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Abstract
We use Muskhelishvili’s complex variable formulation to study the interaction problem associated with a circular incom-
pressible liquid inclusion embedded in an infinite isotropic elastic matrix subjected to the action of an edge dislocation at
an arbitrary position. A closed-form solution to the problem is derived largely with the aid of analytic continuation. We
obtain, in explicit form, expressions for the internal uniform hydrostatic stresses, nonuniform strains and nonuniform
rigid body rotation within the liquid inclusion; the hoop stress along the liquid-solid interface on the matrix side and the
image force acting on the edge dislocation. We observe that (1) the internal strains and rigid body rotation within the
liquid inclusion are independent of the elastic property of the matrix; (2) the internal hydrostatic stress field within the
liquid inclusion is unaffected by Poisson’s ratio of the matrix and is proportional to the shear modulus of the matrix; and
(3) an unstable equilibrium position always exists for a climbing dislocation.
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1. Introduction

A composite consisting of a solid matrix and liquid inclusions (e.g., ionic liquids, liquid metals and ferro-
fluids) exhibits unique mechanical and physical properties such as enhancement of overall deformability
[1] and a stiffening phenomenon when the liquid inclusions are ‘‘small’’ allowing for a significant surface
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effect [2–4]. The micromechanics analysis of liquid inclusions has attracted considerable attention from
researchers recently. The objective is always to predict the local microscopic and overall macroscopic
responses of composites containing liquid inclusions [2–11]. Although the study of dislocations interact-
ing with elastic inclusions (or elastic inhomogeneities) has a long history [12–15], the problem of disloca-
tions interacting with liquid inclusions has seldom been considered.

In this paper, using Muskhelishvili’s [16] complex variable formulation for plane elasticity, we solve
the interaction problem associated with a circular incompressible liquid inclusion in an infinite isotropic
elastic matrix under the action of an edge dislocation located at an arbitrary position. We derive a
closed-form solution to the problem with the aid of analytic continuation [17]. We obtain two pairs of
analytic functions: one pair defined in the incompressible liquid inclusion and the other in the matrix.
Elementary and explicit expressions for the internal uniform hydrostatic tension, nonuniform strains
and nonuniform rigid body rotation within the liquid inclusion and the hoop stress along the liquid-
solid interface on the matrix side are presented. We find that the internal strains and rigid body rotation
within the liquid inclusion are independent of the elastic property of the matrix. In addition, we show
that the internal uniform hydrostatic tension is proportional to the shear modulus of the matrix and is
unaffected by Poisson’s ratio of the matrix. The image force acting on the edge dislocation is obtained
using the Peach–Koehler formula [12]. A gliding dislocation is always attracted to the circular interface,
whereas an unstable equilibrium position emerges for a climbing dislocation. The existence of the equili-
brium position for the climbing dislocation is attributed to the contribution from the internal uniform
hydrostatic tension within the liquid inclusion. The acquired analytical solution for an edge dislocation
can be further employed to study the interaction of a mode I or mode II finite crack interacting with a
circular incompressible liquid inclusion under uniform remote in-plane stresses.

2. Complex variable formulation

We first establish a fixed rectangular coordinate system fxig (i = 1, 2, 3). For plane strain deformations
of an isotropic elastic material, the three in-plane stresses (s11, s22 and s12), two in-plane displace-
ments (u1 and u2), and two stress functions (u1 and u2) are given in terms of two analytic functions
f(z) and c(z) of the complex variable z = x1 + ix2 = reiu (in which (r, u) are polar coordinates) as [16]

s11 + s22 = 2m f0 zð Þ+ f0 zð Þ
h i

,

s22 � s11 + 2is12 = 2m �zf00 zð Þ+ c0 zð Þ½ �,
ð1Þ

and

2 u1 + iu2ð Þ= kf zð Þ � zf0 zð Þ � c zð Þ,

u1 + iu2 = im f zð Þ+ zf0 zð Þ+ c zð Þ
h i

,
ð2Þ

where k = 3� 4n, m and n(0 ł n ł 1=2) are the shear modulus and Poisson’s ratio, respectively. In addi-
tion, the stresses are related to the two stress functions through [18]

s11 = � u1, 2, s12 =u1, 1,

s21 = � u2, 2, s22 =u2, 1:
ð3Þ

Furthermore, the in-plane strains (e11, e22, e12) and the rigid body rotation -21 = 1
2
(u2, 1 � u1, 2) can also

be expressed in terms of the two analytic functions f(z) and c(z) as

e11 + e22 + 2i-21 = kf0 zð Þ � f0 zð Þ,
e22 � e11 + 2ie12 =�zf00 zð Þ+ c0 zð Þ:

ð4Þ

532 Mathematics and Mechanics of Solids 29(3)



3. An edge dislocation interacting with a circular incompressible liquid inclusion

As shown in Figure 1, we consider a circular incompressible liquid inclusion of radius R, centered at the
origin of the coordinate system, embedded in an infinite isotropic elastic matrix subjected to the action
of an edge dislocation with Burgers vector (b1, b2) located at an arbitrary position z = z0 = j + ih. Let
S1 and S2 denote the liquid inclusion and the matrix, respectively, which are perfectly bonded together
across the circular interface L : f zj j= Rg. In what follows, the subscripts 1 and 2 are used to identify the
respective quantities in S1 and S2.

The most general form of the displacements and stress functions within the circular incompressible
liquid inclusion is given by

u1 + iu2 = 1
2

f1 zð Þ � zf01 zð Þ � c1 zð Þ
h i

,

u1 + iu2 = is0z, z 2 S1,
ð5Þ

where s0 is the internal uniform hydrostatic tension (to be determined). The condition of incompressibil-
ity of the liquid inclusion has been satisfied using the displacement expression in equation (5)1 in view of
equation (4)1 with k1 = 1.

In the ensuing analysis, for convenience, we introduce the following analytic continuations [17]:

fi zð Þ= � z�f0i
R2

z

� �
� �ci

R2

z

� �
, i = 1, 2: ð6Þ

Thus, the continuity conditions of displacements and tractions across the perfect liquid–solid interface
zj j= R can be expressed concisely as

f+
1 zð Þ+ f�1 zð Þ= k2f�2 zð Þ+ f+

2 zð Þ,

f�2 zð Þ � f+
2 zð Þ= s0

m2

z, zj j= R,
ð7Þ

where the superscripts ‘‘+ ’’ and ‘‘2’’ indicate the values when approaching the circle zj j= R from inside
and outside, respectively.

Equation (7)1 can be rewritten as

Figure 1. A circular incompressible liquid inclusion embedded in an infinite isotropic elastic matrix under the action of an edge
dislocation located at z = z0 = j + ih.
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f+
1 zð Þ � f+

2 zð Þ � f01 0ð Þz� k2A ln z� z0ð Þ � A ln
z� R2

�
�z0

z
+

�AR2 R2 � z0j j2
� �

�z3
0 z� R2=�z0ð Þ

= k2f�2 zð Þ � f�1 zð Þ � f01 0ð Þz� k2A ln z� z0ð Þ � A ln
z� R2

�
�z0

z
+

�AR2 R2 � z0j j2
� �

�z3
0 z� R2=�z0ð Þ , zj j= R,

ð8Þ

where

A =
b2 � ib1

p k2 + 1ð Þ : ð9Þ

We can see that the left-hand side of equation (8) is analytic and single valued everywhere within the
circle, and that the right-hand side of equation (8) is analytic and single valued everywhere outside the
circle including the point at infinity. Using Liouville’s theorem, we arrive at the following relationships

f2 zð Þ= f1 zð Þ � f01 0ð Þz� k2A ln z� z0ð Þ � A ln
z� R2

�
�z0

z
+

�AR2 R2 � z0j j2
� �

�z3
0 z� R2=�z0ð Þ , zj jł R;

f2 zð Þ= 1

k2

f1 zð Þ+ f01 0ð Þ
k2

z + A ln z� z0ð Þ+ A

k2

ln
z� R2

�
�z0

z
�

�AR2 R2 � z0j j2
� �

k2�z
3
0 z� R2=�z0ð Þ , zj jø R:

ð10Þ

Substituting equation (10) into equation (7)2 yields

f+
1 zð Þ � f01 0ð Þz +

s0

m2

z� A k2 + 1ð Þ ln z� z0ð Þ

=
1

k2

f�1 zð Þ+ f01 0ð Þ
k2

z +
A k2 + 1ð Þ

k2

ln
z� R2

�
�z0

z
�

�AR2 R2 � z0j j2
� �

k2 + 1ð Þ
k2�z

3
0 z� R2=�z0ð Þ , zj j= R:

ð11Þ

The left-hand side of equation (11) is analytic and single valued everywhere inside the circle, and the
right-hand side of equation (11) is analytic and single valued everywhere outside the circle including the
point at infinity. Again using Liouville’s theorem, we arrive at the following expressions for f1(z) for
zj jł R and its analytic continuation

f1 zð Þ= f01 0ð Þz� s0

m2

z + A k2 + 1ð Þ ln z� z0ð Þ, zj jł R;

f1 zð Þ= � f01 0ð Þz� A k2 + 1ð Þ ln
z� R2

�
�z0

z
+

�AR2 R2 � z0j j2
� �

k2 + 1ð Þ
�z3

0 z� R2=�z0ð Þ , zj jø R:

ð12Þ

Inserting equation (12) into equation (10), we deduce that the function f2(z) for zj jø R and its analy-
tic continuation are given as follows

f2 zð Þ= � A ln
z� R2

�
�z0

z
+

�AR2 R2 � z0j j2
� �

�z3
0 z� R2=�z0ð Þ + A ln z� z0ð Þ � s0

m2

z, zj jł R;

f2 zð Þ= A ln z� z0ð Þ � A ln
z� R2

�
�z0

z
+

�AR2 R2 � z0j j2
� �

�z3
0 z� R2=�z0ð Þ , zj jø R:

ð13Þ

From equation (12)1, we find that
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f01 0ð Þ= f01 0ð Þ � s0

m2

� A k2 + 1ð Þ
z0

: ð14Þ

Consequently, s0 and Imff01(0)g can be determined from equation (14) as

s0

m2

= � k2 + 1ð ÞRe
A

z0

� �
=

b1h� b2j

p j2 + h2
	 
 ,

Im f01 0ð Þf g= � k2 + 1

2
Im

A

z0

� �
=

b1j + b2h

2p j2 + h2
	 
 : ð15Þ

From equation (15)1, we see that the internal hydrostatic tension s0 is independent of Poisson’s ratio
of the matrix, and is proportional to the shear modulus of the matrix. Using the analytic continuations
in equation (6) and making using of equation (15)1, the original two pairs of analytic functions
f1(z), c1(z) defined in the liquid inclusion and f2(z), c2(z) defined in the matrix can be written as

f1 zð Þ= f01 0ð Þ � s0

m2

� �
z + A k2 + 1ð Þ ln z� z0ð Þ,

c1 zð Þ= �A k2 + 1ð Þ ln z� z0ð Þ � A�z0 k2 + 1ð Þ
z� z0

, zj jł R;

ð16Þ

and

f2 zð Þ= A ln z� z0ð Þ � A ln
z� R2

�
�z0

z
+

�AR2 R2 � z0j j2
� �

�z3
0 z� R2=�z0ð Þ ,

c2 zð Þ= �A ln z� z0ð Þ � A�z0

z� z0

� �A ln
z� R2

�
�z0

z
+ A�z0 �

�A R2 � z0j j2
� �

�z0

2
4

3
5 1

z� R2=�z0

+

�AR2 R2 � z0j j2
� �

�z2
0 z� R2=�z0ð Þ2

+Re
A

z0

� �
2 R2 � z0j j2
� �

� R2 k2 + 1ð Þ
h i 1

z
� AR2

z2
, zj jø R:

ð17Þ

The internal nonuniform strains and nonuniform rigid body rotation within the liquid inclusion can
be obtained from equation (4) with k1 = 1 and equation (16) as follows

-21 = � b1j + b2h

2p j2 + h2
	 
� b1 x1 � jð Þ+ b2 x2 � hð Þ

p x1 � jð Þ2 + x2 � hð Þ2
h i ,

e22 = � e11 =
b2 x1 � jð Þ+ b1 x2 � hð Þ

2p x1 � jð Þ2 + x2 � hð Þ2
h i

+
b1 x2 � hð Þ 3 x1 � jð Þ2 � x2 � hð Þ2

h i
+ b2 x1 � jð Þ 3 x2 � hð Þ2 � x1 � jð Þ2

h i
2p x1 � jð Þ2 + x2 � hð Þ2
h i2

,

e12 =
b1 x1 � jð Þ � b2 x2 � hð Þ

2p x1 � jð Þ2 + x2 � hð Þ2
h i

+
b1 x1 � jð Þ x1 � jð Þ2 � 3 x2 � hð Þ2

h i
+ b2 x2 � hð Þ 3 x1 � jð Þ2 � x2 � hð Þ2

h i
2p x1 � jð Þ2 + x2 � hð Þ2
h i2

, z 2 S1,

ð18Þ
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which is independent of the elastic property of the matrix
The hoop stress along the liquid-solid interface on the matrix side can be derived as

suu

m2

= 4 z0j j2 � R2
� �

Re
A

R Reiu � z0ð Þ eiu�z0 � Rð Þ +
�A

�z0 eiu�z0 � Rð Þ2

( )

+ 4Re
A

Reiu

� �
+ k2 + 1ð ÞRe

A

z0

� �
:

ð19Þ

When the edge dislocation lies simply on the circular interface with z0 = Reiu0 , equation (19) reduces to

suu

m2

=
4 b2 cos u� b1 sin uð Þ

Rp k2 + 1ð Þ +
b2 cos u0 � b1 sin u0

Rp
u 6¼ u0ð Þ: ð20Þ

Using the Peach–Koehler formula [12], the image force acting on an edge dislocation lying on the x1-
axis with h = 0 is

F1 � iF2 = 2m2 b2 + ib1ð ÞRe f0R jð Þf g+ m2 b2 � ib1ð Þ jf00R jð Þ+ c0R jð Þ½ �, ð21Þ

where F1 and F2 are, respectively, the image force components along the x1- and x2-directions, and the
two terms f0R(j) and jf00R(j) + c0R(j) are given by

f0R jð Þ=
�A� Að ÞR2

j j2 � R2
	 
 ,

jf00R jð Þ+ c0R jð Þ= � 2�Aj

j2 � R2
� 2iIm Af g

j
�Re Af g 2 R2 � j2

	 

� R2 k2 + 1ð Þ

� � 1

j3
+

2AR2

j3
:

ð22Þ

Consequently, we obtain from equations (21) and (22) the horizontal and vertical components of the
image force as

F1 =
m2

p k2 + 1ð Þ �
2R2 b2

1 + b2
2

	 

j j2 � R2
	 
 + b2

2 k2 + 1ð Þ � 2b2
1

� �R2

j3

( )
,

F2 =
m2b1b2R2 k2 + 3ð Þ

p k2 + 1ð Þj3
:

ð23Þ

It is seen from equation (23)2 that the vertical component of the image force F2 is nonzero when both
components of the Burgers vector are nonzero (i.e., b1b2 6¼ 0). When the edge dislocation lying on the
x1-axis contains only the gliding component with b2 = 0, equation (23) becomes

F1 = � 2m2R2b2
1

p k2 + 1ð Þ
1

j j2 � R2
	 
 +

1

j3

" #
,F2 = 0: ð24Þ

In this case, the gliding dislocation is always attracted to the circular interface. Equation (24) becomes
equation (7.8) with a = � 1 by Dundurs [12] for a traction-free circular hole in view of the fact that
s0 = 0 for a gliding dislocation.

When the edge dislocation lying on the x1-axis contains only the climbing component with b1 = 0,
equation (23) becomes

F1 =
m2R2b2

2

p k2 + 1ð Þ �
j2 k2 � 1ð Þ � R2 k2 + 1ð Þ

j3 j2 � R2
	 
 ,F2 = 0: ð25Þ

Equation (25) cannot reduce to equation (7.9) with a = � 1 by Dundurs [12] for a traction-free circular
hole in view of the fact that s0 6¼ 0 for a climbing dislocation. The difference between the two is simply
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the contribution of the hydrostatic tension s0 to the image force. It is seen from equation (25) that the
climbing dislocation will be attracted to the circular interface when

R\ jj j\R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 1

k2 � 1

r
, ð26Þ

it is repelled from the interface when

jj j. R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 1

k2 � 1

r
, ð27Þ

and it has an unstable equilibrium position at

jj j= R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 1

k2 � 1

r
. R: ð28Þ

The climbing dislocation is always attracted to the circular interface when the matrix becomes incom-
pressible with k2 = 1. The unstable equilibrium position for a climbing dislocation as an increasing func-
tion of Poisson’s ratio of the matrix n2 determined from equation (28) is illustrated in Figure 2. It is seen
there that jj j=R lies in the range from jj j=R = 1:414 for n2 = 0 to jj j=R! ‘ for n2 ! 0:5.

4. Conclusion

A closed-form solution has been derived to the plane strain problem associated with an edge dislocation
located at an arbitrary position in an infinite isotropic elastic matrix interacting with a nearby circular
incompressible liquid inclusion. The two pairs of analytic functions f1(z), c1(z) defined in the inclusion
and f2(z), c2(z) defined in the matrix are given by equations (16) and (17), respectively. The internal
uniform hydrostatic tension, nonuniform strains and nonuniform rigid body rotation within the liquid
inclusion are obtained in elementary form in equations (15)1 and (18), and the hoop stress along the cir-
cular interface on the matrix side is determined explicitly in equation (19). Using the Peach–Koehler for-
mula, the image force acting on the edge dislocation is presented concisely in equation (23). Our analysis
indicates that a gliding dislocation is always attracted to the circular interface, and that there exists an
unstable equilibrium position for a climbing dislocation. The existence of the unstable equilibrium posi-
tion cannot be deduced from the classical result for a traction-free circular hole by Dundurs [12].

Figure 2. Variation of the unstable equilibrium position for a climbing dislocation as an increasing function of n2 determined from
equation (28).
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