weighed together with the average (expected) similarities between LINCS
profiles and the TargetTranslator signatures BðiÞ across all cohorts. The resulting
match score has three key properties. First, since each of the σ terms has a value
between 0 (no match) and 1 (match at a level expected for the same target), the
match score will be on the interval between 0 and 1. Second, the �σ term specifically
serves the purpose of giving a stronger weight to any perturbation that gives a
consistent response across model cell lines. Third, since a product is formed
between the σ values across all cohorts, this score will emphasize matches that are
consistently observed across cohorts. Permutation simulations are described in the
Supplementary Methods, benchmarking in (Supplementary Fig. 1B–D).

For target deconvolution, we consider the relationship between the aggregate
scores SðrÞ; r ¼ 1; 2; ¼ of the different perturbations; and the pathway context or
target of each perturbation. For a given protein target, we use the data in STITCH
to divide all perturbations into two sets: R+ and R−. The set R+ contains all
perturbations with a STITCH score >900 (this is considered a stringent hit, whereas
700 is significant8). The set R- contains all perturbations below that threshold. We
subsequently apply a two-sample, one-tailed, Kolmogorov–Smirnov test to test the
sample fSðrÞ; r 2 Rþg vs the sample fSðrÞ; r 2 R�g. P-values are corrected by
mafdr to obtain FDR q-values.

Compounds and cell culture. High scoring compounds chosen for further analysis
were obtained from Selleckchem (omipalisib, torin-2, palbociclib, AZD5438, rosi-
glitazone, fasudil, JQ1, GW842166X, otenabant), Santa Cruz Biotechnology (DL-
PDMP), Sigma-Aldrich (GW405833, PK11195, AS601245, retinoic acid,
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SR144528), Tocris (ACEA, HU308, JWH133), MedChemExpress (CC-930,
SP600125, D-JNKI-1, JNK-IN-8) and Enzo (lovastatin). All compounds were
dissolved in DMSO or MilliQ water (palbociclib) according to the vendor’s
instruction to a stock of 10–20 mM. Patient-derived xenograft (PDX) cell lines NB-
PDX2 and NB-PDX3 (termed LU-NB-2 and LU-NB-3 in previous publications)
were cultured as described on LN-521 (Biolamina) coated primaria plates (VWR)
in defined, bFGF/EGF supplemented medium56,57. NB-PDX2 derives from a cer-
ebral metastasis of a stage 4 neuroblastoma patient and NB-PDX3 derives from a
primary tumour in the adrenal gland of a stage 3 patient; both areMYCN amplified
with 1p loss and 17q gain. SK-N-BE(2) (ATCC®CRL-2271

TM
) and SK-N-SH

(ATCC®HTB-11
TM
) neuroblastoma lines were grown in the same medium as the

PDX lines but on uncoated primaria plates. U3013MG glioblastoma cells from the
HGCC biobank58 were grown in bFGF/EGF supplemented medium58,59. NB-
PDX2 and NB-PDX3 cells (Figs. 4–7) were authenticated by SNP profiling (Mul-
tiplexion, Germany). SK-N-BE(2) cell lines (Fig. 7) and U3013MG were confirmed
by STR profiling. SK-N-SH (used in Fig. 5a) were not authenticated. Cells were
tested for mycoplasma contamination on a regular basis. All cells were cultured
under 5% CO2 pressure at 37 °C to maximum confluency of 80% and detached
using StemPro Accutase (ThermoFisher Scientific) during passaging.

Pharmaco-transcriptomics of predicted drugs. The full protocol is provided in
the Supplementary Methods. In outline, cells were seeded 1 day prior to treatment
in LN-521-coated 384-well microplates (BD Falcon Optilux #353962), at a density
of 2000 cells per well. Drugs and vehicle controls were added by an automated
workstation to implement a design that consisted of 16 treatments (13 compounds,
2 DMSO concentrations, 1 untreated cell medium) × 3 doses (equivalent to IC50,
IC20 and IC10 (Supplementary Table 2)) × 4 replicates × 2 cell lines (total 384).
The RNA-Seq libraries were prepared in a 384-well plate format using the SMART-
Seq2 method60 and sequenced on an Illumina HiSeq 3000 instrument for 51 cycles,
targeting around 0.8 million reads per well as an output, which is sufficient to
probe the transcriptome at the level of principal components, gene signatures and
pathways61,62. High-quality reads were mapped against the Ensembl Homo sapiens
(GRCh38, ftps://ensembl.org/pub/release-90/fasta/homo_sapiens/dna/). The
uniquely-mapped reads aligned to exons were counted by HTSeq v.0.6.163, then
normalized by the DESeq2 R package v.1.14.164.

The principal component analysis (PCA) plot in (Fig. 4) was computed from
drug-induced log fold change values, pooling replicates for each dose. Receiver
operating characteristic (ROC) curves based on comparison of (i) the correlation
between neuroblastoma risk signatures and each drug’s average fold change
signature in LINCS/L1000 (here seen as the prediction) and (ii) the correlation
between neuroblastoma risk signatures and each drug’s corresponding average fold
change signature in our RNA-Seq experiment in PDX cells (here seen as the
ground truth). ROC curves (x= 1-specificity of prediction in relation to ground
truth; y= sensitivity) and area under the curve (AUC) integrals of ROC curves
were computed using Matlab’s roc.m and trapz.m functions. Gene Set Enrichment
Analysis (GSEA) was performed using the GSEAPreranked option in the GSEA
software (version 2.0.9)65. For each compound, a ranked list was prepared by
running differential expression analysis on transcriptomic data from treated and
control samples using the DESeq2 R package v.1.14.164. GeneIDs and log2 fold
change values were extracted from the analysis output and used to create the
ranked list. These were then submitted to GSEA in the pre-ranked mode using
default parameters.

In vitro evaluation of predicted drugs. Cells were seeded on the day before
treatment, followed by 72 h of drug exposure. Viability was detected using the
metabolic activity assay AlamarBlue (Invitrogen), according to the manufacturer’s
protocol, and standardized by vehicle controls. Doses were chosen to include the
TargetTranslator predicted dose. Dose–response sigmoidal curves were fitted using
GraphPad Prism and used to select doses corresponding to the IC10, IC20, IC50
and IC80 concentrations for subsequent experiments. One-way ANOVA and
Dunnett’s multiple comparisons test were used to compare all neuroblastoma cell
lines against the non-neuroblastoma line U3013MG.

For western blotting, 500,000 cells were seeded in LN-521 (Biolamina) coated 6-
well Primaria plates (VWR), treated for 48 h with IC50 equivalent concentrations
of positive controls (JQ1 and retinoic acid), as well as explored compounds. After
lysis in RIPA buffer (ThermoScientific), 25 μg of protein was separated on a
NuPAGE 4–12% bis-tris gel (Invitrogen) and transferred using the iBlot Gel
transfer Stacks nitrocellulose mini kit (Invitrogen) on an iblot®gel transfer device
(Invitrogen). Membranes were blocked with StartingBlocking T20 TBS
(ThermoScientific) and stained with antibodies against the N-Myc (#ab16898,
Abcam, 1:250) and with cyclophilin B (#ab16045, Abcam, 1:500) as a loading
control. N-Myc protein expression was normalized against cyclophilin loading
control and analysed as a ratio to non-treated control using a one-sample t-test
with Benjamini–Hochberg false discovery rate (FDR) correction.

For apoptosis analysis, 10,000 NB-PDX2/3 cells were seeded on LN-521 coated
96-well primaria plates and treated with 0.1% IncuCyte Caspase-3/7 Green reagent
for apoptosis (EssenBioscience #4440). Cells were treated with palbociclib 0.1 μM,
lovastatin 3 μM, fasudil 50 μM, GW405833 6 μM, omipalisib 0.02 μM, AZD5438 7
μM, JQ1 3 μM, DL-PDMP 50 μM, retinoic acid 120 μM, PK11195 90 μM, torin-2
0.04 μM, DMSO 0.5%. Phase-contrast and fluorescent images were acquired over

96 h with the IncuCyte Zoom instrumentation (EssenBioscience). Time-lapse
confluence and apoptosis were automatically masked using the built-in software
and apoptotic response was quantified as apoptotic area (μm2 of image) per
confluence (% of image) and shown as a ratio to vehicle control.

To analyse confluence and differentiation, we collected and analysed phase-
contrast images of NB-PDX2 or NB-PDX3 cells (2000 cells per well) plated in LN-
521-coated 384-well microplates (BD Falcon Optilux #353962). Images were taken
every 2 h for a total of 3 days, using a design with two replicate wells for each 2 cell
lines, 7 doses and 11 compounds. The images were analysed by an in-house
pipeline (Supplementary Methods, Supplementary Fig. 9) based on the U-net66

convolutional neural network (CNN) for semantic segmentation. The CNN was
trained to find cell protrusions as well as cell confluency. The number of
protrusions of length > d in an image is roughly distributed as an exponential
distribution. Accordingly, we fit the function A � e�k�d , where A is the number of
protrusions, d is the length and k is the decay, for each image. We define:

Ynp ¼
A
Nbp

ð5Þ

Ymd ¼ �1000 � k ð6Þ
where Nbp is the total length of the cell-background interface, Ynp is the normalized
amount of protrusions and Ymd is the morphological differentiation score and
describes the relationship between long and short protrusions in the image. Cells
with long protrusions will hence have a larger morphological differentiation score.
The confluence and protrusion data were quantified and assessed statistically using
linear mixed effects models and bootstrapping, as described in the Supplementary
Methods.

Neuroblastoma zebrafish xenografts. All zebrafish experiments have been
approved by the regional animal ethics board (C68/15, 5.8.1-08213/2017, EP 161/
14) and the conducted zebrafish experiments comply with all relevant ethical
regulations for animal testing. Drug tolerance was measured by exposure of 2-day
post fertilization (dpf) zebrafish embryos to water containing drugs with IC20, 50
and 80 levels of drug based on the viability data above. The level of toxicity was
noted on a numerical scale, where 0= no toxicity, 1= toxicity noted only in one or
two fish, 2=weak signs of toxicity in several fish but no deaths, 3= strong signs of
toxicity but no deaths, 4–5= lethal doses of drugs, with 5 suggesting that the effect
might have been instant.

NB-PDX3 cells were transfected with a lentiviral construct containing GFP,
luciferase and puromycin resistance genes (pBMN(CMV-copGFP-Luc2-Puro),
Addgene plasmid # 80389, a kind gift from Prof. Magnus Essand, Uppsala
University) and selected under puromycin treatment, following FACS sorting to
obtain GFP expressing cells which were cultured as described above. Prior to
embryo injection, cells were detached with Accutase, passed over a 40 μm sterile
filter, pelleted, and resuspended in minimal media. Using a procedure described in
detail in the Supplementary Methods, anesthetized 1 dpf fish were injected with
100-200 GFP-tagged neuroblastoma cells into the midbrain. Xenografted zebrafish
were kept in E3 water at 33 °C. At 2 dpf, zebrafish were screened for tumour
engraftment, manually sorted in 200 μl of E3 water into 96-well plates (1 per well),
anesthetized, and imaged dorsally and laterally (×10 objective) for GFP baseline
signal with a Vertebrate Automated Screening Technology (VAST) BioImager
(Union Biometrica) using a LEICA DM6 B microscope and a Leica DFC9000
camera. Each drug was diluted in an additional 100 μl of E3 water and added to
yield the desired end concentration. On day 5, zebrafish were sacrificed with 2.4
mM tricane and an endpoint image was acquired.

Zebrafish embryos were fixed in formaldehyde (PFA) and embedded in
paraffin. Stainings were done on 6-μm sections, either with hematoxylin and eosin
using standard procedures or with immunofluorescent co-staining of MKI67
(#M7240, DAKO), NuMA (#ab97585, Abcam) and DAPI (#00-4959-52,
ThermoFisher Scientific). Stained zebrafish were imaged on an AxioImager (Zeiss).
The detailed protocol is in Supplementary Methods.

Neuroblastoma mouse xenografts. All mouse experiments were approved by the
regional ethics committee for animal research (N 231/14) and the conducted mouse
experiments comply with all relevant ethical regulations for animal testing. For the
xenograft study, SK-N-BE(2) cells (15 ´ 106) were injected subcutaneously into the
flanks of immunodeficient nude mice (female 5–6-weeks-old NMRI-nu/nu, Taconic).
Mice with palpable tumours (0.20 cm3 or greater) were randomized to receive either
GW405833 (45mg per kg, n= 10), AS601245 (90mg per kg, n= 8) or vehicle (n=
12) intraperitoneally for 8 days, or for 2–8 days. At the endpoint, tumours were
dissected in smaller parts and either frozen or fixed in 4% PFA, for further analyses.
Additional details and statistics are provided in Supplementary Methods.

Paraffin-embedded mouse samples from all treatment groups (n= 3–5) were
cut into 6 μm sections and stained with hematoxylin and eosin (HE) or
immunostained against proliferation marker MKI67 (#M7240, DAKO) and
apoptosis marker cleaved PARP (#5625, Cell Signaling Technology) using a
standard immunohistochemistry protocol. Antigens were retrieved in citric acid-
based buffer (#H-3300, Vector Laboratories) containing 0.05% Tween-20 in 2100
Antigen Retriever (Aptum Biologics Ltd.), sections were blocked with Animal-free
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blocking solution (#15019, Cell Signaling Technology), primary antibodies were
diluted in normal antibody diluent (Immunologic), BrightVision Goat Anti-Rabbit
or Anti-Mouse HRP Polymer (Immunologic) was applied and signal visualized
using BrightDAB (Immunologic). Sections were counterstained with Mayer’s
hematoxylin (Histolab) and mounted with Pertex (Histolab). Slides were scanned
using Nanozoomer S60 (Hamamatsu) and representative images were taken with
×40 magnification. The number of positive nuclei was assessed using
ImmunoRatio67 plugin for ImageJ (NIH). From each section 10–15 images were
taken, covering at least 50% of the total section area. Results were presented as a
percent of positive nuclei.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequencing data that support the findings of this study have been deposited in the
Gene Expression Omnibus (GEO) with the accession code GSE120920. The source data
underlying Figs. 4g, 5, 6b, e, 7 and Supplementary Figs. 4, 5, 6, 9, are provided in the
Source Data file. Signatures used in the manuscript are defined in Supplementary Data 1.
Additional data files, including the processed LINCS/L1000 and STITCH data can be
accessed at targettranslator.org/downloads. For information on materials, contact SN
(sven.nelander[at]igp.uu.se).

Code availability
An R version of the Targettranslator server is available on GitHub https://github.com/
Targettranslator/targettranslator. For question regarding code, contact (sven.nelander[at]
igp.uu.se).
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