
RESEARCH PAPER

M6ADD: a comprehensive database of m6A modifications in diseases
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ABSTRACT
N6-methyladenosine (m6A) modification is an important regulatory factor affecting diseases, including 
multiple cancers and it is a developing direction for targeted disease therapy. Here, we present the 
M6ADD (m6A-diseases database) database, a public data resource containing manually curated data on 
potential m6A-disease associations for which some experimental evidence is available; the related high- 
throughput sequencing data are also provided and analysed by using different computational methods. 
To give researchers a tool to query the m6A modification data, the M6ADD was designed as a web- 
based comprehensive resource focusing on the collection, storage and online analysis of m6A modifica
tions, aimed at exploring the associations between m6A modification and gene disorders and diseases. 
The M6ADD includes 222 experimentally confirmed m6A-disease associations, involving 59 diseases from 
a review of more than 2000 published papers. The M6ADD also includes 409,229 m6A-disease associa
tions obtained by computational and statistical methods from 30 high-throughput sequencing datasets. 
In addition, we provide data on 5239 potential m6A regulatory proteins related to 24 cancers based on 
network analysis prediction methods. In addition, we have developed a tool to explore the function 
of m6A-modified genes through the protein–protein interaction networks. The M6ADD can be accessed 
at http://m6add.edbc.org/.
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Introduction

There are currently more than 150 known chemical RNA 
modifications and m6A is the most common among them 
[1,2]. This post-transcriptional RNA modification is 
dynamic and reversible, regulated by methylases, demethy
lases, and proteins that preferentially 
recognize m6A modification [3–5]. At present, more than 
20 m6A regulatory proteins have been discovered, known as 
RNA methylation writers, erasers and readers. These spe
cific proteins can dynamically regulate m6A in cells, 
causing m6A to affect the structure and various functions 
of mRNA [6]. Common m6A proteins include methyltrans
ferase like 3 (METTL3), methyltransferase like 14 
(METTL14), FTO alpha-ketoglutarate dependent dioxygen
ase (FTO), alkB homolog 5 (ALKBH5), YTH N6- 
methyladenosine RNA binding protein 1 (YTHDF1) and 
YTH N6-methyladenosine RNA binding protein 2 
(YTHDF2). The regulatory proteins affect mRNA metabo
lism by installing, removing, and selectively 
combining m6A modifications. For example, the analysis 
of mRNA expression levels between METTL3 knockdown 
cells and controls showed that m6A modification stabilized 
mRNA. When the m6A of the transcripts was lost, the 
expression level of the transcripts decreased accordingly 
[7]. m6A modification plays an important role in a variety 

of biological processes related to transcriptional regulation, 
such as RNA shearing [8], translation [9], mRNA stability, 
etc [10]. About one-third of mammalian mRNAs 
undergo m6A modification. Each mRNA has an average of 
3–5 m6A modifications, and many m6A sites have evolved 
between human and mouse [11].

m6A modification is an important factor affecting disease 
and participates in the processes of many types of cancers 
[12]. METTL14 regulates its mRNA targets (such as MYB and 
MYC) through m6A modification to play a carcinogenic role 
in acute myeloid leukaemia (AML) [13]. The METTL3/ 
YTHDF2 m6A axis degraded SETD7 and KLF4, which pro
motes the development of bladder cancer [14]. m
]. m6A modification is significantly related to the abnormal 
expression of oncogenes, which increases the complexity of 
the gene regulatory mechanism [11]. METTL3 is highly 
expressed in AML and plays a key role in AML cell survival 
and leukaemia progression in an m6A dependent manner by 
promoting the translation of target mRNAs [15]. The pri- 
miRNA labelled with m6A can be distinguished by 
hnRNPA2B1, which interacts with DGCR8 to promote pri
mary miRNA processing [16]. In liver cancer cells, the reader 
protein YTHDF2 can bind to an m6A site on the 3ʹ-UTR of 
EGFR, resulting in a decrease in EGFR expression and inhi
biting tumour cell proliferation [17]. In lung cancer cells, the 
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writer protein METTL3 can positively regulate the expression 
of EZH2 through m6A modification, affecting the progression 
of lung cancer cells [18]. m6A modifications have also been 
found on noncoding RNAs(ncRNAs), and can affect their 
expression and function. The interaction between the long 
noncoding RNA (lncRNA) GAS5-AS and ALKBH5 affects 
the GAS5 m6A modification and enhances GAS5 stability 
[19]. The eraser protein ALKBH5 can change the m6A level 
of the lncRNA NEAT1, promoting the invasion and metasta
sis of gastric cancer cells [20]. The m6A modification of RNA 
can also affect other diseases. FTO is believed to be the first 
m6A demethylase related to obesity [21] and has also been 
linked to diabetes [22] and heart failure [23]. These studies 
show that m6A modification of RNA can affect the course of 
diseases and may be a potential treatment direction for 
disease.

Methylated RNA immunoprecipitation sequencing (MeRIP- 
seq) is a common method for detecting m6A modifications 
using high-throughput sequencing technology. Some high- 
throughput data using MeRIP-seq have been generated that 
focus on m6A modifier proteins interfering with changes at 
the cellular level, provide the characteristics 
of m6A modifications in tissue cells, and lay the foundation 
for further interpretation of m6A function in disease. The inte
gration of m6A data and other public data such as Gene 
Expression Omnibus (GEO) [24], Sequence Read Archive 
(SRA) [25] and ENCODE [26] has contributed to some of the 
existing m6A databases. MeT-DB v2.0 [27], RMBase v2.0 [28], 
CVm6A [29] and REPIC [30] collected transcriptome- 

wide m6A peaks from multiple species by using published 
MeRIP-seq data. M6AVar [31] combined m6A with variants 
that may affect the m6A function to explore the influence 
of m6A-related variants on post-transcriptional regulation. 
M6A2target [32] collected information about the WERs(writers, 
erasers and readers) of m6A and their targets, including data 
collected from the literature and high-throughput sequencing 
data.

Here, we have developed the M6ADD database, which 
includes manually curated data on potential m6A-disease 
associations for which some experimental evidence is available 
and data obtained from m6A high-throughput sequencing 
data analysis, aiming to explore the relationship 
between m6A modifications and gene disorders and diseases 
(Fig. 1). The M6ADD contains 222 experimentally 
confirmed m6A disease relationship pairs (m6A modified 
gene-disease) of 185 human and 37 mouse. We screened 
the m6A modified region of difference between normal and 
disease samples from the sequencing data of 30 kinds of 16 
diseases through two calculation methods and provided sta
tistically evaluated results. The m6A-disease data includes 
the m6A genomic location, disease name, m6A regulatory pro
tein, regulation mode, tissue/cell line, experimental method 
and data source. We also predicted potential m6A regulatory 
proteins in 24 cancers based on The Cancer Genome Atlas 
(TCGA) data [33]. In addition, we also developed a PPI net
work tool to obtain protein interaction networks 
for m6A genes of interest, and inferred the functions of 
these genes.

Figure 1. Data sources and overall design of the M6ADD.
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Materials and methods

Collection of experimentally confirmed m6A-disease data

Based on the currently available m6A data related to diseases 
in public resources, we divided the data collected in the 
database into experimentally confirmed m6A-disease data 
and high-throughput sequencing m6A-disease data.

For the experimentally confirmed data, we searched the list 
of keywords in PubMed database [34]: ‘m6A’ and ‘N6- 
methyladenosine methylome’, and explored a total of nearly 
3000 documents. We selected the literature on m6A-disease 
associations that had been experimentally confirmed, and we 
manually extracted the important data. The potential relation
ship between m6A modifications and diseases was investi
gated, in the selected papers, using experimental methods 
such as western blotting and RT-qPCR, which have strong 
credibility. To ensure the quality of the data, each piece of 
data was inspected at least twice. For each article, we extracted 
the diseases, genes, m6A regulatory proteins, regulatory mode, 
gene position in the genome, experimental tissues and cell 
lines (such as HEK293T, H1299, A549 cell lines), and experi
mental methods (such as western blot; real-time quantitative 
reverse transcription-PCR and RNA immunoprecipitation 
assays), species, disease organs, a brief description of 
the m6A and disease regulatory mechanisms, and the litera
ture source. In particular, if the disease matched one of the 
cancer types in TCGA, we also utilized from the Gene expres
sion profiling interactive analysis (GEPIA) tool [35] to 
retrieve some information from TCGA, for example whether 
the gene is a differentially expressed in that cancer. Finally, 
through manual mining of the literature, we obtained a total 
of 222 experimentally confirmed m6A-disease associations, 
including 59 diseases, 20 organs, 20 m6A regulatory proteins 
and 100 genes.

Collection of high-throughput sequencing m6A-disease 
data

For the high-throughput sequencing data, we retrieved and 
downloaded the raw data of m6A-disease high-throughput 
sequencing in the GEO database and the SRA database. We 
obtained 30 sets of high-throughput data by MeRIP-seq tech
nology, including a total of 225samples, covering 21 tissues 
and cell lines and obtained 409,229 m6A-disease associations 
(m6A modification site-disease). For each dataset, we used 
a unified method to process the original data. We used 
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/ 
fastqc/) to perform quality control on the original MeRIP- 
seq sequencing data, and used hisat2 [36] and the reference 
genome (hg38) for sequence alignment. Subsequently, sam
tools [37] was used to convert the SAM file generated by the 
alignment into a BAM file, and the sorted BAM file was used 
as the input file for the next step of the analysis. In the second 
step, we used two methods for the differential analysis of the 
MeRIP-seq data (RADAR [38] and MeTDiff [39]) to identify 
the differential m6A regions,and map these regions to the 
corresponding genes (hg38). We sorted the results obtained 
by these two methods. Each data contained disease, the 

differential m6A region (chromosome, start position and end 
position), gene, logFC, P_value, sample processing method, 
data sources and a link to the UCSC Genome Browser [40] in 
the differential m6A area.

In addition to the results calculated by these two indepen
dent methods, we also developed a calculation method that 
integrates the results of these two methods. We divided the 
differentially methylated regions identified by the two meth
ods into an up-regulaed group (logFC>0) and a down- 
regulated group (logFC<0) to integrate them. The formula 
was as follows:
Where:

- logFCRADAR represents the logFC value from RADAR;
- logFCMeTDiff represents the logFC value from MeTDiff; 
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Where R1 and R2 represent the number of differentially up- 
regulated and down-regulated regions, respectively, identified 
by RADAR and M1 and M2 represent the number of differ
entially-up-regulated and down-regulated regions, respec
tively, identified by MeTDiff.

Collection of Protein-Protein Interaction (PPI) data 
related to cancer

We collected additional data from other data sources to help 
users explore in depth the potential relationship 
between m6A and disease. We selected the highest confidence 
(>0.9) interactions from the STRING v11 database [41], and 
obtained a total of 11,967 genes and 486,872 interactions.

We downloaded the expression profile data of 24 cancers 
from the TCGA database. After preprocessing the data, differ
ential expression analysis of cancer samples and normal sam
ples was performed (Log2|FC|>1 and P_value<0.01) by using 
DESeq2 [42]. We integrated protein interaction networks 
derived from the STRING database and human protein refer
ence database [43], mapped the genes differentially expressed 
in cancer as nodes to the integrated protein interaction net
work, and extracted one-step neighbour sites of these nodes as 
sub-networks. By searching m6A-related literatures, manually 
mining m6A regulatory proteins from these literatures. A total 
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of 27 m6A regulatory factors were summarized. We extracted 
the expression data of these m6A regulatory factors in cancer, 
calculated the Pearson correlation coefficient between 
the m6A regulatory factors and differentially expressed 
genes, and retained gene pairs with a correlation coefficient 
greater than 0.4. We then mapped the m6A regulatory factor 
as a seed gene to the sub-network, extracted the shortest 
distance between the seed gene and the differentially 
expressed genes in the network, and standardized it with the 
formula:

X� ¼ X � Xminð Þ= Xmax � Xminð Þ

where X is the distance between two nodes and Xmax and 
Xmin are the maximum and minimum values of the shortest 
distance in the entire network, respectively.

We defined the weighting formula for edges in the 
weighted network as:

W ¼ 1 � 1 � Rð Þ � L 

where W is the weight, R is the correlation between nodes, 
and L is the shortest standardized distance between two 
nodes.

Taking the one-step neighbour sub-network as the seed 
network, the weighting formula was used to calculate the 
weights of the m6A regulatory factors and the differentially 
expressed genes, and a list of weights between 
the m6A regulatory factors and the differentially expressed 
genes was obtained. Then we calculated the average of the 
minimum weights obtained from 1000 perturbations of the 
network as the cut-off and removed gene pairs lower than the 
cut-off in the weight list obtained in the first calculation. The 
remaining gene pairs were added to the one-step neighbour 
sub-network, thereby obtaining a reconstructed weight net
work. We used Cytoscape software [44] and MCODE tool 
[45] to mine the network, and screened for functional mod
ules containing m6A regulatory factors. We sorted out the 

modules of m6A regulatory factors corresponding to each 
cancer, visualized the modules network, screened out the 
genes that are differentially expressed in the cancers contained 
in the modules, and ranked the correlation weights of the 
genes and their corresponding m6A regulatory factors. 
Finally, 5239 cancer-related m6A regulatory protein predic
tion data were obtained.

Results

Exploring the functions of m6A related genes in disease

The M6ADD provides a large number of curated data from 
literature and related high-throughput sequencing results on 
potential m6A-disease associations for which some experi
mental evidence is available. Among the experimentally con
firmed data, most of the data indicated the genes modified 
by m6A. In the high-throughput data, each 
differential m6A region identified based on the calculation 
method contained the corresponding gene. In order to facil
itate users to explore the functions of the m6A-related genes 
of interest, M6ADD provides the ‘m6A-Net’ interface. Users 
can input the differential m6A modification gene included in 
the database to obtain the protein interaction network of the 
gene. A link to the DAVID website [46] is provided at the 
bottom of the interface to perform functional enrichment 
analysis on the obtained protein interaction network. As an 
example, we take the differential m6A modification gene 
SOX2, which is related to acute leukaemia, liver cancer, and 
cervical cancer. Clicking ‘Submit’ gives the SOX2 protein 
interaction network diagram and allows the picture to be 
exported (Fig. 2A). Below the network diagram, there are 
three links to DAVID to show functional annotations. 
Clicking on the links opens the DAVID website and allows 
annotation of SOX2 and the gene set that interacts with 
SOX2. The DAVID results show that SOX2 and the gene set 

Figure 2. Application of the m6A-Net page. (A) PPI network diagram obtained by searching for SOX2 on the m6A-Net page. (B) Functional enrichment analysis of 
SOX2 and the gene set interacting with SOX2. SOX2 and the interacting genes are enriched in functions and pathways closely related to cancer.
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interacting with SOX2 are significantly enriched in a number of 
cancer-related functional nodes and pathways, including ‘DNA 
as template transcriptional regulation (GO: 0006355)’, ‘Positive 
regulation of cell proliferation (GO: 0008284)’, ‘SMAD protein 
complex assembly (GO: 0007183)’, ‘Positive regulation of type 
I interferon production (GO: 0032481)’, ‘FoxO signaling path
way (hsa04068)’, ‘Pancreatic cancer pathway (hsa05212)’, 
‘Colorectal cancer pathway (hsa05210)’, etc. (Fig. 2B). This 
shows that SOX2 is a gene closely related to a variety of cancers, 
and it would be worthwhile to carry out more in-depth research 
on SOX2 in a variety of carcinogenic mechanism.

Prediction of potential regulatory proteins in the m6A 
modification process

The M6ADD provides 5239 data on 
potential m6A regulatory proteins related to 24 cancers 
based on network analysis prediction methods (Fig. 3A). 
Each predicted protein related to a specific cancer has 
a prediction score. A higher score indicates a greater poten
tial that the protein is the m6A regulatory protein for that 
cancer. We found that among the 5239 data on 
potential m6A regulatory proteins associated with 24 can
cers, some proteins were predicted in multiple cancers. 
There were 87 proteins predicted in more than four can
cers. Functional enrichment analysis of these 87 proteins 

showed that these were significantly enriched in functions 
and pathways related to tumour cell proliferation and dif
ferentiation, including DNA replication, mitosis, cell differ
entiation, chromatin organization and cell proliferation 
(Fig. 3B). This indicates that these proteins may be com
mon cancer proteins and could be related to underlying the 
biological processes and mechanisms of multiple cancers.

Among the 24 cancers, cholangiocarcinoma (CHOL) had 
the most m6A regulatory proteins according to the algorithm, 
with a total of 1,253 predicted data. Liver cancer (LIHC) had 
546 predicted m6A regulatory protein data, renal cell carci
noma (KICH) had 527 m6A regulatory protein data, and 
pancreatic cancer (PAAD) had the least data, with 
nine m6A regulatory protein data. Taking renal papillary cell 
carcinoma as an example, there are currently five 
known m6A regulatory proteins, FMR1, HNRNPC, 
IGF2BP2, RBM15B and YTHDC1. Based on our prediction 
method, 34 potential m6A regulatory proteins related to renal 
papillary cell carcinoma were identified. Seven of these genes 
are included as cancer genes by the Cancer Gene Census [47], 
including BRCA1, MYH11, AXIN1, FAS, CDH1, GATA2, and 
MDM2. Using the hypergeometric distribution test, the 
P_value was less than 0.01 (Fig. 3C). This indicates that the 
predicted proteins provided by the M6ADD might be poten
tially cancer-related m6A regulatory proteins, which could 
provide new research directions for the future.

Figure 3. The M6ADD predicts the potential m6A regulatory proteins of various cancers. (A) The number of m6A regulatory protein in each cancer predicted in the 
M6ADD. (B) Functional annotation of 87 regulatory proteins predicted in a variety of cancers. (C) The overlap of seven predicted proteins in KIRP and CGC. 
Hypergeometric testing shows that the P_value is less than 0.01, indicating that the prediction result has a strong correlation with the cancer gene set.
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Differential methylation analysis of m6A based on 
experimental conditions

We found that the samples were processed by different 
experimental methods before performing MeRIP-seq in the 
high-throughput data. The most common processing method 
for samples was to knockdown m6A regulatory protein 
expression, such as METTL3, METTL14 or METTL1 knock
down. Five sets of samples were processed with METTL3 
knockdown, and the corresponding diseases were cervical 
cancer, endometrial adenocarcinoma, glioblastoma, liver can
cer and type 2 diabetes. We selected the two cancers with the 
most data (cervical cancer, 1974 genes, and endometrial ade
nocarcinoma, 638 genes) to compare the integration results 
and found that a total of 107 genes were identified as 
differential m6A modification genes in both cancers (Fig. 
4A). Hypergeometric analysis showed that the two gene sets 
had a strong correlation (P < 0.01). This shows that although 
the samples are different, the use of the same sample proces
sing method gives a high similarity between the results 
calculated.

Previous studies have shown that m6A modification has 
strong tissue or cell specificity. Comparison of the m6A peak 
enrichment shows the strongest correlation between the same 
tissues or cells, even when different experiments have been 
performed. The M6ADD contains 30 sets of disease-related 
high-throughput data processing results for 16 diseases, of 
which liver cancer and cervical cancer have the largest num
ber of studies. Liver cancer involves six studies (GSE37002, 
GSE90642, GSE102620, GSE110320, GSE134630 and 
GSE112276) and cervical cancer involves five studies 
(GSE112276, GSE46705, GSE86214, GSE102336 and 
GSE112795). In the six liver cancer studies, the 
‘Heat_Shock’, ‘UV irradiation’, ‘shMETTL14’, ‘METTL3 
knockdown’, ‘SETD2 knockdown’, ‘WTAP knockdown’, 
‘KIAA1429 knockdown’ and ‘Induce EMT’ were used to pro
cess the samples. We found that using data from samples with 
different processing methods to calculate the difference 
in m6A modification resulted in larger differences. We have 

used the integrated result to illustrate this phenomenon, 
because the integrated result contains the 
different m6A modifications identified by the two calculation 
methods. The first step was to identify the differences in 
the m6A-modified regions and the number of aligned genes. 
Among the six studies, five studies used HepG2 cells. Among 
them, the number of differential m6A regions and the number 
of genes in the comparison obtained by using the ‘UV irradia
tion’ method to process the sample data (GSE37002) were the 
largest, at 19,399 and 8369, respectively. When using the 
‘SETD2 knockdown’ method to process the sample data 
(GSE134630), the number of differential m6A regions and 
the number of genes in the comparison were the least, at 54 
and 50, respectively. In particular, in GSE110320 data set 
study, the researchers used knockdown of METTL14, 
METTL3, SETD2, and WTAP and then performed m6A-seq. 
We found that a total of 223 differential m6A modification 
genes were identified in total among four samples types, but 
the number of differential m6A modification genes in two 
types of samples was 23, and the number of 
differential m6A modification genes in three types of samples 
was 7, and the number of differential m6A modification genes 
in 4 types of samples were not identified (Fig. 4B). This shows 
the use of different methods of samples processing will lead to 
large differences in the identification of disease-related m
6A genes, even when using the same cell line or tissue. It 
indicates that researchers need to pay attention to the proces
sing methods used for each sample when using disease- 
related m6A high-throughput data in the GEO database. 
Each of the high-throughput sequencing datasets included in 
the M6ADD contain data on the sample processing methods, 
allowing users to select appropriate data.

Web interface and application

The M6ADD provides a user-friendly interface to help 
researchers explore m6A-disease data. The M6ADD contains 
several interfaces such as ‘Browse’, ‘Search’, ‘Download’, 

Figure 4. Processing methods have a great influence on the results. (A)Results of the same experimental method in different cancer samples. (B) Results of the same 
experimental sample under different methods.
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‘m6A-Net’, ‘m6A-Regulator’ and ‘Help’. In the ‘Browse’ inter
face, users can click on a specific ‘gene’, ‘disease’ or ‘protein’ 
to obtain the corresponding data. The Browse page divides the 
data into two parts: ‘Experiment’ and ‘Sequencing’. In the 
Experiment section, there are three columns: gene, disease, 
and protein. By clicking on the word in each column, you get 
the corresponding data on the right side of the interface. The 
Sequencing section contains gene columns and has the same 
function as the Experiment section. In the ‘Search’ interface, 
the data search is divided into two parts, ‘Search for experi
mental verification data’ and ‘Search for high-throughput 
sequencing data’. In the ‘Search for experimental verification 
data’ section, users can perform a combined search by select
ing species and organs and entering the names of diseases, 
proteins, and genes. In the ‘Search for high-throughput 
sequencing data’ section, users can search by selecting the 
method of calculating the difference in m6A and entering 
the names of diseases and genes. In the download interface, 
the M6ADD provides all experimental confirmation data and 
high-throughput sequencing data. It also describes each set of 
high-throughput data and provides the results of the three 
dataset calculation methods. In the ‘m6A-Net’ interface, users 
can obtain the corresponding PPI network by entering 
a disease-related m6A gene, and can perform functional anno
tations. On the ‘m6A-Regulator’ interface, users can select 
cancer type and known m6A regulatory proteins to obtain 
potential cancer m6A regulatory proteins provided by the 
M6ADD. The help interface contains pictures and text 
descriptions of all the main interface functions in the data
base. A detailed usage for M6ADD is available on the interface 
of help. Users can better understand the function of browse, 
query, and download through reading the help interface.

The M6ADD provides a large amount of disease-focused 
m6A data. For example, users can search for ‘Glioblastoma’ in 
‘Search for experimental verification data’ to obtain all current 
experimentally confirmed glioblastoma data. The result 
includes the target gene, m6A protein, regulation mode, 
whether it is differentially expressed in TCGA, organs, and 
a link to all data. Clicking ‘detail’ opens all the information 
about the data, which is divided into two categories, the basic 
information, and the data source (Fig. 5A). We found that 
many studies have confirmed that METTL3 is related to 
glioblastoma, and METTL3 could affect SOX2, SRSFs and 
ADAM19 to affect the biological process of glioblastoma. 
Selecting ‘Integration’ to search for ‘Glioblastoma’ in ‘Search 
for high-throughput sequencing data’ gives 2265 
different m6A data, including P_value, sample processing 
method, integrated score, UCSC genome browser links, and 
other data. At the same time, users can click the button at the 
top left of the table to export the data (Fig. 5B). In ‘m6A-Net’, 
users can search for the gene SOX2 to get a protein interac
tion network including SMAD2, PBX1, EPAS1 and other 
genes, and can annotate the gene set through the link on the 
web page. In the ‘m6A-Regulator’ interface, users can select 
‘Glioblastoma’ and the regulatory protein ‘YTHDC1’ to obtain 
the predicted 15 m6A regulatory proteins related to glioblas
toma, and click on the ‘Network Diagram’ to get the glioblas
toma Predict m6A regulatory protein network diagram (the 
yellow nodes in the network are differentially expressed genes 

in cancer, and the green nodes are non-differentially 
expressed genes) (Fig. 5C).

Discussion and conclusions

Increasing attention is currently being paid 
to m6A modification, which is the most abundant modifica
tion on RNA and can regulate the expression of specific genes. 
Less than 100 studies were published in 2013, while nearly 
1,000 studies were published in 2020, showing 
that m6A modification is becoming a new epigenetic research 
focus. m6A modification has been confirmed to be closely 
related to a variety of diseases, especially cancers. 
Many m6A regulatory proteins are expected to become poten
tial cancer treatment targets. Interference with m6A regulatory 
proteins can affect the growth and survival of tumour cells. 
For example, meclofenamic acid (MA) can inhibit FTO 
(an m6A eraser) and thus inhibit the growth of GBM cells. 
As m6A-related studies increase, more m6A-related targets for 
cancer treatment will be discovered. We developed the 
M6ADD to make better use of existing resources, focusing 
on collecting data between m6A modification and diseases, 
and providing new m6A regulators predicted by a web-based 
method.

Each piece of data, in addition to providing direct data on 
the relationship between m6A modification and disease, also 
provides other important data to show mechanistic insight 
and experimental evidence. The experimentally confirmed 
data provides information on whether the m6A modified tar
get gene was differentially expressed in TCGA data. In the 
high-throughput sequencing data, since the algorithm can 
identify the m6A peak region, we provide a link to the 
UCSC for this region, and users can obtain other genome- 
related information for this region through the UCSC web
site. In the predicted cancer m6A regulatory protein data, we 
provide the network results we identified and visualize the 
network content graphically. The functional enrichment ana
lysis of our predicted data and comparison with known 
cancer genes also shows that our method has high accuracy. 
The M6ADD provides an independent tool to help users 
quickly obtain specific gene interaction proteins and the 
function of a gene set. For example, searching for the gene 
‘MYC’ and the disease ‘Cervical cancer’ in the experimentally 
confirmed data shows that MYC has been confirmed to be 
related to cervical cancer and is regulated by the IGF2BP1/2/3 
and FTO proteins. Searching for the gene ‘MYC’ and the 
disease ‘Cervical cancer’ in the high-throughput data section 
shows that MYC has been calculated to be related to cervical 
cancer. The MYC interaction proteins and their functions can 
be obtained using the m6A-Net tool. The functional results 
show that this gene set is significantly enriched in multiple 
cancer-related pathways, including the FOXO signalling 
pathway which is being considered as a therapeutic target 
for cancer treatment.

With the advancement of sequencing technology and 
experimental methods, more data will be generated in the 
future. These studies will provide opportunities for further 
expansion of the M6ADD. We will work to update the 
M6ADD data set, including both experimentally confirmed 
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data and high-throughput data. We plan to update once every 
6 months. In addition, we will develop new calculation and 
visualization tools to help researchers better use the data.

In summary, the M6ADD provides a convenient and useful 
data resource for researchers interested in studying the rela
tionship between m6A modification and disease. The M6ADD 
presents a global view of m6A modification functions in 
human diseases and will help researchers to discover more 
cancer biomarkers and treatment targets.
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