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Hierarchical and programmable one-pot synthesis
of oligosaccharides
Cheng-Wei Cheng 1,2,3, Yixuan Zhou4, Wen-Harn Pan5, Supriya Dey4, Chung-Yi Wu4,

Wen-Lian Hsu2 & Chi-Huey Wong4,6

The programmable one-pot oligosaccharide synthesis method was designed to enable the

rapid synthesis of a large number of oligosaccharides, using the software Optimer to search

Building BLocks (BBLs) with defined relative reactivity values (RRVs) to be used sequentially

in the one-pot reaction. However, there were only about 50 BBLs with measured RRVs in the

original library and the method could only synthesize small oligosaccharides due to the RRV

ordering requirement. Here, we increase the library to include 154 validated BBLs and more

than 50,000 virtual BBLs with predicted RRVs by machine learning. We also develop the

software Auto-CHO to accommodate more data handling and support hierarchical one-pot

synthesis using fragments as BBLs generated by the one-pot synthesis. This advanced pro-

grammable one-pot method provides potential synthetic solutions for complex glycans with

four successful examples demonstrated in this work.
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Most of human proteins and natural products are
glycosylated1,2. However, it has not been clear what
roles carbohydrates have in biological molecules,

mainly due to the presence of hard-to-separate glycosylated
mixtures in the biological system and the difficulty encountered
in the synthesis of individual glycosylated molecules. Though the
synthesis of oligosaccharides with chemical or enzymatic
approach has been considered to be a mature methodology3, it is
still limited to laboratories specialized in the field because of the
tedious trial-and-error labor of intermediate separation and
protecting group manipulation. The programmable one-pot
synthesis method was developed to tackle this problem and was
based on the sequential use of thioglycoside BBLs to form gly-
cosidic bonds according to the reactivity differences of the BBLs4.
It is performed by a sequential addition of thioglycoside BBLs
according to the RRV, starting from the most reactive one from
the non-reducing end unit toward the reducing end unit. The
reactivity of each BBL can be tuned by protecting groups leaving
one or more exposed OH groups to react with its donor. There
are around 20 protecting groups available currently, and a com-
binatorial choice of these protecting groups for each mono-, di-
or trisaccharide building block gives a wide-range of BBLs with
different RRVs. Since the selection of suitable BBL combinations
for the synthesis of a desired oligosaccharide in high yield
represents a major challenge, a program called Optimer was
developed for identifying the best combination of BBLs based on
RRVs4.

To use the Optimer program, the user will first input the
desired glycan structure, then one or more synthetic methods
with appropriate combinations of BBLs needed to generate the
target glycan are displayed and ranked according to the RRV of
each BBL. The user can decide which combination of BBLs to use,
based on their knowledge and the availability of BBLs.

The original Optimer program could only synthesize small
oligosaccharides due to the RRV ordering requirement, and the
limited number of BBLs. To make glycan synthesis more versatile
and applicable to more complex oligosaccharides as well as
available to the research community, we develop a software called
Auto-CHO to meet the challenges encountered in the original
Optimer program.

Results
Auto-CHO. The software Auto-CHO contains three unique
features: (1) the program can be operated by graphical user
interface and is a cross-platform with Java Runtime Environment;
(2) it provides more synthetic BBLs with validated RRVs, and
virtual BBLs with accurately predicted RRVs to greatly expand
the current library size; (3) the program can be used to guide the
one-pot synthesis of more complex oligosaccharides through
fragment coupling. Auto-CHO can break a tree-shaped target
glycan structure into fragments, provide synthetic routes to each
fragment by the one-pot method, and put the fragments together
also through the one-pot approach with the same or different
leaving groups. Figure 1 shows the workflow of this method, in
which Auto-CHO produces tens of thousands of virtual BBLs
with accurately predicted RRVs through machine learning.
Examples are shown in Supplementary Figure 1 and Supple-
mentary Note 1.

We first increase the library size from 50 to 154 real BBLs with
verified RRVs (Supplementary Data 1–7). Then, based on
machine learning from these RRVs, create more than 50,000
virtual BBLs with predicted RRVs (Supplementary Data 8),
making possible the synthesis of a diverse array of glycans.
Although the structures of these virtual BBLs may not have been
synthesized previously, most of them were used in glycosylation

reactions with different leaving groups, so we can leverage many
of the existing BBLs with different leaving groups which have
been used for glycosylation reactions and convert them to
thioglycosides or incorporate them into the program directly to
increase the number of potentially feasible combinations. It is
noted that the library search is operated in user’s local machine,
and all query structures are in private.

Just like the original Optimer program, the Auto-CHO
program cannot guarantee the success of high-yield synthesis
for every target using the combinations of BBLs suggested by the
program, since there are many other structural constraints or
steric hindrance involved in the actual chemical reactions that
may be difficult to predict by in silico simulation. However, Auto-
CHO, an algorithm for hierarchical one-pot synthesis, has created
more potentially feasible combinations by its virtual BBLs with
accurately predicted RRVs, acting much like a search engine.

RRV prediction and validation. In the following, we describe the
process of RRV prediction (Table 1). First of all, there could be
many factors affecting the RRV of a BBL. According to Steve Ley
et al.5, NMR chemical shifts are related to the RRV of a BBL.
Different protecting groups can affect RRVs, and BBLs with
different protecting groups should have different structures and
chemical shift values. Therefore, we collect monosaccharide BBLs
based on hexose (Hex), N-acetyl-hexose (HexNAc), and sialic
acid (SA) sugar types for RRV prediction. Since it is time-
consuming to measure the NMR chemical shifts of each BBL at
each position by experiments, we extract the 1H-NMR and 13C-
NMR chemical shifts of BBLs calculated by ChemDraw6, 7, which
exhibits no significant difference with experimental chemical
shifts (see Supplementary Note 2 and Supplementary Data 9), and
use them as features incorporated with other basic properties to
build a RRV predictor by SVM regression model (Methods). The
performance by leave-one-out cross-validation (LOOCV, see
Supplementary Note 3) shows that chemical shifts alone can give
the prediction result with Pearson correlation coefficient (PCC) of
0.70 and the mean absolute error (MAE) of 7520, though this
performance may not be good enough for practical application.
See Supplementary Note 4 for the definitions of performance
evaluation.

Since the RRVs of SA BBLs vary and its nine-carbon backbone
structure is different from Hex or HexNAc, which has a six-
carbon backbone, we remove the SA BBLs from the dataset for
RRV prediction. As a result, the MAE is reduced from 7520 to
4221. Next, we use normalization combined with binarization of
certain features to improve the PCC to 0.78 and the MAE to 3869.

Furthermore, to capture the maximum amount of chemical
information encoded within a BBL, both chemical properties and
mathematical procedures may be used to transform the
information into an array of molecular descriptors, i.e., useful
numbers which mimic the results of certain standardized
experiments8. It has been documented that molecular descriptors
can be used to solve the quantitative structure activity relation-
ship (QSAR) problem, such as predicting the activities of
chemical compounds9. Thus, molecular descriptors are also
employed for RRV prediction. We use PaDEL-Descriptor9 to
generate 1D and 2D molecular descriptors (as features) from the
structures of BBLs, and use them alone to achieve the
performances with PCC of 0.73 and MAE of 4131.

By combining the basic properties (e.g., sugar type, the
anomeric configuration of product, etc.), NMR chemical shifts,
and molecular descriptors together, the PCC is increased to 0.88
and the MAE decreased to 2538. Finally, we adopt a feature
selection strategy (by removing the least effective feature one at a
time) to further improve the PCC to 0.97 and the MAE to 1253
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with 225 selected features. The relative absolute error (RAE) of
the final model is 0.1315.

To eliminate the possible doubt of overfitting, we adopt the
popular 10-fold cross-validation to evaluate the result of feature
selection and compare the performance of each set of feature to
see the effects of the number of selected features (e.g., 222 is more

than the number of BBLs in the training set; 100, 75, 50, and 25
are less than the number of BBLs in the training set). This
evaluation would avoid seeing the data from the test part in the
feature selection process. The result (Supplementary Table 1a and
Supplementary Data 10) shows that there is no significant
difference between 222 (selected feature size > training set size)
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Fig. 1 The workflow of Auto-CHO program. a The basic concept of Auto-CHO. b The detailed workflow. Auto-CHO allows users to input a desired glycan
structure and the program returns with one-pot glycan synthesis options. To facilitate the ability of Auto-CHO, we have not only expanded the
thioglycoside BBLs but also constructed a virtual BBL library by enumerating monosaccharide structures with different protecting group combinations and
theoretical RRVs that are estimated by our RRV predictor. RRV predictors are trained by SVM regression models, and features from experimental BBLs with
known RRVs. The predictor with the best performance by leave-one-out cross-validation (LOOCV) has been chosen as the final model. Independent test
has also been applied to validate the result. Since the use of virtual BBL in glycosylation may not have been validated and it is uncertain if it can be
successfully used in the one-pot synthesis process, text mining could be used to identify those virtual BBL candidates that have been reported in literature
and thus, have a good chance of participating in the one-pot synthetic reaction. The synthetic methods provided by Auto-CHO have been further validated
by four synthetic experiments in this study

Table 1 LOOCV performances of RRV predictors with different sugar classes, feature types, or settings

Dataset size Sugar class Feature type FS Feature size PCC MAE RAE

136 Hex, HexNAc, SA BP+ CS (Norm.) No 25 0.6964 7519.60 0.6161
117 Hex, HexNAc BP+ CS (Norm.) No 16 0.6803 4220.57 0.4428
117 Hex, HexNAc BP+ CS (Bina.) No 131 0.7675 3876.85 0.4067
117 Hex, HexNAc BP+ CS (Bina.+Norm.) No 144 0.7768 3868.84 0.4059
117 Hex, HexNAc MD No 1444 0.7326 4131.05 0.4334
117 Hex, HexNAc BP+ CS+MD No 1595 0.8803 2537.81 0.2662
117 Hex, HexNAc BP+ CS+MD Yes 222 0.9706 1291.32 0.1355
117 Hex, HexNAc BP+ CS+MD Yes 225 0.9701 1253.31 0.1315

The optimized performance is shown in bold
FS Feature selection; BP basic properties; CS (calculated) chemical shifts; MD molecular descriptors; Norm. normalized real values; Bina. binarization (Methods)
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and 100 (selected feature size < training set size). Although PCC
decreases and MAE increases when the number of selected
feature decreases, the change is not significant. Thus, we believe
that even the final size of the selected features (225) is bigger than
the size of the training size (117) in our case, it would not have
the overfitting problem and the developed RRV predictor can be
used for real application, as supported by the result of
independent test (Table 2). Note that the result with 222 selected
features in Table 1 has better performance than the result with
222 selected features in the Supplementary Table 1a. It is because
the latter is evaluated by 10-fold cross-validation for feature
selection, in which only 9/10 of the training set is used for feature
selection rather than the entire training set as in LOOCV. In
general, LOOCV is expected to have better performance than 10-
fold cross-validation for small training set.

Supplementary Data 11 shows details of LOOCV perfor-
mance and Supplementary Data 12 shows the details of the
selected features used in our optimized RRV predictor.
According to the characteristic of the programmable one-pot
glycan synthesis, the order of RRVs should be high, medium,
and low. Based on our experience, at most three or four BBLs
can be used to carry out the one-pot process to avoid side
reactions caused by the activator. Thus, we classify all RRVs
into three categories, [>15,000], [1000–15,000], and [0–1000]
with the classification accuracy around 0.97. Among the BBLs
selected for machine learning, the numbers of BBLs with RRV
[>15,000], [1000–15,000], and [0–1000] are 19, 21, and 77,
respectively; and the corresponding PCC values for these three
categories are 0.89, 0.94, and 0.89, respectively. The differences
in absolute numbers between observed and predicted RRVs are
relatively big, especially when RRV is high (RRV > 15,000);
however, if the observed and predicted RRVs belong to the
same class of sugars, the predicted RRV still provides precious
information for use in the programmable one-pot glycan
synthesis (Supplementary Table 1b and Supplementary
Data 11).

We selected some virtual building blocks for experimental
validation and the results show that both the predicted and
observed RRVs are similar (Table 2). The protecting group 3 of
Dx7 is Fmoc, which does not appear in our training set. The
observed RRV is 1313 and the predicted one is 971, indicating
that the RRV prediction is quite successful. Although Dx6 has a
large difference between the observed and predicted RRVs, the
ratio of the observed/predicted RRV is not very significant,
probably due to some unknown factors affected by the PMB
group.

Overall, we generated more than 50,000 virtual BBLs
(Methods), including Gal, Glc, Man, GalNAc, and GlcNAc sugar
types, with predicted RRV based on the optimized RRV predictor.

Representative one-pot synthesis of oligosaccharides. With
Auto-CHO and BBLs available, we then conduct the synthesis of
four representative oligosaccharides as protected forms, including
Globo-H, heparin pentasaccharide, and LacNAc repeats using the
BBLs reported previously, and stage-specific embryonic antigen 4
(SSEA-4) described in this study. All BBLs for the one-pot
synthesis of these representative oligosaccharides are now inclu-
ded in the library of Auto-CHO and can be identified by users for
the one-pot synthesis through the program search described here.
The following briefly demonstrates the operation of each
example.

Globo-H is a glycosyl ceramide specifically found in a variety of
epithelial tumors such as colon, ovarian, gastric, pancreatic,
endometrial, lung, prostate, and breast cancers, but not on the
immune-accessible normal tissues10–14. The Globo-H hexasac-
charide has been used as an antigen for the development of
carbohydrate-based vaccines against breast cancer and prostate
cancer15, and a positive phase II clinical trial result has been
released16. This glycan was prepared previously17 using the [1+
3+ 2] strategy (Fig. 2a), but the BBL used to form the axial
glycosidic linkage generates a low-yield product. To overcome
this problem, we have developed a strategy based on the [1+ 2+
3] strategy (Fig. 2b)18, which gave the product with more than
80% yield.

To conduct the programmable one-pot synthesis of Globo-H
using the Auto-CHO program, two possibilities are suggested by
the program. The first method (Fig. 2a) shows that the query
glycan structure can be synthesized by three fragments.
Fragment-1 consists of only one fucose BBL with RRV 72,000.
Fragment-2 is a trisaccharide component that can be synthesized
by the one-pot approach with three monosaccharide BBLs,
including galactose, N-acetylgalactosamine, and galactose types
with RRV 4000, 850, and 13, respectively. After completion of the
one-pot synthesis of fragment-2, the Lev group at position-2 of
the second galactose is deprotected, and the RRV of the
deprotected fragment-2 is determined as 13. The calculated yield
of fragment-2 is 71%. Fragment-3 is a disaccharide reducing end
acceptor, and its RRV is zero. We followed the suggestion to carry
out the synthesis, and the overall experimental yield of this
fragment-based one-pot synthesis was 62%. The second method
suggests the use of [1+ 2+ 3] strategy as shown in Fig. 2b which
is an improved process to avoid the low-yield alpha-glycosylation
to generate the axil glycosidic bond between the second and the
third fragments. Based on Auto-CHO, the predicted overall yield
of this procedure is 97%, and Globo-H was indeed prepared by
this improved method in more than 80% yield18. Though the
syntheses of Globo-H were performed previously, the Auto-CHO
program further confirms its reliable operation.

Based on our experience, the synthesis of an oligosaccharide
should not be performed with more than three BBLs directly by
the programmable one-pot strategy, because the promotor N-

Table 2 Predicted and observed RRVs of representative
virtual building blocks

Identifier Building Block Structure Observed RRV Predicted RRV

Dx1 3.00 9.43

Dx2 1,730.80 1,416.13

Dx3 148.20 438.57

Dx4 479.00 469.81

Dx5 13,127.00 13,217.18

Dx6 3,652.00 11,427.68

Dx7 1,312.50 970.67
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iodosuccinimide used in the reaction often caused a side reaction
with the oxocarbenium intermediate to form a dead end product.
In this case, Auto-CHO will suggest the use of fragments for the
one-pot reaction and each fragment can be synthesized from
monosaccharide BBLs with the one-pot approach first and then
used, after unmasking the protected hydroxyl group, as acceptor
in another one-pot reaction to form the target structure.

SSEA-4 is a pluripotent human embryonic stem cell marker
and its expression is correlated with the metastasis of some
malignant tumors, thus it is regarded as a cancer-specific
glycolipid11, 12. This oligosaccharide contains an alpha-2,3-linked
sialic acid residue at the non-reducing end. However, sialic acid
cannot be used as the first BBL because it is the least reactive BBL
and contains a quaternary anomeric center which causes
hindrance and elimination in the glycosylation reaction. To solve
these problems, we have designed a series of sialyl disaccharides
as BBLs of which the RRV is determined by the reducing end
sugar (such as the one in Fig. 3a). Based on the RRVs of sialyl
disaccharides, a [2+ 1+ 3] one-pot reaction for the synthesis of
SSEA-4 has been chosen from the Auto-CHO program, and using
this strategy, SSEA-4 was prepared in 43% yield. This program-
mable method for the synthesis of SSEA-4 is, in our opinion,
better than the orthogonal method reported previously19.

The heparin pentasaccharide with regiodefined sulfate patterns
has been used as anti-coagulant and prepared previously in our
laboratory using the programmable one-pot program20. In order
to develop a better method to allow the flexibility to install the
sulfate groups’ regioselectively, we have redesigned building
blocks and reported the successful synthesis of heparin
pentasaccharides for the regioselective introduction of the sulfate
group21. These building blocks are now in the library of the Auto-
CHO program. To conduct the programmable one-pot synthesis
of heparin pentasaccharides with various sulfation patterns, we
use Auto-CHO to identify the [1+ 2+ 2] one-pot strategy as
shown in Fig. 3b for the synthesis of a protected heparin
pentasaccharide using monosaccharide 5 (RRV= 132), disac-
charide 6 (RRV= 18.2) and reducing end disaccharide 7 (RRV=
0) as BBLs to obtain the protected pentasaccharide 8 in 48% yield
(an increase of 28% from the previous one20). Glycan 8 with
protecting groups can now be differentially deprotected for the
installation of the desired sulfate groups’ regioselectively to
explore their functional effects.

The oligomer of N-acetyllactosamine (OligoLacNAc) is often
found on the N-linked glycans of glycoproteins associated with
diseases and it has an important role in intercellular recognitions.
Recently, we have developed a modular approach to the synthesis
of N-glycans using designed modules and the core trisaccharide
of N-glycans22, and compound 12 as well as others was shown to
be an effective key building block for the synthesis of various N-
linked glycans containing oligoLacNAc22. To test the use of Auto-
CHO for the programmable one-pot synthesis of 12, we follow
the guide of Auto-CHO to identify the BBLs for the one-pot
synthesis of compound 12 using donor 9 (RRV= 263) coupled
with acceptor 10 (RRV= 51), followed by addition of another
acceptor 11 (RRV= 0) to give the oligo-N-acetyllactosamine 12
in 60% overall yield (Fig. 3c). With this Auto-CHO available,
various multiantennary N-glycans containing the LacNAc repeats
at different branches can be efficiently assembled.

Discussion
In summary, we have developed the Auto-CHO program as an
advanced method for the one-pot synthesis of oligosaccharides.
In addition to experimental validation, the RRV of BBLs can be
accurately predicted by their chemical structures with the
machine learning approach. Therefore, we have expanded our
current library by adding more BBLs with verified RRVs and
virtual BBLs with predicted RRVs. The Auto-CHO software
program provides a valuable guideline for BBL selection to con-
duct the programmable one-pot synthesis of oligosaccharides. It
also provides a hierarchical blueprint for the multiple one-pot
synthesis of more complex glycans through fragment coupling.
Furthermore, we have successfully demonstrated the one-pot
synthesis of four glycans guided by the Auto-CHO program.
With the Auto-CHO program available to the research commu-
nity and the input from the users to validate the predicted BBLs
with experimental RRVs, the program is expected to become a
useful choice for the synthesis of oligosaccharides. In addition to
the automated solid-phase method developed by Seeberger et al.23

and other chemical and enzymatic methods developed by many
laboratories3, 24, 25, we anticipate that, with the Auto-CHO pro-
gram and library available to the research community, the goal of
oligosaccharide synthesis may be realized to facilitate the study of
glycans and their roles in glycoproteins and glycolipids.
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Methods
Computational method. The computational methods described here include two
parts, Algorithm and RRV Prediction. For the algorithm part, we describe how to
search the target glycan against the BBL library. It defines glycan data structure and
matched cases (e.g. perfectly or precursor matches) between the target glycan and
BBLs. We also describe how to conduct a search with or without fragment(s), and
how to connect fragments together. For the prediction of RRV, we describe how we
prepare the training set and features (NMR chemical shifts and other properties)
for machine learning, including feature extraction, feature encoding, data trans-
formation and rescaling, followed by evaluation. Finally, we use the optimized RRV
predictor to build a virtual BBL library, which can be used in the search procedure.

Algorithm. The GlycanBuilder26, 27 embedded in Auto-CHO allows users to input
a desired glycan structure by mouse drawing. The program takes the given

structure to search against the BBL library and returns with suitable synthetic
solutions. The information of the query glycan structure, including the sugar type
of each monosaccharide unit and their anomeric linkage configuration in the
glycan should be given by the user. The user should define the fragment to be used
as either a BBL in the library with full protection or as an intermediate product
synthesized through the one-pot program followed by selective deprotection for
further use. To synthesize some complex glycans we often need to first prepare
some fragments as intermediates and use these fragments or selectively deprotected
fragments as BBLs for further one-pot synthesis.

The record of experimentally validated BBLs. We have collected 154 thiogly-
coside BBLs with experimentally validated RRVs. Each BBL consists of one or
multiple monosaccharide units with certain or all hydroxyl groups exposed or
protected. The record of a BBL includes its IUPAC name, chemical structure and
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anomeric linkage configuration, RRV, index, and saccharide elements (mono-
saccharide units of each BBL). For each saccharide element, the sugar type,
anomeric form (alpha or beta form), identifier (ID), parent identifier (PID), and the
hydroxyl groups with substituents and positions are recorded (Supplementary
Figure 2).

Glycan data structure description. Supplementary Figure 3a shows the glycan
data structure used in this research. Definitions are described as follows. Root
residue: the first monosaccharide of a glycan structure from the reducing end.
Current state: the moving state in algorithm when searching against the BBL
library. The residue number in the current state is equal to the residue number in
the matched BBL. Current residue: residue(s) in the current state. Child residue of
the current state: the residue(s) of which the parent residue is in the current state.
Sub-structure of the current state: the partial glycan structure of which the parent
residue is in the current state. Leaf residue: residue(s) that has no child residue.

Matched cases between BBLs and the search target. Perfectly matched BBL
means that the BBL perfectly matches the glycan structure in the current state of
the query structure. The position of the free hydroxyl group on the BBL also
perfectly matches the corresponding linkages in the current state of the query
structure. For example, if the matched residue(s) of the query structure has (have)
no child residue, the BBL should be fully protected; if the matched residue(s) of the
query structure has (have) child residue(s), the substituent(s) on the corresponding
position(s) of the BBL should be a free hydroxyl group(s).

On the other hand, the precursor matched BBL means that the BBL matches the
glycan structure in the current state of the query glycan. However, the linkage
between current state and sub-structure on the corresponding positions of the BBL
could be masked by a unique protecting group. This protecting group should be
deprotected with additional experimental operations. For example, if the matched
residue(s) of the query structure has (have) one child residue, the BBL should be
fully protected; if the matched residue(s) of the query structure has (have) multiple
child residues, the BBL can be semi-protected (at least one substituent on the
corresponding position is protected) or fully protected. The protecting group(s) on
the corresponding position(s) of the BBL should be unique and can be selectively
deprotected in the following step (Supplementary Figure 3b).

Search procedure. The problem of finding the synthetic solutions of a query
structure can be broken down into steps, including finding the synthetic solutions
for the sub-structures of the query glycan. The order of residue visiting is the same
as depth-first search in-order traversal. The algorithm starts from a leaf residue of
the query structure. When the current state is on the leaf residue, the program
searches the library for perfectly or precursor matched BBLs. These matched BBLs
will be recorded in the synthetic candidate list of the current residue. Next, we
move the current state to its parent residue. The algorithm considers two situations:
(1) the current state has only one child residue or (2) the current state has multiple
child residues. We tabulate the detailed procedure of manipulations in these
situations in Supplementary Data 13.

Search procedure without fragment synthesis. Auto-CHO provides a normal
search mode for searching the target glycan structure against the BBL library to
find possible synthetic solutions with the one-pot approach. The maximal synthesis
steps (N-1) can be defined by the user. Generally, N should be less than three or
four, otherwise it will be difficult to obtain the desired glycan structure with high
overall yield (60–95%) because the promoter N-iodosuccinimide would cause side
reactions28. The program gives all possible solutions to the synthesis options
ranked by the computed overall yield in a descending order. Each possible solution
has N BBL combinations ordered by descending RRVs. The algorithm does not
consider the deprotection of any masked hydroxyl group of BBLs in the synthetic
procedure.

Search procedure with fragment synthesis. The query glycan structure some-
times can be synthesized through fragments. We provide fragment search mode
and separate the query structure into two or more fragments automatically. The
fragments with proper protecting groups can be prepared separately using Auto-
CHO followed by selective deprotection to expose the hydroxyl group for the
subsequent fragment-based one-pot synthesis. A fragment should contain 1 to 3
BBLs since too many synthetic steps in a one-pot operation results in a low-yield
product (Supplementary Figure 4a). There are three possible cases. Case 1: there is
one matched BBL in the fragment, the next BBL could be either a perfectly or
precursor matched one; Case 2: there are two matched BBLs in the fragment, the
next BBL can be either a perfectly or precursor matched one; Case 3: there are three
matched BBLs in the fragment; we should initiate a new fragment and only a
precursor matched BBL can be recorded.

Approach for connecting fragments together. There are two strategies to put
fragments together. The first is to use fragments with different leaving groups for
each fragment and connect fragments step by step. For example, in the Supple-
mentary Figure 4b, one can deprotect PG1 of fragment-2 and put fragment-1 and

fragment-2 together to form product X. We can then deprotect PG2 of fragment 3
and put X and fragment 3 together. The second strategy is that each fragment can
be regarded as a new BBL and use the one-pot approach to synthesize these
fragments. The BBLs selected for the one-pot synthesis should have the RRVs
ranging from large, medium, and zero, respectively. In the Supplementary Figure
4c, depth-first search can give the post-order traversal for fragment connections
with different leaving groups easily. For fragment condensation by the one-pot
approach, the algorithm finds a major chain (e.g. the longest path from a
leaf residue to the root residue shown in red) of the target structure. One can
connect fragment-2 and 3 to form X, and fragment 4 and 5 to form Y. We
then put fragments 1, X, Y, and 6 together to form the final product. The
estimated RRVs of fragment-1, X, Y and 6 should be large, medium, small, and
zero, respectively. If there are more than four fragments on the major chain,
strategies with different leaving groups and one-pot approach can be used together.

Record of synthetic candidate in each query structure. The synthesis of a
candidate records all possible synthetic solutions for the query structure. The
record contains fragments and overall yield. In each fragment, it records fragment
yield, BBLs, and type(s) of protecting group(s). Note that there will be only one
fragment in each synthetic candidate by the search procedure without fragment
synthesis. There is no need to deprotect any protecting group in this situation, and
the fragment yield equals the overall yield of the synthetic candidate.

RRV prediction. Due to the limited number of BBLs with validated RRVs collected
in the library, it is difficult to search the library to find synthetic solutions for every
oligosaccharide. It is unrealistic to measure the RRV of every BBLs experimentally
for all possible combinations of protecting groups. Therefore, we propose a way to
enlarge the library size by constructing virtual BBLs with predicted RRVs. We can
build an RRV predicting model based on machine learning from certain experi-
mental data and physical/chemical properties. In this research, we use the reported
physical data such as NMR shifts and support vector machine as regression model
to predict the RRV of numerous virtual BBLs. We have further validated the
prediction experimentally for many virtual BBLs and found that the predictions are
generally accurate, so we have enlarged the library size successfully to include more
than 50,000 BBLs.

Training set. In the library, we only collect monosaccharide BBLs including the
galactose (Gals), glucose (Glcs), mannose (Mans), N-acetylgalactosamine (Gal-
NAcs), N-acetylglucosamine (GlcNAcs), and N-acetylneuraminic acid or sialic acid
(Neu5Acs or SA) type for RRV prediction or determination. Since the RRVs of
sialic acid BBLs vary and are often used as the reducing end unit, we did not predict
their RRVs. Thus, we only use 117 hexose and hexosamine BBLs for the final
prediction model construction. The RRV of these BBLs ranges from 1 to 72,000.
The summary can be found in Supplementary Table 1c. Since the RRV of SA is too
low to be used as the first BBL for the one-pot synthesis of oligosaccharides with SA
in the non-reducing end, we use sialyl disaccharide (i.e., the terminal SA linked to
the next sugar) as BBL because the RRV of the disaccharide is mainly determined
by the second sugar, so the RRV of the disaccharide will be much higher than SA.

Feature extraction. We extract features from the 2D chemical structures of BBLs
for RRV prediction. Three feature categories are used in this study, including basic
properties, calculated chemical shifts, and molecular descriptors. Basic properties
include sugar type: [Gal, Glc, Man, GalNAc, GlcNAc], sugar class: [Hex, HexNAc],
anomeric state: [Alpha, Beta], protecting groups at positions 2, 3, 4, and 6. For
calculated chemical shifts, ChemDraw6, 7 is used to calculate the 1H and 13C-NMR
chemical shifts for each experimentally validated and virtual BBL. For 1H-NMR, we
used “frequency= 400MHz” and “solvent= CDCl3” settings in the ChemDraw
program. (ChemDraw does not provide these parameter options for 13C-NMR).
Supplementary Figure 5 shows that 1H and 13C-NMR chemical shifts of sugar rings
(labeled in red boxes, H1, H2, H3, H4, H5, H6-1, H6-2, C1, C2, C3, C4, C5, C6) are
extracted. For molecular descriptors, we use the software, PaDEL-Descriptor9, to
generate molecular descriptors (features). Only 1D and 2D features are utilized in
this research. The total feature number of molecular descriptors is 1444.

Feature encoding and data transformation. For basic properties, we use their
original and binarized values as features. For example, for the sugar class Hex, it
can be binarized into [Hex: 1, HexNAc: 0] (Supplementary Figure 6). For calcu-
lated chemical shifts, we use normalized and binarized values as features. For
molecular descriptors, we use their original values as features. All feature values are
rescaled into [0, 1] by Weka. Since the RRV distribution is an exponential dis-
tribution (x-axis: RRV, y-axis: frequency), we transform the regression target Y
from RRV to ln (RRV), whose distribution is similar to the normal distribution
(Supplementary Figure 7).

Feature selection. We use the wrapper approach for evaluation in Weka29.
Support vector regression is selected from the wrapper, and the backward greedy
stepwise method is employed in the feature selection algorithm. In the first itera-
tion, N features are used (e.g., N, the total feature number, is 1595). We used 5-fold
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cross-validation and PCC as parameters to evaluate the performance. In the second
iteration, each feature will be eliminated from the feature set once. If a feature set
(feature number equals to N− 1) can increase the PCC most or decrease the PCC
least, this feature set will be used in the next iteration. When the feature number
achieves 222, the optimized PCC is reached. In order to keep the complete sugar-
type information, we use the selected 225 features for the final RRV prediction.

Support vector machine for regression. Support vector machine is a machine
learning approach proposed by Vapnik30 based on the structural risk minimization
principle of statistical learning theory. It can be used to solve the classification or
regression problem. Predicting the RRV of a BBL can be regarded as a regression
problem. The program Weka Developed by the research group at the University of
Waikato, is a powerful and well-known machine learning package used by many
researchers. We apply the Weka (version 3.8) SVM regression model (SMOreg
module) for predicting the RRV of each virtual BBLs.

Virtual BBLs. There are two sugar classes, Hex and HexNAc, in our dataset. The
Hex class includes galactoses, glucoses and mannoses and the HexNAc class
includes N-acetylgalactosamines and N-acetylglucosamines. We generated the
chemical structures of virtual BBLs for these sugar types by enumerating different
substituents (Supplementary Figure 8). Four positions of each virtual BBL can be
hydroxyl or protected. The positions R2, R3, R4, and R6 of a Hex virtual BBL could
be OH, OAc, OBn, OBz, OClAc, OLev, NO2Bz, OPMB, OTBDPS, OTBS, or
OTIPS. The total number of virtual Hex BBLs is 43,923 (=3 × 114). The position R2

of a HexNAc virtual BBL could be NHTroc, NPhth, or N3 and R3, R4, and R6 could
be OH, OAc, OBn, OBz, OClAc, OLev, NO2Bz, OPMB, OTBDPS, OTBS, or
OTIPS. The total number of virtual HexNAc BBLs is 7986 (=2 × 3 × 113). We used
our optimized RRV model to predict the RRVs of these virtual BBLs. More than
50,000 virtual BBLs with predicted RRVs are added into the library, and they can
be selected and used in the search procedure. To dispel the doubt about BBL
structure similarity, we use Open Babel31 (by default setting) to calculate the
Tanimoto similarity32 matrix (~50,000 × 117) between BBLs in the virtual BBL
library and the training set. The matrix shows (Supplementary Data 14) that
99.45% of virtual BBLs are similar (Tanimoto similarity ≥ 0.75) with at least one
BBL in the training set. 91.93% and 66.55% of virtual BBLs are similar (Tanimoto
similarity ≥ 0.80 and ≥ 0.85) with at least one BBL in the training set, respectively.
This result shows that most virtual BBLs are similar to BBLs in the training set.
Dissimilar virtual BBLs in the library are rare and we do not need to worry about
the ability of the RRV predictor for the novel (dissimilar) BBLs. We plan to add
more BBLs to the library in the future as new BBLs may be prepared and the
numbers of sugar type and sugar class may be expanded.

General procedure for the determination of RRV. The general procedure for the
determination of RRV can be found in our previous publication4. Detailed spec-
troscopic and analytical data for new compounds can be found in Supplementary
Notes 5-6 and Supplementary Figures 9-38.

Code availability. The Auto-CHO source code can be accessed from https://
github.com/CW-Wayne/Auto-CHO.

Data availability
The Auto-CHO software, optimized Weka RRV predictor, and machine learning
feature profiles can be accessed from https://sites.google.com/view/auto-cho/home.
Requests for other materials should be addressed to corresponding authors.
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