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Fibromyalgia (FM) syndrome is characterized by chronic widespread pain, muscle
tenderness and emotional distress. Previous studies found reduced endogenous pain
modulation in FM. This deficiency of pain modulation may be related to the attributes
of chronic pain and other clinical symptoms experienced in patients with FM. Thus,
we tested whether there is a link between the clinical symptoms of FM and functional
connectivity (FC) of the periaqueductal gray (PAG), a key node of pain modulation.
We acquired resting state 3T functional MRI (rsfMRI) data from 23 female patients
with FM and 16 age- and sex- matched healthy controls (HC) and assessed FM
symptoms with the Brief Pain Inventory (BPI), Fibromyalgia Impact Questionnaire (FIQ),
Hospital Anxiety and Depression Scale (HADS) and Pain Catastrophizing Scale (PCS).
We found that patients with FM exhibit statistically significant disruptions in PAG FC,
particularly with brain regions implicated in negative affect, self-awareness and saliency.
Specifically, we found that, compared to HCs, the FM patients had stronger PAG FC
with the lingual gyrus and hippocampus but weaker PAG FC with regions associated
with motor/executive functions, the salience (SN) and default mode networks (DMN).
The attenuated PAG FC was also negatively correlated with FIQ scores, and positively
correlated with the magnification subscale of the PCS. These alterations were correlated
with emotional and behavioral symptoms of FM. Our study implicates the PAG as a site
of dysfunction contributing to the clinical manifestations and pain in FM.

Keywords: functional magnetic resonance imaging, periaqueductal gray, resting-state fMRI, functional
connectivity, descending pain modulation, fibromyalgia

INTRODUCTION

Fibromyalgia (FM) is a chronic pain condition present in 2%–8% of the population with a higher
prevalence in women (Clauw, 2014). Patients with FM suffer tremendously not only from chronic
widespread pain but also from muscle tenderness, persistent fatigue, sleep disturbances, mood and
cognitive changes, the cause of which are not understood (Wolfe et al., 1990, 2010; Clauw, 2014).
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The peripheral and central mechanisms underlying FM
are not fully known. Recent studies of skin biopsies (Levine
and Saperstein, 2015), found that patients with small fiber
polyneuropathy (SFPN) had reduced small fiber diameters
compared to healthy subjects (Doppler et al., 2015), and this
in consistent with decreased C fiber nociceptors conduction
velocity by Serra et al. (2014). However, SFPN was only observed
in 30%–50% of patient previously diagnosed with FM and
has also been found in some healthy controls (HC; Oaklander
et al., 2013; Giannoccaro et al., 2014; Serra et al., 2014).
Furthermore, decreased intraepidermal nerve fiber density can
be found in other conditions (Devigili et al., 2008) and there
is no correlations between small fiber diameters and symptoms
severity (Kosmidis et al., 2014; Doppler et al., 2015). Therefore,
the role of the peripheral and central nervous systems in
FM is still not understood. Given that objective measures of
small fibers does not necessarily correlate with perceived pain
in FM, the central nervous system and its neuroplasticity is
likely to play some role in FM (Clauw, 2015). In support of
a central contribution to FM, several psychophysical studies
point to abnormal central processing of nociceptive inputs
and ineffective descending modulation of nociceptive signals.
For example, patients with FM have lower pain thresholds,
enhanced temporal summation (Price et al., 2002; Staud and
Smitherman, 2002; Staud et al., 2003; Serra et al., 2014),
and deficient conditioned pain modulation (Lautenbacher and
Rollman, 1997; Julien et al., 2005). Furthermore, a functional
MRI (fMRI) study reported brain regions involved in descending
pain modulation such as the periaqueductal gray (PAG) have
attenuated responses to painful stimuli in FM patients (Jensen
et al., 2012).

The PAG is known for its role in both acute and chronic
pain and analgesia (Reynolds, 1969; Dostrovsky and Deakin,
1977; Lovick, 1985; Keay and Bandler, 1993; Hemington and
Coulombe, 2015), but it is also involved in fear, anxiety and
cardiovascular responses (Bandler et al., 1985, 2000; Bandler
and Shipley, 1994; Linnman et al., 2012). These functions are
particularly important for emotional and behavioral responses to
stress and pain. Previous studies suggested that the PAG is an
integration center that generates an appropriate behavioral and
autonomic response to stress and pain.

We recently studied functional connectivity (FC),
i.e., synchronous slow frequency oscillation between brain
areas (Davis and Moayedi, 2013), of the PAG. We reported
that subregions of the PAG has FC not only with brain
regions involved in descending pain modulation (rACC,
aMCC, medulla), but also regions related to executive
functions, such as the prefrontal cortex (PFC), striatum
and the hippocampus (Coulombe et al., 2016). This information
allows us to infer that these brain regions are working as a
network and its dysfunction could lead to clinical signs and
symptoms. The PAG shows abnormal FC in many chronic
pain diseases, including FM (Cifre et al., 2012; Pujol et al.,
2014). Considering these observations, and previous animal
research, the PAG likely is involved not only in shaping
pain perception, but also in coping behavior related to an
unavoidable pain, extended to social interactions worrying

and catastrophizing under conditions of chronic pain
(Hassett et al., 2000; Cifre et al., 2012; Pujol et al., 2014;
Coulombe et al., 2016).

Therefore, the aim of this study was to measure resting state
FC of the PAG in FM and HC and link abnormalities with FM
clinical symptoms (measured using standardized questionnaires
(Fibromyalgia Impact Questionnaire (FIQ), Hospital Anxiety and
Depression Scale (HADS), Pain Catastrophization Scale). We
tested the hypothesis that there is abnormal PAG FC in patients
with FM that are related to their chronic pain symptoms and
affect-related clinical symptoms. Patients with FM not only
suffer from chronic pain but often report depression, anxiety,
catastrophization and cognition impairment which can diminish
their quality of life (Hassett et al., 2000). Because hypervigilance
has been suggested in this pathology (Crombez et al., 2004;
Eccleston and Crombez, 2007), we expected FC with brain region
such as the default mode and salience networks (DMN, SN) to be
related to FM clinical symptoms. These networks are known to be
disrupted in many chronic pain diseases, including in FM (Baliki
et al., 2008; Napadow et al., 2010; Loggia et al., 2013; Kucyi et al.,
2014).

MATERIALS AND METHODS

Participants
Twenty-three female FM patients and 16 age- and sex-
matched HC were recruited. Patients were recruited through
the Rheumatology Clinic, St. Joseph’s Health Care London,
Canada, and were diagnosed with FM using the criteria of the
American College of Rheumatology (Wolfe et al., 1990). They
were also screened for any exclusion criteria, i.e., a concurrent
treatment with antidepressants, an active psychosis, or any
recent change in their pain medication (any dose alternation
within the preceding month). The HC subjects were recruited
from the community. They were screened and excluded if
they were pregnant or breastfeeding, suffering from chronic
illness including neurological/psychiatric disorders. All subjects
provided informed written consent to procedures approved by
the Health Sciences Research Ethics Board of the University
of Western Ontario. As previously described (Shokouhi et al.,
2016). FM patients and HC did not differ in terms of age (FM:
50.6 ± 8.1 years; HC: 49.8 ± 11.0 years; Mann-Whitney U
statistic = 177.5, p = 0.864). Arterial spin labeling (ASL) data from
these study participants have been previously reported (Shokouhi
et al., 2016).

We used standardized questionnaires in order to evaluate
their pain and other collateral symptoms, such as anxiety,
depression, catastrophization and impact of the disease on their
life. Clinical assessment was performed only in FM subjects
and included validated and commonly used metrics: the severity
of symptoms in FM was evaluated using the self-administered
FIQ, which is a well-known measure of functional disabilities
such as pain, stiffness, fatigue, anxiety, depression, physical
functioning, work status and well-being in FM (Wolfe et al.,
1997; Perrot et al., 2003; Bennett, 2005). Depressive mood and
anxiety disorders were assessed using the HADS (Zigmond
and Snaith, 1983). Pain severity and impact of pain on daily
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functions were assessed using the self-administered Brief Pain
Inventory (BPI; Cleeland and Ryan, 1994; Atkinson et al.,
2011). The Pain catastrophizing scale (PCS) evaluates three
dimensions of catastrophic thinking related to pain: rumination,
magnification, and helplessness (Sullivan et al., 1995). The pain
disability index (PDI) measures the impact of pain on a person’s
essential life activities such as family/home responsibilities,
recreation, social activity, occupation, sexual behavior, self-
care and life-supporting activities (Tait et al., 1987). Each
area is rated on an 11-point scale (0 = no disability to
10 = total disability) for a maximum score of 70 (34). All
questionnaires have good internal consistency and construct
validity and for all of them a higher score indicates a worse
condition.

Image Acquisition
Each participant underwent neuroimaging on a 3T MRI system
(Biograph mMR, Siemens, Erlanger, Germany) at the Lawson
Health Research Institute with an 32-element receive-only
head coil, including a high-resolution T1-weighted whole-brain
anatomical scan (176 axial slices; 256× 256matrix; 1× 1× 1mm
voxels) using a 3-D magnetization-prepared rapid gradient-echo
imaging sequence (flip angle = 9◦; TE = 2.98 ms; TR = 2000 ms;
TI = 900 ms), and a 10.5-min resting state fMRI T2∗ weighted
gradient echo echo-planar imaging sequence (GRE-EPI) scan
(42 slices; 200 × 200 matrix; 2 × 2 × 3 mm voxels; TE = 30 ms;
TR = 3000 ms; 210 volumes). Subjects were instructed to stay
awake with their eyes closed (Shokouhi et al., 2016).

Images Pre-Processing
All images were preprocessed using standard methods previously
published, using freely available FSL software (FMRIB‘s software
library1), Matlab customized scripts, and fMRISTAT toolbox.
Our preprocessing steps included the deletion of the first four
volumes, the removal of non-brain tissue (FSL’s brain extraction
tool), and head motion correction (MCFLIRT, 6 motion
parameters). Images were all linearly realigned to the first
T1-weighted image (FLIRT, 6 DOF), registered to the Montreal
Neurological Institute 152 (MNI 152) 2-mm standard space
(FLIRT, 12 DOF), and corrected for head motion (MCFLIRT,
6 parameters).

Artifacts created by spurious noise and motion can occur
in brain imaging, particularly with patients who have difficulty
lying still in the scanner for a long period of time. Therefore, in
order to limit confounding effect of physiological noises such as
cardiac pulsation andmodulation associated with the respiration,
we used the aCompCor method, which was developed to identify
specific patterns of structured noise, and remove them (Behzadi
et al., 2007; Kucyi et al., 2013, 2014; Muschelli et al., 2014). The
first step of this method segments brain tissue into a component
that includes only white matter (WM) and cerebrospinal fluid
(CSF), and uses it to model physiological noise (see below). The
images were segmented using FSLs segmentation tool (FAST).
The WM and CSF components were thresholded to keep only
voxels with high probability of being WM and CSF (top 198 cm3

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

and top 20 cm3; Chai et al., 2012; Kucyi et al., 2013). Then,
a principal component analysis (PCA) was used to model the
time series of the noise component with the first five WM and
CSF components. This noise component, in addition to the six
motion parameters obtained earlier, were then regressed out
through its addition in the general linear model as a nuisance
component of blood oxygen level dependent (BOLD) time
series. Finally, all functional data were spatially smoothed using
a 4-mm kernel full-width at half maximum kernel (FWHM)
and a 0.005–0.05 Hz band-pass was applied (Rogachov et al.,
2016).

Seed-to-Voxels Whole Brain Analysis
We carefully considered the issue of choosing the PAG seed
architecture. As mentioned earlier, the PAG is involved in
both pain perception and emotional reaction to a pain and/or
stressful stimuli. It has been suggested that the autonomic
nervous system is linked to pain modulation deficiency in FM
(Chalaye et al., 2012, 2014) and anxiety, hypervigilance and
descending pain modulation is likely deficient in FM patients.
We chose to seed the whole PAG as has been done in previous
studies (Eippert et al., 2009; Kucyi et al., 2013) because: (1) we
were interest in the clinical profile of FM; (2) considering
the correlation between FC and clinical symptoms, a whole
PAG seed was more appropriate than separate left and right
PAG seeds (Cifre et al., 2012; Schmidt-Wilcke et al., 2014);
(3) this minimized the number of statistical comparisons; and
(4) we had no specific hypothesis about the left or right PAG
(Kucyi et al., 2014). We are aware of the limitations of this
seed considering our previous publication of the columnar
organization of the PAG (Coulombe et al., 2016), however,
this was best seed to use to answer the aim of the current
study.

The location of the PAG seed was chosen based on a previous
study from our lab (MNI coordinates: 0, −32, −12; size: 6-mm
radius sphere; Kucyi et al., 2013; Figure 1). For each subject,
the seed was registered to their 2-mm native space (trilinear
interpolation to the previously pre-processed image), binarized
and the time series of each voxel of the seed was extracted. The
BOLD time series was put in relation with the time series of every
other voxel of the brain. FMRIB’s FMRI Expert Analysis Tool
with FILM (FMRIB’s Improved Linear Model) general linear
model using nonlinear registration with a 10-mm wrap was used
to analyze each subject. The higher-level analysis used FMRIB’s
mixed effects thresholded at Z = 2.3 and a cluster-based P = 0.05
(Flame 1 + 2).

Correlation between FC of Identified
Clusters with Symptom Severity Metrics
We next further examined the FC of each cluster found to
differ between the FM and HC groups (see in the contrast
analysis above, and numbered in Table 1). We extracted the
values of FC using FSL function ‘‘meants’’, i.e., the average of
the timeseries each set of voxels. These data were correlated,
in FM subjects, with the major metrics of negative affect
parameters assessed (anxiety, depression, distress, rumination,
helplessness, magnification or global catastrophizing score)
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FIGURE 1 | The periaqueductal gray (PAG) seed used in this study shown on a 2 mm Montreal Neurological Institute (MNI) standard space template.

and the major clinical indices of FM assessed (pain severity,
FIQ score normalized). To account for multiple comparisons,
we did a Bonferroni correction (α/number of comparison)

TABLE 1 | Peak Montreal Neurological Institute (MNI) coordinates of contrast
comparison of periaqueductal gray (PAG) seed functional connectivity (FC)
between fibromyalgia (FM) and healthy controls (HC).

Peak voxel,
MNI coordinates

Region Z-max X Y Z

FM > HC
Cluster 1

L Lingual gyrus (BA17, BA30) 3.8 −24 −62 2
L Posterior cingulate gyrus (BA30) 3.44 −20 −44 −2
L Hippocampus/Cingulate gyrus
(BA29, BA30)

3.35 −22 −46 2

L Cuneus/retrosplenial cortex
(BA31, BA23)

3.23 −24 −72 4

L Hippocampus 3.06 −20 −38 4
HC > FM
Cluster 7

L Premotor cortex (BA6) 3.42 −28 12 60
L Paracingulate gyrus (BA6, BA32) 3.4 −8 10 46

Cluster 6
L Dorsolateral PFC (BA8) 3.79 −22 26 32
L Paracingulate gyrus (BA32,
BA6, BA8)

3.31 −12 36 28

Cluster 5
L Angular gyrus (BA7, BA40) 3.62 −40 −52 42

Cluster 4 3.82
R Angular gyrus (BA7, BA40) 3.82 42 −56 40
R Supramarginal gyrus (BA40) 3.3 58 −38 54

Cluster 3
R Premotor cortex (BA6) 3.65 20 14 58

Cluster 2
R/L Posterior cingulate cortex (BA23) 3.63 4 −24 26
L Precuneous cortex (BA31) 3.51 −4 −44 44

Cluster 1
L Ventrolateral PFC (BA10) 3.33 −22 50 14

Maximum peak are reported as MNI coordinates (in mm) and corrected for

multiple comparisons using family-wise error correction at Z > 2.3 and P < 0.05.

BA, Brodmann area; L, left; PFC, prefrontal cortex; R, right.

and, therefore, set our p-value at <0.007 for psychological
symptoms (7 symptoms to compare) and <0.025 for pain
severity/interference (2 scores to compare).

RESULTS

Description of the FM Population
The demographic profile and symptomology of the FM patients
are shown in Table 2. Based on available normative data of
the questionnaires used, our patients reported symptoms of
moderate severity (Bennett et al., 2009), mild anxiety and
depression (normal 0–7, mild 8–10, moderate 11–14 and severe
15–21; Zigmond and Snaith, 1983). All patients had chronic
pain and most (20/23) also reported sensory descriptors that
are typically associated with neuropathic pain (Bouhassira et al.,
2005). The patient PCS scores fell within the 50th percentile,
and the subscores of rumination (44th percentile), magnification
(63th percentile) and helplessness (55th percentile) place
them at moderate risk for development of pain chronicity
(Sullivan, 2009). Only four of the 23 FM subjects had PCS
scores ≥30 that indicate clinically relevant pain catastrophizing
(Sullivan, 2009).

PAG Functional Connectivity in FM and HC
We first evaluated the FC of the PAG in both HC and FM
groups (Figure 2, Table 3). Results are expressed as significant
clusters of voxels, i.e., few adjacent voxels. In the HC group,
we found that the PAG showed significant positive FC with
six clusters of brain areas (see Table 3). These clusters included
the brainstem, cerebellum, the anterior cingulate cortex (ACC),
and the ventrolateral (vlPFC) and ventromedial (vmPFC) parts
of the PFC, premotor cortex (PMC), and also to regions in the
parietal lobe including the precuneus, angular gyrus (AG) and
the posterior cingulate cortex (PCC). There were no significant
regions found to have anticorrelated FC to the PAG in the HC
group.
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TABLE 2 | Clinical manifestation of fibromyalgia in FM group.

Fibromyalgia patients (n = 23, possible range) Mean ± SD Range [min–max]

Age (years, 19–70) 50.6 ± 8.1 25–62
Brief Pain Inventory (BPI, 0–120) 65.8 ± 17.5 37–93
Subscale – –

Pain severity (0–40) 22.3 ± 7.5 7–37
Pain relief (0–10) 3.7 ± 3.6 0–10
Pain interference (0–70) 39.9 ± 12.6 13–61

Pain disability index (PDI, 0–70) 38.7 ± 14.7 0–63
DN4 (score) 5.4 ± 1.6 1–8

Non-neuropathic (# of subject) 3 –
Neuropathic (# of subject) 20 –

Health outcome measured with EQ-5D (5–15) 9.3 ± 1.3 7–11
Hospital Anxiety and Depression Scale – –
Subscale – –

Anxiety (0–21) 10.4 ± 3.8 2–20
Depression (0–21) 7.3 ± 3.4 2–16
Distress (0–42) 17.7 ± 5.9 4–31

Pain Catastrophization Scale (0–52) 19.8 ± 11.9 2–47
Subscale – –

Rumination (0–16) 6.6 ± 4.0 0–15
Helplessness (0–24) 9.0 ± 5.8 0–23
Magnification (0–12) 4.2 ± 2.9 0–11

Fibromyalgia Impact Questionnaire (FIQ) total score (Normalized, 0–100) 60.3 ± 15.8 17.1–92.9
Physical impairment (0–3) 1.4 ± 0.4 0.6–2.2
Feel good (0–7) 4.9 ± 1.9 0–7
Missed work‡ (0–7) 0.9 ± 1.5 0–7
Do Work‡ (0–10) 6.3 ± 2.3 1–10
Pain (0–10) 7.2 ± 2.2 1–10
Fatigue (0–10) 7.8 ± 2.0 3–10
Rested (0–10) 7.5 ± 2.2 3–10
Stiffness (0–10) 7.8 ± 1.7 4–10
Anxiety (0–10) 4.8 ± 2.9 0–10
Depression (0–10) 3.3 ± 3.1 0–10

SD indicates standard deviation. ‡n = 10 for this criterion.

In the FM group, there were three clusters with positive FC to
the PAG. These clusters encompassed the regions surrounding
the PAG such as the mesencephalic reticular formation,
subgenual ACC (sgACC), ventromedial and ventrolateral parts of
the PFC, and the temporal pole (Figure 2, Table 3). Additionally,
the PAG had negative (i.e., anticorrelations) FC with the
right AG, supramarginal gyrus and the superior parietal lobule
(Figure 2, Table 4).

We next performed a contrast analysis to determine
differences in FC between the HC and FM groups (see Figure 3,
Table 1). This analysis revealed a single cluster that had
greater PAG FC in the FM group compared to the HC group.
This cluster encompassed the left lingual gyrus, PCC, cuneus,
retrosplenial cortex and hippocampus. Conversely, compared
to the HC group, the FM group had reduced PAG FC with
seven clusters of voxels (Table 1) located in the AG/lateral
occipital cortex (LOC; bilaterally), PCC, PMC/supplementary
motor area (SMA), dorsolateral (dlPFC)- dorsomedial (dmPFC)
and vlPFC.

Correlation between PAG FC and Clinical
Manifestation of FM
The contrast comparison between FM and HC (FM > HC
and HC > FM) yielded respectively 1 and 7 different clusters
(Figure 3, Table 1). These clusters were correlated with pain

symptoms and affect in FM subject (Figure 4). The single
cluster that showed greater PAG FC in FM compared to HCs
(FM > HC, i.e., lingual gyrus, PCC, cuneus, retrosplenial
cortex and hippocampus) did not show statistically significant
correlations with any of our affective or pain-related parameters.
However, for HC> FM, cluster 3 (PMC and SMA) and cluster six
dlPFC that showed reduced PAG FC in the FM group both were
negatively correlated with the FIQ normalized score (cluster 3:
r =−0.63, p< 0.002; cluster 6: r =−0.56, p< 0.006)). In addition,
cluster 3 (PMC and SMA) and cluster 7 (dmPFC) were both
correlated with the magnification subscale of the PCS (cluster 3:
r = −0.56, p < 0.006; cluster 7: r = −0.65; p < 0.0009). Thus,
a greater decrease in FC of these regions was associated with
greater magnification of the pain.

DISCUSSION

In this study, we have demonstrated that FC of the PAG
is disrupted in patients with FM compared to HCs, and
that weakened connectivity is related to patients’ individual
traits and the clinical manifestations of FM. The key
findings of our study are compared to HCs, the FM patients
had: (1) stronger PAG FC in a single brain cluster that
encompasses the lingual gyrus, PCC, cuneus, retrosplenial
cortex and hippocampus; (2) weaker PAG FC with regions
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FIGURE 2 | Functional connectivity (FC) of a PAG seed in patients with Fibromyalgia (FM; n = 23) and in healthy controls (HC; n = 16). Images are thresholded at a
whole-brain family wise error rate-corrected Z > 2.3; cluster-based p < 0.05. Warm colors represent positive correlation, cold colors represent negative correlation.
Cereb., cerebellum; vmPFC, ventromedial prefrontal cortex; sgACC, subgenual anterior cinculate cortex; PAG, periaqueducatal gray; OFC, orbitofrontal cortex;
Temp. Pole, temporal pole; Precun., precuneus; PCC, posterior cingulate cortex; ACC, anterior cingulate cortex; PMC, premotor cortex; RVM, rostroventral medulla;
vlPFC, ventrolateral PFC.

associated with motor/executive functions, SN and DMN;
and (3) decreased PAG FC in the PMC, SMA and PFC, is
negatively connected with FM symptoms severity measured
with the FIQ and with the magnification sub-score of the
PCS. These results are discussed below as potential sites of
dysfunction not only in FM, but possibly in other chronic pain
diseases.

The various functions of the PAG, and subsequently its
dysfunction in chronic conditions, can be understood through
its connections to other brain areas and networks. For example,
ongoing pain in FM patients has been shown to be negatively

correlated with the resting state FC between the PAG and
the executive attention network and insula (Pujol et al., 2014).
Decreased FC has also been reported between the PAG and
the ACC, thalamus and caudate nucleus in FM (Cifre et al.,
2012). Furthermore, the (DMN, SN) show dysfunction across
many chronic pain diseases, including in FM (Baliki et al.,
2008; Napadow et al., 2010; Loggia et al., 2013; Kucyi et al.,
2014). These networks may be particularly important in the
pathology of FM because of their role in the hypervigilance
present in FM (Crombez et al., 2004; Eccleston and Crombez,
2007).Many studies have shown dysfunction along the endocrine
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TABLE 3 | Peak MNI coordinates for brain regions correlated with the PAG seed.

Peak voxel, MNI coordinates

Region Z-max X Y Z

FM
Cluster 3

PAG 6.91 4 −34 −12
Cerebellum peduncle 5.65 0 −42 −16

Cluster 2
R/L Ventromedial PFC (BA11) 4.17 4 40 −20
R/L Subgenual ACC/medial PFC (BA11, BA32) 3.33 −8 32 −12

Cluster 1
R Temporal pole (BA38) 3.88 48 18 −16
R Ventrolateral PFC (BA47) 3.78 54 30 4

HC
Cluster 6

PAG 6.8 4 −34 −12
Cerebellum peduncle 4.6 −8 −38 −10
R Posterior cingulate cortex (BA23) 4.55 6 −24 32
R Tail of the caudate nucleus 4.49 26 −30 20

Cluster 5
R/L Premotor cortex (BA6) 4 −30 6 44
L Paracingulate gyrus (BA24, BA32, BA6, BA8) 3.7 −6 22 46
R Ventromedial PFC (BA11, BA10) 3.68 12 48 −10
R ACC (BA32, BA24) 3.58 8 22 30
R Perigenual ACC (BA32) 3.54 12 38 −6

Cluster 4
R Premotor cortex (BA6) 3.78 20 14 58
R Supplementary motor cortex (BA6) 3.53 6 −2 60

Cluster 3
L Ventrolateral PFC (BA10) 3.5 −30 62 6

Cluster 2
L Angular gyrus (BA39, BA40) 3.81 −48 −54 38
L Supramarginal gyrus (BA40) 3.75 −54 −42 20

Cluster 1
R Cerebellum 3.49 32 −62 −38

Maximum peak are reported as MNI coordinates (in mm) and corrected for multiple comparisons using family-wise error correction at Z > 2.3 and P < 0.05. BA, Brodmann

area; L, left; PFC, prefrontal cortex; R, right.

axis. For example, low melatonin secretion in FM has been
suggested to play a role in the lack of restorative sleep
(Wikner et al., 1998), and dysregulation of cortisol (Crofford
et al., 1996, 2004; Crofford, 1998) perhaps leading to an allostatic
load (sympathetic nervous system dysfunction and a general
inability of the system to adapt to changes; Martinez-Lavin
and Vargas, 2009; Martinez-Lavin, 2012; Martínez-Martínez
et al., 2014). This concept is in line with the proposition

TABLE 4 | Peak MNI coordinates for brain regions anticorrelated with PAG seed.

Peak voxel,
MNI coordinates

Region Z-max X Y Z

FM
Cluster 1

R Angular gyrus (BA7, BA 40) 4.16 46 −52 52
R Supramarginal gyrus (BA39, BA 40) 3.61 36 −52 50
R Superior parietal lobule (BA19, BA7) 3.29 26 −78 52

HC
No cluster found

Maximum peak are reported as MNI coordinates (in mm) and corrected for

multiple comparisons using family-wise error correction at Z > 2.3 and P < 0.05.

BA, Brodmann area; R, right.

that FM might be triggered by stress or altered saliency or
interpretation of stimuli (Buskila et al., 2008; Häuser et al., 2011,
2013).

Previous brain imaging studies of FM have focused on
pain-related brain abnormalities, evoked brain responses, and on
localized regional cerebral blood flow abnormalities (Shokouhi
et al., 2016). However, given the wide-range of clinical symptoms
in FM, and the likely involvement of brain networks, here
we used fMRI to identify variations in whole brain resting
state FC of the PAG, and their association with the symptoms
prevalent in FM.

It is important to consider the normal connectivity of the
PAG to appreciate the dysfunctions found in the FM patients.
We found greater FC in the left hippocampal formation,
retrosplenial cortex and lingual gyrus in the FM patients.
The retrosplenial cortex is adjacent to the caudal part of
the corpus callosum (Broadmann area 29–30), and it has
connection with the hippocampus formation, the PCC, the
precuneus and the lingual gyrus. These regions are involved
mostly in spatial memory, orientation and navigation, but
some studies associate them to episodic/working memory and
emotion-related functions (Sutherland et al., 1988; Maguire,
2001; Warburton et al., 2001; Harker and Whishaw, 2004;
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FIGURE 3 | Contrast comparisons between FM and HC. Brain regions with enhanced resting state FC with the PAG in FM (n = 23) compared to HC (n = 16);
FEW-corrected Z > 2.3; cluster-based p < 0.05. Coordinates for FM > HC, X = −24; Y = −38, Z = 2 (mm). HC > FM, X = −2, Y = −40, Z = 44 (mm). Hippo,
hippocampus; PCC, posterior cingulate cortex; PMC, PFC; vlPFC, ventrolateral PFC; dlPFC, dorsolateral PFC; dmPFC, dorsomedial PFC; SMA, supplementary
motor area; AG, angular gyrus; LOC, lateral occipital cortex.

Spreng et al., 2009). Interestingly, the retrosplenial cortex has
been found to be disrupted across several chronic pain states. For
example, Wik et al. (2003) found reduced resting-state cerebral
blood flow (rCBF) in the higher retrosplenial cortex of FM
patients compared to controls (Wik et al., 2003), and showed
that patients had lower rCBF only in the left retrosplenial cortex
during acute (‘‘barely tolerable’’) pressure pain on a tender-
point located above their right elbow for 1 min (Wik et al.,
2006). Moreover, another team showed group effects between
migraine patients and HC using resting-state FC and a seed
located in the anterior insula (Hubbard et al., 2014). They
reported increased rs-FC between the anterior insula and a
region which appears to be the anterior part of the lingual gyrus,
and increased gray matter volume in the left hippocampus in
migraineurs. There is also support from animal models for a
role of the retrosplenial cortex in chronic pain. For example,
decreased metabolism in the retrosplenial cortex was found to
predict neuropathic pain in a spinal nerve ligation rat model
(Kim et al., 2014). Other animal studies have identified the
retrosplenial cortex as being involved in emotional behavior,
particularly associated with response to unfamiliar stimuli.
Indeed, lesions of the retrosplenial cortex of rats results in
increased anxiety and an impaired active avoidance response
(Lukoyanov and Lukoyanova, 2006). Thus, in light of these
previous studies, our findings suggest that the retrosplenial
cortex has a role in a broader range of chronic pain syndromes.
Further, given the lack of correlation of this regions with clinical

manifestation of FM, we suggest that the role of retrosplenial
cortex in chronic pain may be more fundamental to pain
itself rather than to a specific negative affect or symptom
severity.

Our results showed that the disrupted FCs between the left
dlPFC and the rightmotor associative cortex (SMA/PMC/dlPFC)
of FM was negatively correlated with FIQ score, which represent
FM symptom severity. dlPFC is a main region of the frontal
associative cortex, involved in shifting cognitive set following
integration of information of many regions including the limbic
system. Also, the dlPFC is particularly known for its central role
in working memory holding information, mediating awareness
in order to process chronological sequences and self-monitoring.
Finally, dlPFC is known to be involved in pain modulation
(Lorenz et al., 2003) through its connection with the ACC,
the thalamus and the insula, which, when activated, decreased
the connectivity between the midbrain and the thalamus
resulting in descending pain modulation (Lorenz et al., 2003).
Indeed, left dlPFC stimulation using repetitive transcranial
magnetic stimulation (rTMS) decreased pain rating (Brighina
et al., 2011). This relation between disrupted connectivity
between the PAG and dlPFC and increased FIQ score is
important because it sheds light on an impaired circuit in
FM, which correlates with FM symptomatology. In fact, the
involvement of this region does not seem to be specific to
FM since a study showed abnormal activation and thinner
gray matter of the left DLPFC in chronic low back pain
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FIGURE 4 | Brain regions exhibiting significant differences of PAG FC between
FM and HC (see Figure 3). (A) Comparison of PAG-dlPFC FC (cluster 3)
between HC and FM, and its correlation with Fibromyalgia Impact
questionnaire (FIQ) scores. (B) Comparison of PAG-SMA/PMC/dlPFC FC
(cluster 6) between HC and FM, and its correlation with FIQ scores.
(C) Comparison of PAG-dmPFC FC (cluster 7) between HC and FM, and its
correlation with the magnification subscale of the Pain Catastrophizing Scale
(PCS). (D) Comparison of PAG- SMA/PMC/dlPFC FC (cluster 3) between HC
and FM, and its correlation with the magnification subscale of the PCS. To
control for multiple comparisons, statistical significance was set at
p < 0.007 because of the seven psychological factors (anxiety, depression,
distress, magnification, helplessness, rumination, global PCS score) and at
p < 0.025 because of the two pain parameters (pain severity, FIQ normalized).
PMC, PFC; dlPFC, dorsolateral PFC; dmPFC, dorsomedial PFC; SMA,
supplementary motor area.

patients compared to HC (Seminowicz et al., 2011). Those
results are all in line with our findings, and once again
suggest broader implication of this region. The disruption

of this region seems to be generalized to multiple forms of
chronic pain, and does not seem to be specific to FM or
migraines.

Our results showed increased FC between the PAG and many
brain regions involved in heteromodal integration of stimuli,
which is predominant in the attention and SN, particularly
the frontal and parietal association cortex and other regions
of the DMN. The connectivity of these regions was not only
decreased in FM, it was also correlated with the FIQ score
and with the Magnification sub-scale of the PCS. The frontal
association cortex plays an important role in sustained and
selective attention and allows the brain to engage and disengage
when relevant stimuli happen. The PMC and supplementary
area are involved in the planning of self-initiated movements
and motor learning, but has also been shown to play a role in
anticipation of pain, possibly associated with avoidance behavior
and catastrophizing (Gracely et al., 2004; Nachev et al., 2008;
Kano et al., 2013). In relation to our results, some studies
found a role of motor and pre-motor areas in depression.
Exner et al. (2009) showed decreased gray matter volume in
the right pre-supplementary areas of patients with depressive
disorders with melancholic features. This result was associated
with psychomotor retardation in these patients. Not only is
GMV altered in depression, but so is the WM integrity of
pathways connecting SMA, pre-SMA and M1 (Bracht et al.,
2012). It has been shown that pain catastrophizing is correlated
with development of depression in chronic pain (Keefe et al.,
1989). Catastrophization is a maladaptive coping strategy, and it
impacts a number of behavioral and neuronal processes involved
in the shaping of chronic pain and the disabilities resulting of it.

In FM, disrupted connectivity between the DMN and
pre-motor areas could be associated with fear of movement,
psychomotor retardation, or maybe the study participants were
simply more diligent about the instruction about not to move
in the scanner. Furthermore, a recent study showed altered
connectivity of the DMN in FM, in relation to the duration of
the symptoms and cognitive and emotional processing (Fallon
et al., 2016). A relationship between impaired FC of the DMN
and the Rumination subscore of the PCS was also observed in
temporomandibular syndrome (Kucyi et al., 2014). Interestingly,
in our study, rumination was not correlated with any PAG
disruption of FC. Disruption of the DMN seems to be present
in many chronic pain disorders (Loggia et al., 2013; Kucyi
et al., 2014; Hemington et al., 2016), and the involvement of the
DMN in the efficiency of descending pain modulation system, as
suggested by Kucyi et al. (2014), is very likely.

We note some limitations of our study relate to our choice
of the PAG seed. This decision point impacts the results due to
the heterogeneity of the PAG as shown in our previous study
of the columnar organization of the PAG in HC (Coulombe
et al., 2016). However, in our current study, we had a different
goal, which was to determine the global involvement of the PAG
with symptom severity in FM in general. As such, we did not
study certain specifics in detail (e.g., laterality). In the future,
it would be interesting to expand upon the current study to
specifically detail each PAG column to examine hypotheses about
dysfunction of the autonomic nervous system and allostasis in
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FM. We also note a technical limitation of the current study is
the small size of the brainstem and studied regions. Thus, even
small seeds and the technical issues of pre-processing are unlikely
to be absolutely confined to subdivisions of the PAG and other
areas. This issue also motivated our choice of a more global
PAG seed.

CONCLUSION

Our findings assert the general multi-functionality of the PAG,
an important hub that relays information about somatosensory
inputs to provide a conscious and emotional perspective,
and modulates nociceptive information. Both affective and
somatosensory information are important and could influence
the pain perception of FM patients. A novel finding was the
increased FC in FM between the PAG and the retrosplenial
cortex. This region is under-appreciated in chronic pain studies
and further studies are needed to understand its specific role in
chronic pain conditions. Future studies using a larger sample
size could build on our current findings to investigate the
columnar organization of the PAG in FM and its involvement

in autonomic nervous system which are of interest to understand
the pathophysiology of FM.
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