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Pancreatic neuroendocrine tumors (PNETs) are classified based on their histologic
differentiation and proliferative indices, which have been used extensively to determine
prognosis. Advances in next-generation sequencing and other high-throughput
techniques have allowed researchers to objectively explore tumor specimens and learn
about the genetic alterations associated with malignant transformation in PNETs. As a
result, targeted, pathway-specific therapies have been emerging for the treatment of
unresectable and metastatic disease. As we continue to trial various pharmaceutical
products, evidence from studies using multi-omics approaches indicates that clinical
aggressiveness stratifies along other genotypic and phenotypic demarcations, as well. In
this review, we explore the clinically relevant and potentially targetable molecular
signatures of PNETs, their associated trials, and the overall differences in reported
prognoses and responses to existing therapies.

Keywords: molecular signatures, signaling pathway, tumorigenesis, clinical trial, neuroendocrine carcinoma,
pancreatic neuroendocrine tumor
INTRODUCTION

Neuroendocrine tumors (NETs) are a subset of neoplasms arising from neuroendocrine cells
throughout the body that are characterized by their ability to produce peptides causing distinctive
hormonal syndromes. Pancreatic neuroendocrine tumors (PNETs) comprise 1% to 3% of all newly
diagnosed pancreatic cancers with an annual incidence of approximately 3.6 per 100,000 persons
(1, 2). Though they represent only 7% of all gastrointestinal NETs, they are significantly more likely
to present with distant metastases, at a higher grade, or with unresectable disease (~65%) compared
to their stage-matched lung and small bowel counterparts (3, 4).

The prognosis of NETs is highly dependent on their histologic presentation. Median survival
ranges from as low as 24 months in advanced, unresectable disease to seven years in early stage,
resectable disease (5). In 2017, the World Health Organization established a new classification
system utilizing grade (G1-G3, based on mitotic figures and Ki-67 index) and histologic
differentiation (well-differentiated “neuroendocrine tumors” vs. poorly differentiated
“neuroendocrine carcinomas”) (Table 1) (6). This system aims to stratify tumors by
aggressiveness, scale treatment accordingly, and guide discussions regarding prognosis. The
update was prompted by significant disparities in patient survival when classified by grade alone.
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While G3 tumors comprise only ~10% of PNETs, they occupy a
spectrum of aggressiveness depending largely on their histologic
differentiation (7–10).

Although functionality is not considered in the classification,
the vast majority of PNETs (85%) are clinically non-functional
and are often incidentally discovered during abdominal imaging
(~40%) (11, 12). The clinical presentation of non-functional
PNETs is due to mass-related burden of the primary tumor or
metastatic deposits (up to 50% have metastatic disease upon
presentation) (13). For this reason, they are often diagnosed at
more advanced stages and are associated with poorer prognosis.
Their median overall survival (OS) is 26 months versus 54
months in their functional counterparts (14–16).

PNETs are most commonly sporadic, but they may also occur
as part of five hereditary syndromes: multiple endocrine
neoplasia type 1 (MEN1), MEN4, von Hippel-Lindau (VHL),
neurofibromatosis type 1 (NF1), and tuberous sclerosis complex
(TSC). Together, these syndromes account for less than 10% of
PNETs and, while they are more likely to present with multi-
focal disease, their rate of metastasis is slightly lower at 23% to
33% of cases (16, 17). Among the hereditary syndromes,
functioning PNETs such as insulinomas, gastrinomas,
glucagonomas, VIPomas, and somatostatinomas are observed
most frequently in MEN1 (18, 19).

Amidst this wide array of severities, surgery remains the
cornerstone of treatment for this disease and should be
pursued for all local or metastatic neoplasms amenable to
complete resection (20–22). Presently available systemic
options are limited to long-acting release octreotide, the
mTOR inhibitor everolimus, and the VEGF inhibitor sunitinib
(23–25). These drugs offer a modest improvement in
progression-free survival but have not been shown to impact
OS. Despite the relative success of surgery, up to 50% of patients
who undergo complete resection will develop metachronous liver
metastases and, although recurrence-free survival is positively
associated with well-differentiated tumors, it is evident that the
current characterization model does not successfully separate
biologically favorable tumors from those with a predilection for
recurrence/metastasis (12).

Advances in next-generation sequencing have allowed
researchers to objectively explore tumor specimens and learn
about the genetic alterations that drive malignant transformation
2

in PNETs. Analyses of this molecular landscape have identified
significant heterogeneity in the mutational profiles of non-
functional PNETs. However, four core pathways have been
implicated: DNA damage/repair, chromatin remodeling,
alternative lengthening of telomeres, and PI3K/AKT/mTOR
signaling (26). Among the functional tumors, genetic and
expression profiling of insulinomas did not show mutations in
MEN1, DAXX/ATRX, and mTOR pathway genes that are
frequently mutated in non-functional PNETs (27).
Approximately 3% to 30% of insulinomas show a recurrent
mutation in YY1 (p.T372R), a gene encoding a transcription
factor (28–30). Also associated with insulinomas are rare
mutations or gene expression changes of a few epigenetic
modifier genes (H3F3A, KDM6A, ATR, and EZH2) (27). The
molecular patterns of presentation that have been identified in
PNETs can help us predict clinical outcomes.

This review will explore the clinically relevant and potentially
targetable mutational and immunohistochemical features,
henceforth referred to as “molecular signatures”, of non-
functional PNETs, their associated trials, and overall
differences in reported prognoses.
MOLECULAR MECHANISMS
AND PROGNOSIS IN PNETs

Inherited tumor syndromes, including MEN1, VHL, NF1, and
TSC, represent a minority of PNETs, but uncovering their
molecular mechanisms has furthered our understanding of
their sporadic counterparts. Somatic mutations or alterations
of the relevant syndromic genes are frequently seen in sporadic
PNETs. Up to 44% of non-familial PNETs harbor a somatic
MEN1 alteration, while 25% have non-mutational VHL
inactivation, and downregulation or mutation of the TSC2
gene is seen in 35% and 9%, respectively (26). This supports
the notion of shared pathways of tumorigenesis in familial and
non-familial tumors centered around theMEN1 gene (Figure 1).
Further complicating matters, germline mutations in genes
linked to familial syndromes (i.e., MEN1, VHL) have also been
detected in patients with apparently sporadic PNETs (35). In this
section, we explore the complex molecular landscape of PNETs
as it relates to prognosis.

MEN1
Menin, the gene product of MEN1, is a predominantly
nuclear protein that functions as a tumor suppressor by i)
interacting with various transcription factors and histone
modification enzymes to regulate gene transcription, ii)
regulating cell cycle progression (via upregulation of CDKN2C/
CDKN1B expression), and iii) participating in specific cell
signaling processes (for example, menin alters AKT1 sub-
cellular localization to regulate the PI3K/AKT/mTOR signaling
pathway) (26). Patients with MEN1 (a heterozygous germline
mutation in theMEN1 gene inherited in an autosomal-dominant
fashion) have a 40%–80% chance of developing a PNET during
their lifetime, making it the second-most-frequently expressed
January 2021 | Volume 11 | Article 575620
TABLE 1 | World Health Organization classification and grading of pancreatic
neuroendocrine neoplasms (2017) (6).

Differentiation and
Grade

Proliferation Index Ki-67
(%)

Mitotic Index
(Mitoses

per 10 HPFs)

Well-Differentiated
• G1 PNET
• G2 PNET
• G3 PNET

<3
3–20
>20

<2
2–20
>20

Poorly Differentiated
• G3 PNEC >20 >20
PNET, Pancreatic Neuroendocrine Tumor.
PNEC, Pancreatic Neuroendocrine Carcinoma.
HPFs, High power fields.
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clinical manifestation of the syndrome next to parathyroid
neoplasms (36). These are most commonly non-functional
PNETs with a tendency towards multiplicity. Tumor size at the
time of presentation is also an important prognostic factor, as
lesions > 2 cm harbor a higher risk of malignancy (17, 37).
Tumors show loss of heterozygosity at the MEN1 locus on
chromosome 11q13 and abnormally low nuclear staining of
menin (38, 39). While this is the established mutational
mechanism in familial cases, a 2010 combined genetic and
immunohistochemical study of MEN1 mutations and menin
expression demonstrated that up to 80% of sporadic cases had
strong cytosolic staining of the protein, suggesting a failure of
nuclear localization, while just 25% of the patients harbored a
mutation in the gene itself (31). This suggests that other pathways
or genes are involved in the altered expression of menin or its
downstream effects. Directly or indirectly, MEN1 and its
associated pathways play an important role in the neoplastic
process of PNETs and represent potential therapeutic targets.
Among sporadic PNETs, 44% of non-functional tumors show
MEN1 mutations, and the prevalence of a MEN1 mutation in
functional tumors is as follows: glucagonoma (60%), VIPoma
(57%), gastrinoma (38%), and insulinoma (2%–19%) (40).

VHL
Contrary to MEN1, VHL-associated PNETs are reported in just
10%–17% of syndromic patients, most of which present at a young
age and with non-functional, multi-focal disease throughout the
Frontiers in Endocrinology | www.frontiersin.org 3
pancreas (32, 41–44). Although VHL mutations are rarely seen in
sporadic PNETs, non-mutationalVHL inactivation is seen in up to
a quarter of sporadic PNETs. Compared with sporadic tumors,
though, resected VHL-associated PNETs have better long-term
outcomes (45). VHL-driven PNETs likely represent a distinct
subset of these tumors. Unlike their MEN1 or DAXX/ATRX
mutation-positive counterparts, genetic alterations in VHL-
mutation driven PNETs are predominantly related to
angiogenesis and hypoxia-inducible factor (HIF) signaling (46).
The VHL protein itself serves as a regulator of HIF-1a. Thus,
inactivation of VHL induces angiogenesis and abnormal cell
metabolism. A quantitative RT-PCR study of 52 genes in 18
patients with VHL-associated PNETs demonstrated a unique
pattern of gene upregulation related to HIF signaling,
angiogenesis, and specific growth factor/cell cycle component
expression when compared to sporadic tumors (46).

HIF-1a and VEGF
Whether sporadic or familial, PNETs are highly vascularized
owing to increased levels of proangiogenic factors such as HIF-
1a and vascular endothelial growth factor (VEGF). The HIF-1
pathways regulate over 100 genes involved in angiogenesis
including VEGF, PDGF, and angiopoietin (ANG-1 and ANG-2)
(47). VEGF itself is expressed in ~80% of PNETs. Well-
differentiated PNETs have been shown to express higher levels
of these factors and have a higher density of microvasculature
than poorly differentiated PNETs (48, 49). Surprisingly, this
A

B

FIGURE 1 | (A) Reported distribution of genotypic alterations in familial and sporadic pancreatic neuroendocrine tumors (PNETs). (B) Prognostic associations of
various non-functional PNET phenotypes. (11, 14, 31–34).
January 2021 | Volume 11 | Article 575620
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higher microvessel density has been associated with a better
prognosis (50). Immunostaining of tumor sections from 45
patients with PNETs showed that well-differentiated tumors
had high cytoplasmic expression of VEGF and HIF-1a,
whereas poorly differentiated carcinomas were associated with
nuclear HIF-1a expression. Also, nuclear HIF-1a expression was
associated with the presence of necrosis, larger tumor size, low
microvascular density, and shorter survival (49). Insights into the
mechanisms underlying angiogenesis have led to the
development of VEGF inhibitors such as bevacizumab and
sunitinib that are being tested as potential PNET therapies (51,
52). Recently, a Phase Ib/II trial of surufatinib, a selective VEGF
receptor (VEGFR) small molecule tyrosine kinase inhibitor,
demonstrated encouraging antitumor activity with minimal
toxicities in patients with advanced NETs (53).

DAXX/ATRX
Up to 43% of sporadic PNETs have a mutation in genes encoding
for a chromatin remodeling/stabilization complex composed of
death domain-associated (DAXX) protein and a-thalassemia/
intellectual disability syndrome X-linked (ATRX) protein (33).
This heterodimer is implicated in remodeling at the telomeric
and pericentromeric regions, and incorporating the histone
variant H3.3, a mechanism supported by nuclear staining of
the proteins in DAXX/ATRX wild-type PNETs that is absent in
PNETs with mutant proteins (14, 54–56). Mutations in DAXX/
ATRX are mutually exclusive, can promote tumorigenesis, and
correlate with alternative lengthening of telomeres (ALT), a
telomerase-independent mechanism of telomere lengthening
(11). This phenotypic abnormality was found in 61% of
patients in a molecular analysis of PNETs by Heaphy et al.
The study demonstrated a significant correlation between either
ATRX/DAXX mutations or the loss of their respective nuclear
proteins and the presence of ALT across multiple tumor
histologies (33). Though this genotype–phenotype relationship
is strong, it is present in only ~3% of all human neoplasms.
Regardless, it represents a clinically significant marker, as
research predicts that ALT indicates resistance to anti-
telomerase therapies and may harbor prognostic value (57).

Despite being exclusively linked to well-differentiated PNETs,
ATRX/DAXX-mutated PNETs have been clinically associated
with aggressive behavior and poor survival (58). A large
retrospective study attributed this poor survival to increased
chromosomal instability seen in patients with DAXX/ATRX-
mutated PNETs (59). Clinicopathologic and genetic analysis of
76 patients with well-differentiated PNETs in South Korea
showed DAXX/ATRX loss to be independently associated with
poor prognosis alongside metastatic disease on presentation (60).
Telomere-specific fluorescence in situ hybridization (FISH)
analysis of 109 well-differentiated PNETs only identified
DAXX/ARTX mutations and ALT phenotype in patients with
tumors greater than 3 cm and lymph node metastases, suggesting
that these changes may be specific to the later stages of disease
(61). Similarly, in multiple independently examined cohorts of
surgically resected PNETs, ALT-positive tumors displayed a
significantly higher grade, size, and pT staging. ALT phenotype
and loss of DAXX/ARTX staining correlated strongly (P < 0.05)
Frontiers in Endocrinology | www.frontiersin.org 4
with lymphovascular invasion, perineural invasion, lymph node
involvement, distant metastasis, and shorter recurrence-free
survival (62, 63).

PI3K/AKT/mTOR
Expression profiles of sporadic PNETs have shown a correlation
between prognosis and the PI3K/AKT/mTOR pathway that is
involved in the regulation of cellular proliferation, growth,
survival, and other vital functions (64). Exome sequencing of
PNETs has shown that ~15% of well-differentiated tumors
harbor somatic mutations in the PI3K/AKT/mTOR pathway
genes, including 7% in PTEN, 9% in TSC2, and 1% in PIK3CA
(14). Whole-genome sequencing of 102 sporadic PNETs found
PTEN and TSC1/2 mutations to be mutually exclusive (35). As it
is central to multiple tumorigenic pathways, downregulation of
mTOR pathway inhibitors such as PTEN and TSC2 was a highly
significant finding (~85%) in a gene expression profiling of
PNETs, even in the absence of a pathway-specific mutation.
Under-expression of these essential regulatory factors was
associated with more-advanced stage, increased risk of
metastasis, and shortened disease-free survival and overall
survival (11, 64).

Chromosomal Aberrations
Mutations alone provide the rationale for tumorigenesis in
only about 40% of sporadic PNETs, with the remaining cases
ascribed to chromosomal/epigenetic alterations (26). Various
studies have identified non-mutational biomarkers associated
with tumor progression/metastasis that could potentially assist
with management. Copy-number alterations at certain
chromosomal loci, such as 6p22.2-p22.1, 8q24.3, 9q34.11, and
17p13.1 have been associated with poorer prognosis (65). This is
an important area of ongoing research, though the prognostic
implications of other copy-number alterations and chromosomal
translocations are poorly defined at this time.

Micro-RNAs and DNA Methylation
miRNAs are short, non-coding RNA molecules regulating gene
expression at the post-transcriptional level; they have been
shown to regulate up to 60% of all coding genes and have been
implicated in a wide range of biologic processes, including
carcinogenesis (66). A micro-array study of 44 pancreatic
primary tumors, including functional and non-functional
PNETs, discovered patterns of miRNA expression that could
distinguish any tumor type from normal pancreas (67). For
example, expression of miR-103 and miR-107 in the absence of
miR-155 distinguished tumors from normal pancreas. miRNA
expression patterns were able to distinguish PNETs from acinar
carcinomas and further segregate PNETs by functionality, Ki-67
index, and presence of liver metastases. More recently, a
comparison of miRNA and mRNA transcriptomes in PNET
samples showed an association between miRNA profiles and
commonly described genetic alterations, such as DAXX/ATRX
and MEN1 (68). Over-expression of miR-196a in post-resection
PNETs has been associated with poor prognosis, shorter disease-
free survival, and more aggressive histologic profile (stage,
mitotic rate, Ki-67) (69). There is mounting evidence that
January 2021 | Volume 11 | Article 575620
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miRNA expression profiles may serve as a clinically useful
biomarker for diagnostic, prognostic, and therapeutic
purposes (70).

DNA methylation profiles of PNETs may also serve as
relevant biomarkers for tumor stratification. Hyper-
methylation or hypo-methylation at CpG islands (GC-rich
DNA regions), often located in the promoter regions of genes,
is associated with gene silencing or gene activation, respectively.
Higher global DNA hypermethylation was detected in non-
functional PNETs from MEN1 patients in comparison with
sporadic and VHL-associated PNETs (71). Also, promoter
hypermethylation was observed as a frequent event in MEN1-
associated advanced PNETs (72). Validation of these findings in
independent cohorts of familial and sporadic PNETs will help to
determine the importance of DNA methylation as a biomarker.

Circulating Tumor DNA/RNA
Minimally invasive liquid biopsy tests for advanced cancers using
blood/plasma have been shown to detect tumor-specific
mutations in circulating cell-free tumor DNA (ctDNA), and
recent data from studies of the NETest have shown successful
detection of tumor-specific transcripts in circulating RNA (73,
74). Genç et al. demonstrated that this multigene blood test could
effectively detect PNET recurrence after surgical resection (test
performed after recurrence) in a cohort of non-functional (83%)
and functional (17%) PNETs (75). A recent meta-analysis shows
an accuracy of 90.2%–93.6% as a marker of natural history of
NET (76). However, large validation studies with long-term
follow-up are needed. The NETest could help in the detection
of sporadic PNETs or their response to therapy; however, the
utility of the NETest to detect PNETs or their metastases in
patients presenting with familial syndromes could be
confounded by the simultaneous presence of other tumors.

Cell of Origin and Transcription Factors
The clinical behavior of non-functional PNETs is also correlated
with the transcriptomic profiles of specific islet cell types, namely
a- and b-cells that undergo differentiation via transcription
factors ARX and PDX1, respectively. A study of 142 non-
functional PNETs (MEN1-associated and sporadic) showed
that 84% of tumors expressed either ARX or PDX1,
predominantly, and could be classed as “A-type” (resembling
a-cells) or “B-type” (resembling b-cells) (34). Of the 103 tumors
with subsequent distant relapses, almost all were ARX+PDX1-

and had ALT. The authors postulated that this molecular
stratification could provide insight into the correlation of cell
lineage with disease course and inform postoperative
clinical decisions.

Unique Molecular Mechanisms
in Pancreatic Neuroendocrine Carcinomas
To this point, this review has focused on molecular alterations
more common in well-differentiated pancreatic neuroendocrine
tumors. It should be noted that poorly differentiated pancreatic
neuroendocrine carcinomas (PNECs), which carry significantly
worse prognoses, represent a genetically distinct biology by
comparison. PNECs often harbor alterations in Rb and TP53
Frontiers in Endocrinology | www.frontiersin.org 5
(~74% and 95%, respectively). An immunostaining study
showed that inactivation of these two pathways is a central
feature of PNEC development (58). Aberrant p16 staining was
found to be mutually exclusive to Rb anomalies, such that all
PNECs had some disruption of the p16/Rb pathway. BCL2
overexpression, while seen in both PNEC (74%) and PNET
(18%) samples, was much more common in the former. In
contrast, SMAD4/DPC4, DAXX, and ATRX staining was
found to be intact in all samples (58). Though overall
prognosis across all PNECs is dismal, subtle differences in
molecular signatures have demonstrated overall differences in
prognosis. A study assessing response to platinum-based
chemotherapy showed that tumors with loss of Rb expression
had a significantly better response to treatment (80% vs 38.4%)
than those that retained Rb; a similar improvement in overall
response was seen in patients with KRAS mutations compared to
those with KRAS wild-type tumors (77% vs. 23%) (77). Such
distinct molecular signatures aid in characterizing G3 tumors as
PNETs or PNECs, thereby delivering potentially accurate
prognostic information and, more importantly, tailored
therapeutic regimens to patients. As discussed below,
recommended treatments by the European Neuroendocrine
Tumor Society and the National Comprehensive Cancer
Network differ for G3 PNECs (78, 79).
THERAPEUTIC ADVANCES
AND IMPLICATIONS OF MOLECULAR
SIGNATURES IN PNET/PNEC

In patients with resectable disease, R0/R1 resection remains the
treatment of choice. Unfortunately, the majority of patients with
PNETs either present with or develop metastatic disease within
two years of surgery, prompting the need for effective systemic
therapies (80). So far, there are a number of standard-of-care
therapies available, including somatostatin analogues, cytotoxic
chemotherapies, inhibitors of the angiogenesis and mTOR
pathways, and combinations of multi-drug regimens (Table 2).
There are, in addition to established treatment regimens, a
number of drugs in clinical trials. However, there is a paucity
of data focused on directing these therapies to their most
appropriate candidates.

Somatostatin Receptor Expression
and Blockade
Neuroendocrine tumors typically express somatostatin receptors
on their cell membranes, which have demonstrated diagnostic,
prognostic, and therapeutic utility. Recently, 68-Gallium-
DOTATATE positron emission tomography demonstrated
diagnostic superiority to conventional functional imaging
modalities while more accurately identifying clinically
aggressive and treatment-refractory tumors (85, 86). Of the five
different somatostatin receptor (SSTR) subtypes, SSTR-2 is
expressed on approximately 80% of PNETs, making it an
attractive target for therapeutic intervention (87). While the
ability to mitigate the effects of hormonal over-secretion is, in
January 2021 | Volume 11 | Article 575620
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and of itself, useful, objective tumor shrinkage with somatostatin
analogues is rare, and these drugs have predominantly been used
to slow the pace of disease. The phase III CLARINET trial, which
compared lanreotide to placebo in 204 patients with non-
functioning, SSTR-expressing gastrointestinal NETs (45% of
which were pancreatic), showed a significantly prolonged
progression-free survival (PFS) with SSTR blockade (25). Based
on this data, lanreotide has been approved by the U.S. Food and
Drug Administration (FDA) for the treatment of patients with
unresectable, well- or moderately differentiated, locally advanced
or metastatic gastroenteropancreatic NETs. A study examining
the use of lanreotide in NETs postulated that PNETs may fall
among the histologies least likely to respond, though there are no
studies that stratify the responses by molecular characteristics
(88). More recently, the b-radiation-emitting compound 177Lu-
Dotatate, a radiolabeled somatostatin analog, was approved for
systemic treatment of inoperable or metastatic disease after
demonstrating improved PFS and a significantly higher
response rate compared to high-dose octreotide LAR (83).

Angiogenic Factor Expression
and Inhibition
A deeper understanding of the molecular features of PNETs,
such as their abundant intra-tumoral vasculature and expression
of angiogenic factors, has led to the application of targeted
therapies like anti-VEGF and anti-PDGF drugs (89). Sunitinib,
a potent antagonist of VEGF and PDGF signaling, demonstrated
an overall response rate of 9%, with median PFS of 12.6 months
versus 5.8 months in placebo-controlled patients, leading to its
FDA approval for unresectable, locally advanced or metastatic
PNETs (81, 82). Other VEGF inhibitors such as bevacizumab
have shown similar overall response rates to monotherapy but
have demonstrated greater utility as a component of a multi-drug
regimen (52). Inhibition of VEGF signaling was, in some pre-
Frontiers in Endocrinology | www.frontiersin.org 6
clinical models, associated with increased invasiveness and
metastasis attributed to the over-expression of c-Met.
Subsequent trials examining blockade of this increased c-Met
signaling alongside VEGF inhibition identified it as a potential
escape mechanism for patients on anti-angiogenic therapies (90).
Overexpression of c-MET alone has also been detected in
PNETs, making it a therapeutic target in need of further study
(91). Drugs such as surufatinib—a small-molecule tyrosine
kinase inhibitor of VEGF, fibroblast growth factor, and CSF
receptors—aim to target multiple angiogenic pathways
simultaneously; encouraging phase Ib/II data for surufatinib
has prompted ongoing phase III studies (53). Though a
number of studies have examined baseline levels and
treatment-related changes in soluble plasma and tumor tissue
markers such as VEGF and its associated receptors, none have
identified a clinically reliable treatment (92).

mTOR Pathway Dysregulation
and Inhibition
A landmark phase III trial called RADIANT-3 showed a 6.4-
month improvement in median PFS with an mTOR inhibitor
called everolimus but was unable to demonstrate an OS advantage
(23, 84). A prognostic effect has been observed with lower baseline
levels of and treatment-related reduction in chromogranin A,
neuron-specific enolase, placental growth factor, and soluble
vascular endothelial growth factor receptor 1 (84, 93, 94).
Several studies have demonstrated mechanisms of resistance
responsible for the underwhelming effect of the drug and,
although combining mTOR inhibitors with other PI3K/AKT
inhibitors and/or anti-angiogenic drugs has proven superior to
monotherapy, an organized effort to identify molecular sub-
groups with more promising responses has yet to be undertaken
(52, 95–98). Previous studies have shown that the presence of
certain PI3K and KRAS mutations may influence breast cancer
TABLE 2 | Available therapeutic agents and their respective targets.

Molecular Pathway Target Available Therapeutic FDA Approval Outcomes (vs. placebo/control) Source

Angiogenesis VEGF Bevacizumab
Pazopanib

+PDGF Sunitinib * ORR: 9%
Median PFS: 12.6mo (vs. 5.8)

[81, 82]

Sorafenib
+cMet Surufatinib * ORR: 19%

Median PFS: 21.2mo
[53]

Somatostatin SSTR-2 Octreotide * Median OS: 77.4mo (vs. 73.7mo)
Median PFS: 14.3mo (vs. 6mo)

[24]

Lanreotide * Median PFS: NR (vs. 18mo)
PFS at 24mo: 65% (vs 33%)

[25]

PRRT
(177Lu-Dotatate)

* ORR: 18% (vs. 3%)
PFS at 20mo: 65% (vs. 11%)

[83]

+SSTR-1, 3 and 5 Pasireotide
PI3K/AKT/mTOR mTOR Everolimus

Temsirolimus
* Median OS: 44mo (vs. 37.7mo) [84]

Immunomodulation PD-1 Pembrolizumab ** Not Done
January 2021 | Volume 11 | Article
ORR, Overall response rate.
PFS, Progression-free survival.
OS, Overall survival.
*Approved for NETs
**Approved for other solid tumors.
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cells’ response to everolimus. Meanwhile, deletion of the KRAS
mutation restores sensitivity to the therapy (99). Studies
examining molecular predictors of response to mTOR inhibition
also demonstrated increased efficacy in tumors with a higher
percentage of phosphorylated (i.e., activated) mTOR, as assessed
by immunohistochemistry (100, 101). So far, confirmation of a
PI3K/AKT/mTOR pathway genetic mutation has not precluded
inclusion in any trial of mTOR pathway inhibitors in PNETs.

Checkpoint Receptor Expression
and Blockade
Finally, no discussion of contemporary systemic cancer therapies
is complete without mentioning immune checkpoint inhibitors.
Although PD-1 and PD-L1 expression in PNETs is rare, PD-L2
and abundant T-cell infiltrates have been noted when
characterizing the immune microenvironment, suggesting a
potential role for checkpoint blockade (102). No association
has been seen, however, between T-cell infiltration and
aforementioned molecular/mutational signatures in PNET, and
further studies are warranted to determine the existence of
such links. Initial data from the KEYNOTE-028 study
(NCT02054806) showed a 3.7% response rate, with only one
responder being a patient with PNET (103).

Cytotoxic Chemotherapies
and Combination Approaches
Various studies have demonstrated that PNETs are responsive to
cytotoxic chemotherapy. Streptozocin, an alkylating agent, was
approved by the FDA in the early 1980s for the treatment of
neuroendocrine carcinomas, when it achieved a 69% radiologic
response rate and median survival of 2.2 years when
administered in conjunction with doxorubicin (104). Concerns
surrounding inconsistencies in the reproducibility of these data,
toxicity, and the drug’s cumbersome infusion schedule have
made streptozocin a less-popular agent in the treatment of
PNETs (105). Subsequent studies led to increased use of
similar alkylating agents like dacarbazine and, more recently,
temozolomide, which has produced response rates up to 70%
when delivered in conjunction with capecitabine (106). More
recent prospective trials of temozolomide alongside targeted
agents such as bevacizumab and everolimus have produced
response rates of 33% and 40%, respectively (107, 108).
Objective response rates of temozolomide-based therapy in
PNEC are similarly unsatisfying at 33% (109). Patients who
lack a certain DNA repair enzyme conferring resistance to
temozolomide (O6-methylguanine DNA methyltransferase or
‘MGMT’), or who have reduced expression of MGMT due to
promoter methylation, see greater efficacy of the drug than those
with increased expression (110, 111); aside from this, there are
no studies examining molecular factors predictive of response to
cytotoxic chemotherapy (26, 112).

The majority of clinical studies with respect to PNET
therapies examine small cohorts of patients from single
institutions with a lack of consideration given to molecular
signature or lack of syndromic patients. Trials of everolimus
do not segregate patients based on genetic integrity of their
mTOR pathway components, and those examining anti-
Frontiers in Endocrinology | www.frontiersin.org 7
angiogenic medications are not stratified based on
upregulation of anti-angiogenic factors themselves. Moving
forward, it is important that these molecular signatures be
taken into greater consideration when evaluating the impact of
therapeutic approaches. As is often suggested, this will require
further multi-institutional collaboration bridged by common
nomenclature and classification systems.
PRECISION ONCOLOGY AND THE ROLE
OF MOLECULAR SIGNATURE

A few recent studies have used a precision oncology approach to
select drugs and druggable targets in gastroenteropancreatic (GEP)
NETs. RNA-seq-derived gene expression patterns in matched
primary PNETs and their metastases from 43 patients were
analyzed to identify metastasis-associated pathways (113).
Metastasis-specific alterations were identified in MAPK, cyclin-
dependent kinase (CDK), topoisomerase (TOP2A), NF-kB, and
PI3K/mTOR signaling pathways. This study provides valuable
insights into potentially druggable targets for the pre-clinical
assessment of pathway-specific drugs to treat advanced PNETs.
Another study used RNA-seq analysis of 212 GEP-NET samples
(including 83 PNETs) followed by virtual inference of protein
activity to identify master regulators that represented highly
enriched tumor-essential genes (114). A similar analysis in GEP-
NET cell lines was coupledwith systematic drug perturbation assays
using 107 small molecule compounds that could invert specific
master regulator protein activity signatures (tumor checkpoint
collapse) (114). Entinostat, an HDAC class I inhibitor,
demonstrated cytotoxicity and reversal of master regulatory
protein activity signatures in DEP-NET cell line models and
predicted efficacy in 42% of tumor specimens (with similar master
regulator protein activity signatures). This study shows how to
prioritize drugs for preclinical assessment that target specific
tumor checkpoints. The choice of cell line models is critical for the
success of these precision oncology approaches. Whole-exome
sequencing, copy-number analysis, and immunophenotyping of
NET cell lines has allowed for a deeper understanding of NET cell
line model systems and facilitated in vitro testing of various
therapeutics on different NET phenotypes (113, 115).
CONCLUSIONS

Despite significant progress in the characterization of PNETs at
the histologic and molecular level, clinically correlative findings
have largely been limited to prognostication. This is largely due to
the fact that clinical trials are not subject to mutation-specific
inclusion criteria. For years, these tumors have been classified by
their histologic differentiation and Ki-67 proliferative index.
However, it is clear that clinical aggressiveness also stratifies
along other genotypic/phenotypic lines. Therefore, future studies
must consider important tumor-specific genetic, epigenetic, and
transcriptomic alterations before and after therapy, such as
MEN1/DAXX/ATRX mutations, ARX expression, and their
corresponding phenotypic manifestations (i.e., ALT), as defining
January 2021 | Volume 11 | Article 575620
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characteristics that may impact tumor recurrence and the survival
of patients with PNETs. As we move into an era of personalized
medicine, where next-generation sequencing is more readily and
widely available, prior ‘one-size fits all’ models of classification
must be replaced by more-informed systems.
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