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Analysis of the proteome of myostatin (MSTN) knockout (KO) mouse C2C12 cells has proven valuable to studies investigating
the molecular mechanisms by which MSTN regulates skeletal muscle development. To identify new protein/pathway alterations
and candidate biomarkers for skeletal muscle development, we compared proteomic profiles of MSTN KO C2C12 cells (KO)
with corresponding wild-type cells (NC) using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS)
technique. A total of 2637 proteins were identified and quantified in KO cells. Among these proteins, 77 proteins were significantly
differentially expressed, 38 upregulated, and 39 downregulated, in MSTN KO C2C12 cells. These significantly altered proteins
are involved in metabolic processes, developmental processes, immune system processes, and the regulation of other biological
processes. Enrichment analysis was utilized to link these alterations to biological pathways, which are predominantly related to
oxidative phosphorylation, protein digestion and absorption, mitochondrion localisation, antigen processing and presentation,
the MAPK signaling pathway, the PPAR signaling pathway, the PI3K-Akt signaling pathway, and the JAK-STAT signaling pathway.
Upregulation of several proteins, including epoxide hydrolase, tropomyosin 1, Cyb5a,HTRA1, Cox6a1, CD109, Synap29, andUgt1a6,
likely enhanced skeletal muscle development, the immune system, and energy metabolism. Collectively, our results present a
comprehensive proteomics analysis of MSTN KO C2C12 myoblast cells; we hypothesize thatMSTN KO could activate p38MAPK
signaling pathway by CDC42, and we further deciphered the function ofMSTN in the regulation of skeletal muscle development,
immune processes, and mitochondrial energy metabolism.

1. Introduction

The myokine MSTN (also termed growth differentiation
factor 8, GDF8) is a secreted growth and differentiation factor
that belongs to the transforming growth factor-𝛽 superfamily
[1]. Myostatin is a highly conserved negative regulator of
skeletal muscle development that controls the proliferation of
muscle precursor cells [2, 3] and is mainly expressed in mus-
cles [4]. Several spontaneous mutations in the MSTN gene
have been found to be correlated with muscle hypertrophy
in animals [5] or even in humans [6]; therefore, myostatin
dysfunction has been considered a promising strategy for
animal breeding or for fighting muscle atrophy in different
diseases, including neuromuscular diseases [7]. It has been
proven that myostatin can interfere with protein synthesis
as well as protein breakdown in proliferating and adult
myofibers [8, 9]. Myostatin, along with other TGF-𝛽-related

factors, also plays key roles in the growth, development, and
regulation of diverse cellular functions in other types of cells
[10, 11].

Proteins play an important role in many types of
molecular networks and perform most of the biochemi-
cal functions of living organisms. Intrinsically, cell signal
transduction is based on the formation and dissolution of
protein-protein interactions, which transmit, translate, and
transform stimuli into appropriate biological responses [12].
Significant technological advances over the last decade now
allow near exhaustive analysis of the proteomes of vari-
ous organisms [13–16]. Label-free liquid chromatography-
mass spectrometry (LC-MS/MS) routinely quantifies and
identifies thousands of proteins across multiple samples in
a single run, providing an unprecedented opportunity to
examine changes in the proteomics profile of a biological
fraction or organism. In addition, gene ontology (GO), Kyoto
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Encyclopedia of Genes and Genomes (KEGG), and protein-
protein interaction (PPI) analysis of proteomics data are
conducted to categorize differentially expressed proteins by
canonical pathway and molecular function and to iden-
tify possible interaction regulators of a protein of interest.
Accordingly, in this work, we used a highly sensitive, label-
free LC-MS/MS approach to profile and quantify the dif-
ferential abundance of skeletal muscle proteins in C2C12
myoblasts with MSTN gene knockout relative to wild-type
cells in order to advance our molecular understanding of
myostatin function in skeletal muscle.

Skeletal muscle is a highly specialized tissue that plays
a fundamental role in locomotion and is indispensable in
regulating whole-body energy metabolism. Recent advances
in proteomics and genomic technologies have resulted in sig-
nificant insights into the biological functions and molecular
mechanisms of several proteins and genes.

To date, two studies have examined proteomic changes
associated with MSTN dysfunction during pre- and postde-
velopment [17, 18]. Chelh et al. found that comparison of pro-
tein profiles revealed 20 up- and 18 downregulated proteins
spots between MSTN-null mice and control littermates [17].
However, this result may reflect the relatively low sensitivity
of the two-dimensional gel electrophoresis (2DE) technique
utilized. Salzler et al. used high-resolution mass spectrometry
coupled with SILAC mouse technology but only quantitated
the relative proteomic changes in gastrocnemius muscle
from MSTN KO mice and mice treated for 2 weeks with
REGN1033, an anti-MSTN antibody [18]. However, the MS-
based proteomics in this study is more sensitive than 2DE
but remains to be improved for detecting changes in low
abundant proteins.

In the current study, skeletal muscle C2C12 cells were
used to study the molecular mechanisms underlying the
biological effects of MSTN from the proteome perspective
in order to characterize alterations in the global protein
expression of the C2C12 cell proteome in response to MSTN.
Cells were labelled, and the proteins were quantified fol-
lowing standard label-free LC-MS/MS proteomics operating
procedures. Using label-free LC-MS/MS proteomics, the
differentially expressed proteins fromMSTN KO and normal
control group C2C12 cells were accurately characterized,
and the authenticity and accuracy of the protein expression
detected during the quantitative proteomic examination were
further confirmed using Western blotting. The identification
of these proteins will facilitate a better understanding of the
molecular mechanisms of muscle development underlying
MSTN KO. To the best of our knowledge, this is the first gel-
less quantitative MSTN KO proteome study using label-free
mass spectrometry with high mass accuracy in both MS and
MS/MS scans.

2. Materials and Methods

2.1. Cell Culture and Treatments. The mouse skeletal muscle
C2C12 myoblast cell line was obtained from the Cell Bank
of the Chinese Academy of Sciences (Shanghai, China) and
cultured in DMEM/F12 medium (Gibco, UAS) containing
10% FBS (Gibco, UAS), 100 𝜇g/mL streptomycin (Sigma,

USA), and 100 U/mL penicillin (Sigma, USA). Cells were
seeded at a density of 2 × 105 cells/well in 10-cm plates
(Corning, USA) for gene and protein expression studies. Cell
culturesweremaintained in a humidified 37∘C incubatorwith
a 5% CO2 atmosphere. The culture medium for the cell lines
was replaced every 2 days, and the cells were harvested upon
reaching approximately 90% confluence.

The constructs sgRNA1 and sgRNA2, which target the
MSTN coding region, were designed using the CRISPR
Design tool (http://crispr.mit.edu). The paired synthesized
oligonucleotides for sgRNAs were annealed and subcloned
into the pUC57-U6-sgRNA (Addgene #51132) expression
vector. The resulting expression vectors forMSTN were con-
firmed by Sanger sequencing. C2C12 cells were transfected
with MSTN sgRNA1 (1.5 𝜇g) and MSTN sgRNA2 (1.5 𝜇g),
along with 1 𝜇g of Cas9 plasmid by Lipofectamine 3000 in a
6-well culture plate. The transfection procedure was carried
out using Lipofectamine 3000 Reagent (Invitrogen, USA)
according to the manufacturer’s instructions. T7 endonucle-
ase I (T7EI) recognizes and cleaves mismatched heteroduplex
DNA that arises from the hybridization of wild-type and
mutant DNA strands, and cleavage was characterized further
by Sanger sequencing. We chose indels at the target sites of
MSTN skeletal muscle clone cells as treatment groups. For all
experiments, empty vector-treated C2C12 cells were used as
controls, and 3 independent experiments were performed as
biological replicates. Off-target analysis was performed using
a bioinformatics-based search tool (Cas-OFFinder) to select
potential off-target sites, which were evaluated using Sanger
sequencing to confirm gene modification frequencies for the
CRISPR/Cas9 system. We chose indels at the target sites of
MSTN skeletal muscle clone cells as treatment groups. For all
experiments, empty vector-treated C2C12 cells were used as
controls, and 3 independent experiments were performed as
biological replicates.

2.2. RNA Extraction and Gene Expression Analysis. Total
cellular RNA was isolated from the samples using an RNA
extraction kit (Promega, Beijing, China), following the man-
ufacturer’s instructions. Two micrograms of total RNA was
transcribed into cDNA using an Invitrogen SuperScript�
One-step RT-PCR Kit. A real-time quantitative PCR assay
was carried out with SYBR Premix Ex Taq II (Takara, China)
and monitored with a CFX96 Touch Real-time PCR Detec-
tion System (Bio-Rad, USA). 𝛽-actin served as the reporter
gene. All primer sequences used in this assay are shown in
Supplementary Information Table S1. The expression data
were analyzed using the 2-ΔΔCT method.

2.3. Sample Preparation and Protein Digestion for a Label-
Free Experiment. For label-free experiments, proteins were
extracted from the samples of both control and MSTN KO
cells in triplicate. The cell pellets were washed twice with cold
PBS. For label-free experiments, 200 𝜇L of cold SDT lysis
buffer (4% SDS, 100 mM DTT, 150 mM Tris-HCl at pH 8.0)
was added to the cell pellets on ice; afterward, the samples
were disrupted by agitation using a homogenizer (Fastprep-
24 �, MP Biomedical) and boiling for 10 min. The samples
were further ultrasonicated and incubated in boiling water
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for another 5 min, and the undissolved cellular debris was
removed by centrifugation at 14,000 g for 30 min at 4∘C.
Protein concentrations of BCA determined cell lysates were
adjusted to 200 𝜇L of each sample. The sample was stored at
-80∘C.

2.4. SDS-PAGE Separation. The 5 x loading buffer was used
tomixwith the 20 𝜇g proteins of each sample respectively and
themixture was boiled for 5min.The proteins were separated
on 12.5% SDS-PAGE gel (constant current 14 mA, 120 min).
Coomassie Blue R-250 staining was used to visualize protein
bands.

2.5. Protein Digestion. Approximately 250 𝜇g of protein from
each sample was digested using the filter-aided sample prepa-
ration (FASP) method as previously described [19]. Put it in
simple, a protein sample was suspended in UA buffer (8 M
urea, 150 mM Tris-HCl, pH 8.0) to removed detergent, DTT
and other low-molecular-weight components by repeated
ultrafiltration (Microcon units, 10 kD). After ultrafiltration,
to block reduced the cysteine residues, the 100 𝜇L of iodoac-
etamide (100mMIAA inUAbuffer)was added and incubated
for 30 min in the dark. Next, the filter was washed with
100 𝜇L of UA buffer at 14,000 g for 10 min and twice with
0.025 M (100 𝜇L) ammonium bicarbonate. Then, the protein
samples were added to 100 𝜇L of trypsin stock solution (8
𝜇g of trypsin in 100 𝜇L of NH4HCO3) for digested proteins
by gentle overtaxing for 20 s and incubated at 37∘C for
16 h. The digested peptides in each sample were desalted
on C18 Cartridges (Empore� SPE Cartridges C18 (standard
density), bed I.D. 7 mm, volume 3 mL; Sigma) and then
concentrated by centrifugation at 14,000 g for 10min andwere
reconstituted in 50𝜇L of 0.1% (v/v) trifluoroacetic acid. Based
on the frequency calculation of tryptophan and tyrosine in
vertebrate proteins, the peptide content was quantified by
using extinction coefficient of 1.1 with 0.1% (wt/vol) solution
under UV light spectral density at 280 nm.

2.6. LC-MS/MS Analysis. The LC-MS/MS analysis was con-
ducted on an Easy nLC Liquid Chromatograph (Thermo
Fisher Scientific) coupled to a Q Exactive mass spectrometer
(Thermo Fisher Scientific) for 120 min. Next, the peptides
were desalted on C18 Cartridges (Empore� SPE Cartridges
C18, bed I.D. 7 mm, volume 3 mL, Sigma), concentrated by
vacuum centrifugation and reconstituted in 40 𝜇L of 0.1%
(v/v) formic acid. Peptides were separated on a C18-reversed
phase analytical column (Thermo Scientific Easy Column; 10
cm length, 75 𝜇m inner diameter, 3-𝜇m resin) over a 120 min
gradient from buffer A (2% acetonitrile and 0.1% formic acid,
vol/vol) and B linear gradient solvent (84% acetonitrile and
0.1% formic acid) at a flow rate of 250 nL/min controlled
by IntelliFlow technology. Data-dependent acquisition was
performed with MS scan mass window set at 300−1800 m/z,
and top 10 charge state ions were selected for fragmentation.
Dynamic exclusion time was set to 50 s. Survey scans were
acquired at 17,500 with a maximum ion injection time at
200 m/z. The normalized collision energy was 30 EV, and
the underfill ratio, which specifies the minimum percentage
of the target value likely to be reached at the maximum fill

time, was defined as 0.1%. The instrument was run with the
peptide recognitionmode enabled. Each samplewas analyzed
in triplicate.

2.7. Data Calculation and Analysis. The raw LC-MS/MS data
from all samples were analyzed using MaxQuant software
(http://maxquant.org/, version 1.5.3.17) [20, 21] and searched
against UniProt mouse 83374 20170829 and FASTA data-
bases (83374 total entries, downloaded 08/29/17) using the
built in Andromeda search engine [22].The database patterns
were shown using Target-Reverse. The following search
parameters were set: enzyme: trypsin, maximum miss cleav-
age: 2, precursor mass window: 6 ppm, precursor mass
tolerance: 20 ppm, fixed modification: Carbamidomethyla-
tion of cysteines, variable modifications: protein N-terminal
acetylation and methionine oxidation. Statistical analysis
that compared the difference between the MSTN KO and
NC groups was performed by unpaired t-test. Differential
proteins were screened with the following criteria: target FDR
(strict) was set as 0.01 and target FDR (relaxed) was set as
0.05. The identification of the protein was allowed with a
maximum 1% false positive discovery rate in at least three
technical replicate injections.

Label-free quantification was carried out in MaxQuant
software as previously described [23]. Protein abundance was
calculated using normalized spectral protein intensity (LFQ
intensity). The LFQ intensity values were Log2 transformed,
andmissing valueswere imputedwith randomnumbers from
a normal distribution.

2.8. Bioinformatics Analysis. Hierarchical clustering analy-
sis was performed using Cluster 3.0 (http://bonsai.hgc.jp/∼
mdehoon/software/cluster/software.htm) and the Java Tree-
view software (http://jtreeview.sourceforge.net) for protein
relative expression data. Meanwhile, hierarchical clustering
analysis was further processed using Euclidean distance algo-
rithm for similarity measure and average linkage clustering
algorithm (clustering uses the centroids of the observations).
Heatmap is often presented as a visual aid in addition to the
dendrogram.

The user-defined search parameters in InterProScan were
used for the GO annotation: the top 10 blast hits with E-
value less than 1e-3 for each query sequence were retrieved
and loaded into Blast2GO1 (Version 3.3.5) for GO2 mapping
and annotation. An annotation configuration with a filter
of 1e-6 E-value was selected, with the default gradual EC
weights, a GO weight of 5, and an annotation cutoff of 75
was chosen. Unannotated sequences were then reannotated
with more permissive parameters. The sequences without
BLAST hits and unannotated sequences were then selected
to compare with an InterProScan3 and EBI databases to
retrieve functional annotations of protein motifs and merge
the InterProScan GO terms to the annotation set. The GO
annotation results were plotted by R scripts.

Database enrichment analysis was performed against the
UniProtKB database (Release 2016 10) in FASTA format.
Mus musculus was chosen as the organism for enrichment
analysis. The obtained peptide/protein list was exported
to Microsoft Excel for further analysis. In this work,

http://maxquant.org/
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these proteins were further subjected to EBI databases to
find GO annotations. Online available databases: UniProt
(http://www.uniprot.org), KEGG (Kyoto Encyclopedia of
Genes and Genomes) (http://www.genome.jp/kegg/), and
NCBI (National Center for Biotechnology Information)
(https://www.ncbi.nlm.nih.gov/) were used for the GO and
KEGG. GO enrichment on three ontologies (biological pro-
cess, BP, molecular function, MF, and cellular component,
CC) and KEGG pathway enrichment analyses were applied
based on the Fisher’ exact test, considering the whole quan-
tified protein/phosphoproteins annotation as background
dataset. Benjamini- Hochberg correction for multiple testing
was further applied to adjust derived p-values. And only
functional categories and pathways with p-values < 0.05 were
considered as significant.

2.9. Protein-Protein Interaction (PPI) Analysis. PPIs were
studied using the IntAct molecular interaction database
(http://www.ebi.ac.uk/intact/) according to gene symbols
or STRING software (http://string-db.org/). Furthermore,
the degree of each protein was calculated to evaluate the
importance of the protein in the PPI network. The results
were downloaded in the XGMML format and imported into
Cytoscape56 software (http://www.cytoscape.org/, version
3.2.1) to visualize and further analyze functional protein-
protein interaction networks. Furthermore, the degree of
each protein was calculated to evaluate the importance of the
protein in the PPI network.

2.10. Western Blotting. To validate our label-free LC-MS
results, Western blot analyses were performed on whole
myoblast C2C12 cell protein extracts. Cells were lysed in
ice-cold RIPA buffer (Beyotime, China) in the presence of
protease inhibitors and 1%DTT; the extractswere centrifuged
at 12,000 rpm for 20 min at 4∘C, and the supernatants
were transferred to new Eppendorf tubes. The total protein
concentration was determined using the Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific, USA) according to the
manufacturer’s instructions. Total protein extracts (every
20 𝜇g) were separated on 10% or 12% SDS-PAGE gels
and then were transferred to PVDF membranes (Roche,
USA) using a semidry transfer blotter. The membranes were
blocked with 5% skimmed milk powder in TBST for 1 h
and then were incubated with primary polyclonal antibody
(anti-GDF8, Santa Cruz, USA; Anilin, Santa Cruz, USA;
UGT1a6, Abcam, UK; Cox6b1, Santa Cruz, USA; Tgfb1i1,
Santa Cruz, USA) overnight at 4∘C. After washing three
times, the membranes were incubated at room temperature
for 1-2 h with horseradish peroxidase (HRP)-conjugated
goat anti-rabbit IgG (Beyotime, China) or mouse IgG𝜅
binding protein-HRP (Santa Cruz, USA) secondary antibody.
Detection was performed using chemiluminescence luminal
reagents (Millipore, USA).

2.11. Statistical Analyses. Data were analyzed using GraphPad
Prism 7 Software (GraphPad Software, La Jolla, CA). For
statistical analysis, one-way ANOVA with Tukey’s post hoc
test or a two-tailed Student's t-test was used to determine the

significance. The data are shown as the mean ± SE. P values
≤ 0.05 were considered significant.

3. Results

3.1. Successful Generation of CRISPR/Cas9-Mediated MSTN
Knockout in C2C12 Myoblasts. To ensure the success of
mutagenesis by CRISPR/Cas9, sgRNA1 and sgRNA2 were
synthesized to target the functional domain in exon 3. The
T7EI mutation detection assay was performed to detect
the mutational efficacy of MSTN. The PCR products from
C2C12 myoblasts in the control group (empty vector-treated
C2C12 cells) showed one distinct band (725 bp), while those
from MSTN KO myoblasts showed two or more bands (725
bp). Gel electrophoresis revealed various banding patterns
depending on the type of mutation (Supplementary Figure
S1A). Because the efficacy of MSTN sgRNA1 knockout was
much higher than that of MSTN sgRNA2, we chose MSTN
sgRNA1 knockout cells for Sanger sequencing. Cleavage was
confirmed by sequence analysis, which showed that there
was a 2-bp deletion in the MSTN gene target site of clone
number 3. The 2-bp deletion occurred at position 859-860
with respect to the ATG start codon.The number 11 cell clone
contained a 4-bp deletion between 857 and 867, whereas the
number 20 cell clone contained a 1-bp deletion at position
860. The observed indels at the target sites of MSTN with a
range of mutation sizes are shown in Supplementary Figure
S1B.We also assessed the off-target activity of themutant cells
by sequencing predicted off-target sites for both gRNAs, and
no mutation was detected (Supplementary Figure S2).

As Supplementary Figure S3A shows, we foundmorphol-
ogy of MSTN KO C2C12 cells was significantly bigger than
NC C2C12 cells from the photo of a microscope. We found
lower expression levels of the MSTN gene in MSTN KO
C2C12 myoblasts than in the control group (Supplementary
Figure S3B). Consistent with the qPCR analysis, the Western
blotting analysis showed lower levels of MSTN protein in
MSTN KO cells than in control cells (Supplementary Figure
S3C).

3.2. Identification and Quantification of Proteins from MSTN
KO and Control Cells. The protein profiles, analyzed by
MaxQuant 1.5.3.17, ofMSTN-knockout C2C12 cells and con-
trol cellswere compared.Weused a false discovery rate (FDR)
≤ 0.01 as the threshold to judge the significance of differences
in protein expression. The label-free LC-MS/MS results indi-
cated that theMSTN KO cells yielded 2,637 proteins, whereas
the control cells yielded 2,779 proteins; among these, 2,413
proteins shared common datasets. Statistical analysis of the
expression of these proteins revealed significant changes in 77
associated proteins in theMSTN-knockout cells with > 2-fold
changes relative to control cells: 39 proteins were upregulated,
whereas 38 proteinswere downregulated. Volcanoplots of the
DEPs are shown in Figure 1. Hierarchical clustering provided
the expression profiles of the top 69 DEGs (Figure 2). To fur-
ther seek the target proteins related to muscle development.
We found that mitochondrial, CDC42 was changed in DEPs.
As well known, skeletal muscle development was regulated
by CDC42 [24]. The top 20 significantly upregulated or

http://www.uniprot.org
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Figure 1: Mass spectrometry-based quantitative proteomic analysis of skeletal muscle C2C12 cell proteins. Volcano plot of a total of
3003 quantified proteins illustrating increased and decreased expression following MSTN knockout. The horizontal coordinate is the
difference multiple (logarithmic transformation at the base of 2), and the vertical coordinate is the significant difference p value (logarithmic
transformation at the base of 10). Red dots represent the expression profiles of 77 significantly different proteins showing a fold change ≥ ± 2
in their relative abundance inMSTN KO cells relative to control cells.

downregulated proteins fromKO cells relative to NC cells are
summarized in Supplementary Table S1.

3.3. Functional Classification Annotation Analysis of Differen-
tially Expressed Proteins. To further investigate MSTN KO
C2C12 skeletal muscle cells, GO analysis was performed to
generate classification clusters based on biological processes,
cellular components, and molecular functioning. The top 20
enriched GO terms are shown in Figure 3. By comparing the
protein list from MSTN KO cells with that of the NC group,
major GO terms were found to be relevant to mitochondrion
localisation, stearoyl-CoA 9-desaturase activity, SMADbind-
ing, lysosome, neuroepithelial cell differentiation, immune
system process, and developmental process. Furthermore,
level-two GO terms relevant to synapse part, lysosome,
microtubule cytoskeleton, actin cytoskeleton, cytoskeleton,
mitochondrial outer membrane, mitochondrial envelope,
and the nucleus were found to be enriched in the CC. In
terms of molecular function, electron carrier, transporter
activity, molecular function regulator, transcription factor
activity, protein binding, catalytic activity, binding, structural
molecule activity, and nucleic acid binding transcription
factor activity were found to be enriched. Moreover, immune
system process, developmental process, regulation of trans-
forming growth factor beta receptor signaling pathway,
cell cycle process, and metabolic process were significantly
enriched within BP. As shown in Figure 4, we found that the
cell cycle process contains the protein CDC42, and MAPK
signaling pathway contains the protein MAPK3.

3.4. Pathway Analysis. Specific protein functions should
also be reflected by pathway information. We mapped all
identified proteins to the KEGG pathway database. Statistical
enrichment of the 77 significantly altered proteins (KO
versus NC) was calculated for each KEGG pathway. The
top 20 pathways were identified by comparing the complete
list of proteins with significantly different abundance and
proteins that were present or absent in KO and NC cells. The
results from the KEGG analysis revealed that many proteins

related to alpha-linolenic acid metabolism (delta-6 desat-
urase), the PPAR signaling pathway (delta-6 desaturase),
antigen processing and presentation (cathepsin B), and the
MAPK signaling pathway (F-box-like/WD repeat-containing
protein TBL1X,MAPK3) were also enriched (Figure 5). In the
current study, we found that CDC42 was changed by MSTN
KO, activating p38 MAP Kinase signaling pathway as shown
in Figure 6.

In addition, several proteins were typically enriched in
oxidative phosphorylation, the FOXO signaling pathways,
the PPAR signaling pathway, the PI3K-AKT signaling path-
way and the JAK-STAT signaling pathway, as shown in
Supplementary Figures S4 and S5. Proteins associated with
skeletal muscle cell development, fatty acid metabolism, the
immune system and mitochondrial energy metabolism.

3.5. Protein-Protein Interaction (PPI) Analysis. Ingenuity
analysis of interaction networks of skeletal muscle cell pro-
teins in C2C12 myoblasts was performed as part of the PPI
analysis. Proteomics regulation events were analyzed by using
STRING software to map the 69 proteins with significant
changes and 209 proteins that appeared or disappeared
between the KO and NC cells in their direct PPI networks
(Figure 7).

3.6. Western Blot Analysis. To validate the outcomes of label-
free analysis at the proteomic level, we performed Western
blotting using the cell protein extract to assess key protein
content that might be involved in muscle development and
other physiological processes. Anilin, UGT1a6, Cox6b1, and
Tgfb1i1 were selected for further confirmation of the LC-
MS/MS proteomics results based on differences in signal-
ing pathways, molecular localisation, and the novelty of
biological function. Up- and downregulation of proteins
were confirmed by Western blot analysis. Immunoblotting
revealed that Anilin and UGT1a6 showed significant upreg-
ulation in terms of protein expression, and the Cox6b1 and
Tgfb1i1 proteins showed significant downregulation in C2C12
cell samples. Overall, the Western blot results showed that
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expression patterns of the top 69 DEPs. The red blocks represent the overexpressed proteins, and the blue blocks represent proteins with the
lowest expression levels. Coloured bars indicate the expression levels.



BioMed Research International 7

iso
pr

en
oi

d 
bi

os
yn

th
et

ic 
pr

oc
es

s
m

ito
ch

on
dr

io
n 

lo
ca

liz
at

io
n

ce
llu

la
r l

ip
id

 m
et

ab
ol

ic 
pr

oc
es

s
fa

t p
ad

 d
ev

elo
pm

en
t

en
tr

y i
nt

o 
ot

he
r o

rg
an

ism
 in

vo
lve

d 
in

 sy
m

bi
ot

ic 
in

te
ra

cti
on

en
tr

y i
nt

o 
ce

ll 
of

 o
th

er
 o

rg
an

ism
 in

vo
lve

d 
in

 sy
m

bi
ot

ic 
in

te
ra

cti
on

vi
ra

l e
nt

ry
 in

to
 h

os
t c

ell
m

al
e m

eio
sis

 I

ste
ar

oy
l-C

oA
 9

-d
es

at
ur

as
e a

ct
iv

ity
(G

O
:0

01
67

17
)o

xi
do

re
du

cta
se

 a
ct

iv
ity

, a
ct

in
g o

n 
pa

ire
d 

do
no

rs
...

ac
yl

-C
oA

 d
es

at
ur

as
e a

ct
iv

ity
tra

ns
am

in
as

e a
ct

iv
ity

m
an

ga
ne

se
 io

n 
bi

nd
in

g
SM

AD
 b

in
di

ng

m
ito

ch
on

dr
io

n
cy

to
so

lic
 p

ar
t

ou
te

r d
en

se
 fi

be
r

ex
tra

ce
llu

la
r s

pa
ce

lys
os

om
e

ly
tic

 va
cu

ol
e

0.27

0.4

0.05

0.33 0.29 0.29 0.29 0.29 0.67 0.5 0.5 0.25 0.25 0.22

0.060.06

0.04

0.08

1

0.03

0.02

p.value

0.01

Enriched GO Terms (Top 20)

BP MF CC

0

5

10

15

20

Pr
ot

ei
n 

N
um

be
r

(a)

Enriched GO Terms (Top 20)

0.4

0.250.25

0.20.21

0.30.3

0.670.67

0.270.25

0.12

0.670.670.67

0.38

0.33

0.29

0.50.5

co
lu

m
na

r/
cu

bo
id

al
 ep

ith
eli

al
 ce

ll 
di

ffe
re

nt
ia

tio
n

ne
ur

oe
pi

th
eli

al
 ce

ll 
di

ffe
re

nt
ia

tio
n

re
gu

la
tio

n 
of

 m
icr

ot
ub

ul
e p

ol
ym

er
iz

at
io

n
co

rt
ico

ste
ro

id
 re

ce
pt

or
 si

gn
al

in
g p

at
hw

ay
de

fen
se

 re
sp

on
se

 to
 fu

ng
us

glu
co

co
rt

ico
id

 re
ce

pt
or

 si
gn

al
in

g p
at

hw
ay

re
gu

la
tio

n 
of

 m
icr

ot
ub

ul
e p

ol
ym

er
iz

at
io

n 
or

 d
ep

ol
ym

er
iz

at
io

n
or

ga
ni

c c
yc

lic
 co

m
po

un
d 

ca
ta

bo
lic

 p
ro

ce
ss

(G
O

:0
09

88
11

)tr
an

sc
rip

tio
na

l r
ep

re
sso

r a
ct

iv
ity

...
tra

ns
cr

ip
tio

na
l a

ct
iv

at
or

 a
ct

iv
ity

, R
NA

 p
ol

ym
er

as
e I

I t
ra

ns
cr

ip
tio

n 
fa

cto
r b

in
di

ng
tra

ns
cr

ip
tio

n 
fa

cto
r a

ct
iv

ity
, R

NA
 p

ol
ym

er
as

e I
I t

ra
ns

cr
ip

tio
n 

fa
cto

r b
in

di
ng

ho
rm

on
e b

in
di

ng
hy

dr
ox

ym
et

hy
lgl

ut
ar

yl
-C

oA
 sy

nt
ha

se
 a

ct
iv

ity
ch

ro
m

at
in

 D
NA

 b
in

di
ng

hi
sto

ne
 a

ce
ty

ltr
an

sfe
ra

se
 co

m
pl

ex
sy

na
pt

ic 
ve

sic
le

ex
oc

yt
ic 

ve
sic

le
pr

ot
ein

 a
ce

ty
ltr

an
sfe

ra
se

 co
m

pl
ex

ac
et

ylt
ra

ns
fer

as
e c

om
pl

ex
CC

R4
-N

O
T 

co
m

pl
ex

0.025
p.value

0.020
0.015
0.010
0.005

0.0

2.5

5.0

7.5

10.0

Pr
ot

ei
n 

N
um

be
r

BP MF CC

(b)

Figure 3: Gene Ontology (GO) annotation of the 20 most differentially accumulated proteins (DAPs) in C2C12 cells underMSTN-knockout
conditions. (a) KO versus NC, analysis of significantly different proteins; (b) KO versus NC, analysis of present or absent proteins.

the LC−MS/MS proteomics data were reliable and accurate
(Figure 8).

4. Discussion

Proteomic changes relating to MSTN gene mutation have
been studied, and the results vary depending on experimental
models. In our previous studies, we used RNA-seq to reveal
the transcriptome profile in myostatin gene-knockout goats
[25]. Salzler et al., using high-resolution mass spectrometry
coupled with SILAC mouse technology, quantitated the
relative proteomics changes in gastrocnemius muscle from
MSTN-knockout (MSTN−/−) mice and mice treated for 2
weeks with REGN1033, an anti-MSTN antibody. Functional
annotation of the altered proteins inMSTN−/− mice corrob-
orated multiple physiological changes, including the slow-to-
fast fiber type switch [18]. Puddick et al. used a comparative
proteomic method to quantify proteins change in skeletal
muscle mitochondria from MSTN-null mice [26]. It is well

established that myostatin is mainly expressed in skeletal
muscles and potently inhibits skeletal muscle development
[27]. Since its discovery, many studies have demonstrated
the mechanism by which myostatin promotes the loss of
protein in skeletal muscles [28–30]. Despite this very clear
phenomenon, some conflicting evidence remains concerning
biological processes that are altered in the presence of myo-
statin. Differences may be due to the different concentrations
of myostatin used, the myostatin isoform (active homodimer
or full-length), and methodologies [31].

Here, we used MSTN gene knockout cells to investigate
the differential expression of proteins and demonstrated that
39 proteins were significantly upregulated, while 38 proteins
were downregulated, with changes greater than a 2-fold
difference. Further, we found a total of 3003 peptides and
proteins in the KO cells that met the criterion of a global
false discovery rate cutoff of<1% based on the Andromeda
search engine. In the present study, several of the identi-
fied DEPs are typically associated with skeletal muscle cell
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Figure 4: Level-two gene ontology (GO) annotation of differentially accumulated proteins (DAPS) in C2C12 cells. Classification of the
annotated amino acid sequences. Amino acid sequences were grouped into different functional subcategories: cellular component (CC),
molecular function (MF), and biological process (BF). (a) KO versus NC, analysis of significantly different proteins; (b) KO versus NC,
analysis of present or absent proteins. Figure red dotted portions represent cell development-relative and immune system GO terms.

development, including Fst1, CD109, transforming growth
factor 𝛽-1-induced transcript 1 protein (Tgfb1i1) and HTRA1.
Fst1 is a secreted glycoprotein that was first identified as a
potent inhibitor of some members of the TGF-𝛽 superfamily
because of its strong binding affinity for the receptor protein
activin. Fst1 can block the activity of myostatin via compet-
itive binding [32]. CD109 is a glycosylphosphatidylinositol-
anchored glycoprotein that negatively regulates the TGF-𝛽
signaling pathway. CD109 promotes TGF-𝛽 receptor I inter-
nalization and degradation by regulating SMAD7 and Smurf2
activities, which inhibit the TGF-𝛽 signaling pathway [33].
Tgfb1i1, also known as hydrogen peroxide-inducible clone-
5 (Hic-5), was found to be induced by TGF-𝛽 and is a focal
adhesion scaffold LIM-containing protein with homology to

paxillin [34]. It was reported that Tgfbli1 upregulates TGF-
𝛽 signaling through its ability to directly interact with and
neutralize Smad7 in a myofibroblast cell line [35]. HTRA1 is
a member of the high-temperature requirement A (HTRA)
family of serine proteases. Mammalian HTRA1 plays a role in
a variety of normal physiological processes, including protein
degradation and cell signaling, and has been implicated in
skeletal development and osteogenesis [36, 37]. Mutations
in the HTRA1 gene can decrease HTRA1 protease activity,
consequently leading to the disinhibition of TGF-𝛽 family
signaling. TGF-𝛽 plays a key role in bone remodelling by
inducing osteoblast differentiation and proliferation [38]. Up
to now, there has been no study investigating the interactive
relationships among Fst1, CD109, Tgfb1i1 and HTRA1 and
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Figure 5: Top 20 KEGG pathways enrichment analysis. (a) KO versus NC, analysis of significantly different proteins; (b) KO versus NC,
analysis of present or absent proteins. Figure blue dotted portions represent cell development-relative KEGG pathway.
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MSTN. The interactions may be to be a new mechanism for
MSTN to regulate muscle development.

MSTN dysfunctionmay lead to protein changes in biolog-
ical processes. Several DEPs are immune system-related pro-
teins, including interferon-induced transmembrane protein 3
(IFITM3), Rpl39, Mcl-1 ubiquitin ligase, CD109 antigen and,
Anilin. IFITM3 is a cellular restriction factor that inhibits
infection by the influenza virus and many other pathogenic
viruses. IFITM3 prevents endocytosed virus particles from
accessing the host cytoplasm. IFITM3 modulation of endo-
cytic compartments and posttranslational regulation may
also be important for other potential functions of IFITM
isoforms as well as immune evasion by pathogens [39].
We showed that IFITM3 (Q9CQW9) was downregulated
in MSTN KO cells. However, Anilin was upregulated in
MSTN KO cells. Anilin is a 124-kDa protein that is highly
concentrated in the cleavage furrow in numerous animal
cells with a pattern that resembles that of Rho A [40].
Rho A promotes nucleation, elongation, and sliding of actin
filaments through the coordinated activation of both formin
proteins and myosin II motors [41]. Meanwhile, Anilin
is required for cytokinesis as an essential component for
the structural integrity of the cleavage furrow and, for the
completion of cleavage furrow ingression, plays a role in
bleb assembly during metaphase and anaphase of mitosis,

and likely functions in podocyte cell migration. Mcl-1 is an
antiapoptotic protein of the Bcl-2 family that is essential for
the survival of multiple cell lineages and is highly amplified
in human cancer development. Under physiological condi-
tions, Mcl-1 expression is tightly regulated at multiple levels,
involving transcriptional, posttranscriptional, and posttrans-
lational processes. Ubiquitination of Mcl-1, which targets it
for proteasomal degradation, allows for the rapid elimination
of the protein and triggering of cell death in response to
various cellular events [42]. A previous study demonstrated
that myostatin may influence immune cell development in
mammals [43]. Additionally, we found that the JAK-STAT
signaling pathway was significantly changed in MSTN KO
cells. JAK-STAT signaling is essential for antiviral immunity,
making INF-𝛼 an obvious antiviral therapeutic [44]. This
study is in accordance with the previous studies described
above showing that myostatin gene knockout changes the
immune system in C2C12 cells.

The lysosomal, Ca2+-dependent, and ubiquitin-protea-
some (UPS) systems are considered to be the three main
proteolytic processes involved in the control of muscle pro-
tein metabolism in mammals [31]. The lysosome plays an
essential role in sensing and signaling cellular nutrient status
by recruiting MTORC1 (mechanistic target of rapamycin
complex 1), a ubiquitous protein kinase acting as a key
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(a) (b)
Figure 7: Differentially expressed proteins of KO relative to NC cells, as depicted in their networks by STRING and visualized by Cytoscape5
software. Each yellow dot represents a protein of interest found to be differentially expressed in the presence of MSTN KO by quantitative
proteomics, and the lines represent putative protein interactions recorded or predicted by STRING. Green dots represent proteins of interest
directly interacting with other proteins. (a) KO versus NC, analysis of significantly different proteins; (b) KO versus NC, analysis of present
or absent proteins.
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Figure 8:Western blot analysis and immunofluorescence analysis of
the Cox6b1, Tgfb1i1, UGT1a6, and Anilin proteins. 𝛽-actin (loading
control) demonstrated equivalent protein loads in each lane. KO:
MSTN KO clone cell lines. NC: normal control group.

regulator of autophagy. MTORC1 is stimulated by amino
acids through an inside-outmechanism inwhich amino acids
must accumulate in the lysosome lumen to initiate signaling
[45].

Proteomic changes relating toMSTN gene mutation have
been studied, and the results vary depending on experi-
mental models. In our previous studies, we used RNA-
seq to reveal the transcriptome profile in myostatin gene-
knockout goats [25]. Salzler et al., using high-resolution
mass spectrometry coupled with SILAC mouse technology,
quantitated the relative proteomics changes in gastrocnemius

muscle from MSTN-knockout (MSTN−/−) mice and mice
treated for 2 weeks with REGN1033, an anti-MSTN antibody.
Functional annotation of the altered proteins in MSTN−/−
mice corroborated multiple physiological changes, including
the slow-to-fast fiber type switch [18]. Puddick et al. used a
comparative proteomic method to quantify proteins change
in skeletal muscle mitochondria fromMSTN-null mice [26].
In this study, we compared the proteomic changes between
myostatin-null myoblasts and wild-typemyoblasts and found
profound changes in cellular protein expression profiles.
These relevant researches intercomparing are shown in the
Supplementary Table S3. Most mitochondrial pathways,
including oxidative phosphorylation and the TCA cycle,
were significantly changed; Cox6b, Cyb5a, Cox6a1, isocitrate
dehydrogenase, succinate dehydrogenase, ATP synthase sub-
unit alpha, and malate dehydrogenase were all upregulated.
We showed that the oxidative phosphorylation pathway and
immune system processes both include Cox6a1. In a previous
report, Cox6a1 was shown to play a role in energy metabo-
lism, and recent reports have suggested that Cox6a1 sup-
presses Bax- and 4-HPR-mediated cell death and inhibits
ROS production. Cox6a1 is also involved in stress-induced
apoptosis and neurodegenerative diseases in organs with a
high-energy demand [46–48]. We showed that knockout of
MSTN could increase the expression of Cox6a1 in C2C12
cells. Therefore, MSTN has a role in mitochondrial energy
metabolism.

These DEPs are involved in many biological processes,
including isoprenoid biosynthetic process, cellular lipid
metabolic process, immune system process, synaptic process
involved in chemical synaptic transmission, Wnt signaling
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pathway, ribosome biogenesis, skeletal system morphogen-
esis and the MAPK signaling pathway, and several proteins
were involved in the mitochondrial oxidative phospho-
rylation pathway. Ribosome biogenesis in eukaryotes, the
spliceosome and mRNA surveillance pathways are central
processes for gene expression and protein synthesis, which
are inextricably associated with cell growth and division
[49]. Kang et al. reported that the p38MAPK pathway
promotes skeletal myogenesis; the Cdo-BNIP2 interaction
stimulates CDC42 activity, which in turn promotes p38𝛼/𝛽
activity and cell differentiation [24]. In current study, MSTN
dysfunction leads to changes in CDC42 activity, with these
results are likely to reveal previous unknown mechanisms
between MSTN and downstream modulation of CDC42-
BNIP2 activity, during myoblast differentiation.

To provide an efficient way to illustrate the molecular
mechanisms of protein expression in C2C12 cells harbour-
ing the knockout MSTN gene, we obtained protein-protein
interaction (PPI) information from the online STRING 10
database. The central nodes in directed and undirected PPI
networks show individual proteins, and the lines represent
their relationships. The nodes of DEP-derived interaction
networks were determined using the degree and com-
bined score between two nodes. In addition to the net-
works described above, Ywhae, Hsd3b4, Cox6a1, Tpm1, Stat,
Mad211, and Ctsd in PPI networks were found to represent
major hubs. Additionally, this program also indicated that the
same proteins might be involved inmany biological activities,
such as fatty acidmetabolism, the biosynthesis of unsaturated
fatty acids, the PPAR signaling pathway, and 𝛼-linoleic acid
metabolism.

5. Conclusion

In this study, we performed a label-free quantitative pro-
teomics technique by using LC-MS/MS to analyzeMSTN KO
C2C12 cell lines. A total of 3003 unique proteinswere detected
and quantified in our study, providing a database for quanti-
fied proteomics in C2C12 cells during the proliferation and
differentiation phases. Integrated analysis of the proteome
data revealed ten genes (Tpm1, HTRA1, Fads, Myf9, Ckap5,
Fst1, Tim23, PAK2, Rho A, and CD109). Importantly, the
HTRA1 and Fst1 genes were reported to be strong candidates
for mediating TGF-𝛽 signaling pathway regulation. Direct
protein-protein interaction network analyses and KEGG
pathwaymapping revealed that musclemitochondrial energy
metabolism, immune system processes and development
were mediated by MSTN in C2C12 cells. Meanwhile, MSTN
dysfunction possibly activate p38 MAPK signaling pathway
by CDC42-BNIP2. Our data provide valuable insights into
the role of the myostatin protein in muscle development,
immune system processes, and energy metabolism in skeletal
muscle for future studies.
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Supplementary Materials

Supplementary Figure S1: detection of MSTN CRISPR/Cas9-
mediated targeting in C2C12 cells. (A) Mutation detection in
C2C12 cells by T7EI cleavage assay. #3, #11, and #20 represent
different MSTN KO cell clones. M: marker; WT: wild-type
PCR products from C2C12 cells that were not treated with
CRISPR/Cas9. (B) Sequences of modified MSTN alleles.
Insertions are in red; deletions (-), insertions (+) shown to
the right of each allele. Supplementary Figure S2: analysis of
MSTN gene and protein expression in C2C12 myoblasts. (A)
Relative expression level of MSTN was determined by qRT-
PCR. (B) Western blot analysis of myostatin protein from
NC and MSTN KO C2C12 cells. Supplementary Figure S3:
off-target analysis in mutant cloned cells. Three potential off-
target sites were selected for sgRNA1. Sanger sequencing was
performed to detect off-target mutagenesis using genomic
DNA from mutant cells. PAM sequences are labelled in
yellow. Base substitutions are shown in red. Supplementary
Figure S4: bioinformatics analysis of increased or decreased
proteins in C2C12 cells. Proteins with significantly altered
accumulation after MSTN gene knockout in C2C12 cells
are shown in red. Oxidative phosphorylation. The KEGG
identifier and abbreviation key are provided in the Support-
ing Information. Supplementary Figure S5: bioinformatics
analysis of present or absent proteins in C2C12 cells. Pro-
teins with significantly altered accumulation after MSTN
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gene knockout in C2C12 cells are shown in red. (A) FoxO
signaling pathway, (B) PPAR signaling pathway, (C) PI3K-
AKT signaling pathway, (D) JAK-STAT signaling pathway.
Supplementary Table S1: list of the top 20 upregulated and top
20 downregulated proteins. Supplementary Table S2: proteins
associated with skeletal muscle cell development, fatty acid
metabolism, the immune system, and mitochondrial energy
metabolism. Supplementary Table S3: list of different bioin-
formatic methods for study changes in genome or proteome
of MSTN KO. (Supplementary Materials)
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