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ABSTRACT

OSCAR is a web platform for cluster and cross-
species analysis of microarray data. It provides a
comprehensive but friendly environment to both
users and algorithm developers. For users, OSCAR
provides cluster tools for both single and multiple
species data, together with interactive analysis
features. For single species data, OSCAR currently
provides Hierarchical Clustering, K-means, partition
around medoids (PAM), Self-Organizing Map (SOM),
Tight Clustering and a novel algorithm called
‘Consensus Tight-clustering’. The new Consensus
Tight-clustering algorithm delivers robust gene
clusters and its result is more resistant to false
positives than other state-of-the-art algorithms. For
cross-species data analysis, OSCAR provides two
novel computational tools: ‘coherentCluster’,
‘coherentSubset’ and a novel visualization tool: ‘com-
parative heatmap’. Applying the coherentCluster
algorithm to human and fly aging data, we
identified several coherent clusters of genes,
which share co-regulation patterns that are highly
correlated with the aging process in both of the
two species. One coherent cluster suggests insulin
receptor (INSR) may regulate Pax6 in both species
and across different tissues. Further analysis with
human brain expression and pathological data
suggests an INSR-̀ Pax6-̀ quinone oxidoreductase
(NQO1)-̀ detoxification neuro-protective pathway
might be present in aging or diseased brain. For
algorithm developers, OSCAR is a plug-and-play
platform. With little effort, developers can plug their
own algorithms into the OSCAR server without
revealing the source codes, which will equip their
command line executables with user-friendly

interface and interactive analysis capability. In
summary, OSCAR initiates an open platform for
development and application of clustering and
cross-species analysis programs. OSCAR stands
for an open system for cluster analysis of micro-
array data. It is available at: http://biocomp.bioen.
uiuc.edu/oscar

INTRODUCTION

Microarray technology enabled simultaneous quantifica-
tion of the expression of thousands of genes (1,2).
Functional relevance among genes, such as sharing a
common transcriptional regulator protein or responding
to a common regulatory signal, may induce co-expression:
a group of genes sharing a similar expression pattern
over time or across different conditions (3). Although
it does not necessarily imply a causal relationship
among transcript levels, co-expression has been shown in
a number of studies to be correlated with functional
relationships (4–7). The identification of co-expression
gene groups can lead to identification of common
regulatory motifs (8,9), inference of signaling pathways
(10) and genetic networks (3).
Cluster analysis, an unsupervised learning method for

identification of co-expression groups, is commonly
used as an initial investigative tool of microarray data
before specific pathways or genetic mechanisms are
scrutinized (3–6,10). When genes are subject to cluster
analysis, a total of ‘n’ genes are assigned into ‘K’ clusters
of similar expression patterns given a dissimilarity
measure between any two genes. The appropriate choice
of the dissimilarity measure, i.e. a distance metric for
cluster analysis, is arguably as important as the choice
of the clustering algorithm itself (11), although the
importance of the latter choice is more obvious to users.
A relatively comprehensive evaluation of various
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gene-clustering methods has been carried out recently (12),
and interested readers are referred to this article for
detailed comparison. A selection of clustering methods
that are commonly used in microarray analysis is
categorized subsequently. Non-parametric algorithms
hierarchical clustering (4), K-means (13), partitioning
around medoids (PAM; a.k.a. K-medoids) (14), self-
organizing maps (SOM) (15,16), fuzzy K-means (17),
consensus clustering (18) and tight clustering (19) and
robust multi-scale clustering (20) are among the most
popular ones. Among these algorithms, fuzzy K-means
differs from others in that it allows a gene to belong to
multiple clusters. Tight clustering differs from others in
that it does not require every gene to fall into a cluster,
but allows scatter genes: genes should not be assigned into
any clusters. Tight clustering and robust multi-scale
clustering share the same idea of using co-occurrence
matrix from multiple runs. Model-based algorithms
(21–27) usually assume that data come from a Gaussian
mixture model, but can also allow a component of
homogeneous Poisson process for scattered genes (28).
To avoid subjective dictation of the number of clusters,
Chinese Restaurant Process, a mixture of countably
infinite number of simple distributions is recently
applied to analyze microarray data (29) [Chinese
Restaurant Process is elegantly reviewed by Michael
Jordan (30)]. Further developments on clustering
related analysis include bi-clustering, which identifies
co-expression in subsets of samples (31–33), second-
order correlation, which groups gene-duplets instead of
single genes (34), and co-expression dynamics, which
simultaneously models gene expression and time-
dependent cellular state (35).
The aforementioned is only a partial list of the

clustering algorithms available for analyzing microarray
data. Although quite a few software tools each
implemented one to several algorithms (4,36–41)
(Supplementary Table S1), not a single software tool
has incorporated the majority of available algorithms.
Especially the recently developed algorithms are usually
not incorporated into any software with a friendly user
interface. The problem for cluster analysis is that there
is no best algorithm. An algorithm can work better for
some data sets but not as good on other data sets.
The visualization in one software tool is usually different
from that of another tool, which makes it difficult
to compare the results unless to scrutinize the text
output for each cluster. A system that allows users
to run multiple algorithms side by side and deliver
comparable visualization results will be tremendously
valuable to microarray data analysis. The OSCAR
system allows this to happen.

METHODS

The OSCAR system

The OSCAR server and web application is an open system
for cluster analysis of microarray data, with an automated
procedure to incorporate and manage all clustering
algorithms. It provides a comprehensive and friendly

environment to both users and algorithm developers.
A database system is developed to manage all the
algorithms, including their documentation, their para-
meters, each parameter’s description, type, bounds and
default value. When a user accesses the OSCAR website,
the server will automatically list all the algorithms
currently available, together with a URL to the docu-
mentation for each of the algorithms listed. When a user
chooses a particular algorithm, all information about
the parameters and input files of the algorithm is
retrieved from the algorithm database and automatically
displayed to the user. Users can use the interactive web
forms to adjust the parameters, upload input data and
execute the computation on the server. Algorithm
‘developers’ can use the interactive web forms to
incorporate their own algorithms to OSCAR without
revealing their source codes. The submitted algorithm will
be managed by OSCAR’s database, sharing the same
output format and be accessible to all users
(Supplementary Figure S1).

OSCAR for users

OSCAR provides an intuitive web interface to users.
When a user accesses the OSCAR main page, all currently
available algorithms and hyperlinks to their documenta-
tions will be retrieved from the algorithm database and
displayed (Figure 1). The user can select any algorithm
listed. Upon selection, the specifications and default
values for all the parameters required by the user-selected
algorithm will be retrieved from the database and
displayed to the user (Supplementary Figure S2). The
user can modify the default parameters, upload input
data and execute the computation. Sample inputs files are
provided for user’s convenience. Some users may want to
quickly try out each algorithm and get a sense of what
each one is doing. This can be achieved by clicking the
‘Submit using sample files’ button. Output is provided to
users in two formats: text (Supplementary Figure S3) and
interactive heatmap (Figure 2). The user can save both
outputs to a local computer by clicking the disk icon in
the upper right corner of the web page. Users can alter the
color schemes used by the heatmap by clicking the
‘Change Color’ button. Two schemes are provided:
red-green and blue-yellow. Hovering mouse cursor over
sample names or any spot within the heatmap will invoke
a small pop-up window next to the cursor, containing
either information about the sample or the gene
expression value used to draw the color in the cursor
covered area.

The algorithms currently available to OSCAR users are:
(i) hierarchical clustering, (ii) K-means, (iii) partition
around medoids (PAM), (iv) self-organizing map
(SOM), (v) tight clustering, (vi) Consensus Tight-
clustering (new), (vii) two-species coherent clustering
(new). Users can choose any of the following distance
metrics to be used in hierarchical clustering, K-means
and PAM: (a) Pearson correlation, (b) absolute value
of the Pearson correlation, (c) uncentered Pearson
correlation, (d) absolute uncentered Pearson correlation,
(e) Spearman’s rank correlation, (f) Kendall’s �,
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(g) Euclidean distance and (h) city–block distance.
Three linkage definitions are allowed in hierarchical
clustering: (1) single linkage, (2) complete linkage and
(3) pairwise average. For the purpose of comparison,
hierarchical clustering will give usual co-expression groups
as outputs instead of hierarchical trees. This is achieved
by trimming the hierarchical tree by the allowed maxi-
mum number of clusters provided by the user.

Three new algorithms are delivered to users through
OSCAR. One general clustering tool and two two-species
analysis tools (will be discussed later). ‘Consensus Tight-
clustering’ is a new algorithm that blends the advantages
of two very recently published non-parametric clustering
algorithms: tight clustering (19) and robust multi-scale
clustering (20). It is interesting to notice that these two
recent algorithms employ very similar ideas, except that
tight clustering is stronger in that it used a re-sampling
strategy and robust multi-scale clustering is stronger in
that it utilizes the co-occurrence matrix for all individual
runs rather than only the runs under consecutive Ks
in K-means. The new Consensus Tight clustering algo-
rithm basically adds the re-sampling step to each iteration
of the robust multi-scale clustering (Supplementary
Figure S4). Compared with multi-scale clustering,
Consensus Tight-clustering can identify more robust
gene clusters, i.e. is more resistant to inclusion of false
positives in a cluster. This is because Consensus Tight-
clustering re-samples the data in each iteration, and
summary from re-sampled data is more robust than
summary from the original data (19). Compared with
tight clustering, Consensus Tight-clustering increases
both sensitivity and specificity for the following reasons.

Due to programming difficulty and consideration of
computational efficiency, the tight clustering program
made two simplified approximations. First, tight cluster-
ing only stores seven largest clusters for each K in the
K-means clustering, and second, tight clustering only
checks re-occurrence of the seven stored clusters in the
results from K-means computation of an immediately
larger K. Ideally the program should store as many
clusters as possible in each K and cross-check the
re-occurrence of these stored clusters across a number of
different Ks. Consensus Tight-clustering implements
these ideal treatments and therefore improves from
tight clustering. In our tests, we also found Consensus
Tight-clustering can handle larger input data than tight
clustering and is much less likely to break down during
the computation. A potential weakness of Consensus
Tight-clustering is that it may consume more computa-
tional time. In our tests of four real data sets, Consensus
Tight-clustering is slightly slower than tight clustering
in two data sets, but much faster than tight clustering
in the other two data sets (Supplementary Table S2).
Although more tests are needed to make the final
conclusion, Consensus Tight-clustering seems to improve
computational efficiency over tight clustering on an
overall scale.
We tested four data sets on the OSCAR server.

These data sets are related to human colon cancer (42),
mouse pre-implantation time course (43), fruit fly aging
with and without calorie restriction (44) and worm
natural aging (45). The run time for generating text
and heatmap of each algorithm on each data set is
recorded (Supplementary Table S2). We acknowledge

Figure 1. Screenshot of the main web page for users.
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that the run time for each algorithm is sensitive to the
actual parameters used, and Supplementary Table S2
only reflects one set of parameter values out of many
possible sets.

Tools for cross-species analysis

Recently a number of interspecies comparisons of gene
expression levels have been carried out in various
phylogenetic branches, including human and monkeys
(46,47), rodents (48), human and mouse (49), Xenopus
(50), Drosophila (51) and plants (52). One of the central

questions that inspired these studies is how natural
selection acts on regulation of gene expression. Most of
these studies aim for answering evolutionary questions
pertaining to gene expression changes, for example,
whether the expression divergence of most genes can
be explained by a neutral theory. To the authors’
knowledge, there are no published methods on cluster
analysis of multiple species data. OSCAR provides two
novel computational programs and a novel visualization
tool, comparative heatmap, to facilitate cross-species
analysis.

Figure 2. Screenshot of a heatmap output. The heatmap is interactive. Hovering mouse cursor over each spot on the heatmap will dynamically
retrieve the gene expression values. Hovering cursor over sample numbers will retrieve full sample names. Blue represents lower expression and
yellow represents higher expression. The color scheme can be changed by clicking the ‘Change Color’ button. The figure can be saved by clicking the
disk button.
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The two cross-species clustering programs are: coher-
ence clustering (coherentCluster) and coherent subset
(coherentSubset). Both tools identify clusters in which
homologous genes show co-expression in both species.
The biological motivation is: if a group of genes show
conserved expression patterns in the data set from two
different species, then it is very likely that the group is
under evolutionary constraint and thus a functionally
related group. This will allow one to distinguish between
gene clusters with biological significance and the clusters
that are consequences of experimental or computational
artifacts.

CoherentCluster takes three input data files: one
microarray data file for each species and a homologous
gene-mapping file. The mapping file should contain two
columns, with homologous gene IDs for the two species
occupying the same row of the two columns. In the
computation, coherentCluster first performs Consensus
Tight-clustering in one species, and then for each cluster,
coherentCluster extracts the homologous genes in the
other species (Figure 3). If the cluster result in the first
species were free of false positives, and if all the
homologous mapping were correct and the regulation
of all the genes were evolutionarily conserved, the
homologous genes of a cluster should be clustered in the
second species as well. In reality, all of the three
assumptions above can be violated, and homologous
genes of a cluster can usually break down into a few
sub-clusters together with scatter genes in the other
species. Each ‘homologous sub-cluster’ represents a
group of genes being co-expressed in both of the two
species. We term the homologous gene group with
co-expression in both of the two species as ‘coherent
clusters’. It should be noticed that a coherent cluster does
not imply the genes within should have the same
expression patterns in two species. As long as the genes
form a cluster in both species, they form a coherent cluster
(Figure 4). The CoherentCluster program gives coherent
clusters as output. Coherent clusters can be viewed in
OSCAR by ‘comparative heatmap’ (Figure 4). Finally, on
the technical side, there could be multiple ways to identify
sub-clusters in the second species. CoherentCluster first
samples a large number of gene pairs from all the genes in
Species 2, and it derives an empirical distribution of the
pairwise distances. The user decides a percentage of the
pairwise distance within which two genes should be
regarded as co-expressed. For example, the user may
designate the fifth percentile of the pairwise distances as
the threshold of co-expression. With this threshold,
coherentCluster identifies the co-expressed sub-cluster
whose homologous genes were also co-expressed
(Supplementary Figure S5A for pseudo code).

To identify coherent clusters, users do not have to start
from Consensus Tight-clustering in the first species.
Instead the user may want to start from any other
clustering result or even from other suggestive evidence,
such as sharing of similar sequence motifs. The
coherentSubset program takes three input files as well,
(i) a file of cluster results from one species clustering
analysis (the output from any clustering algorithm),
(ii) gene expression data from another species and

(iii) a homologous gene ID mapping table. Coherent-
Subset identifies co-expressed subgroups of each input
cluster in the other species. CoherentSubset performs the
same computation as coherentCluster except that it uses
the user defined cluster in the first species to substitute the
result from Consensus Tight-clustering (Figure S5B).
It splits each user input cluster into two-species ‘coherent
subsets’. Each coherent subset contains genes showing
co-expression in the second species from the second
input file.
CoherentCluster and CoherentSubset use a unified

output format — ‘comparative heatmap’ (Figure 4).
Comparative heatmap displays the expression of the
homologous genes in the same row of a heatmap, using
a vertical bar separating the two species. The color on
the heatmap is normalized within each species, and
therefore the contrast of the color for each species
represents the change of gene expression within that
species. The spacing used to separate the clusters can be
small or large. Small spacing separates the clusters that
show coherent pattern in one of the two species. Large
spacing separates the clusters with different patterns in
both species. The result should be interpreted as follows:
if the user only had one species data, she/he would
obtain clusters separated by large spacing. Each cluster
contains co-expressed genes in this species, but their
homologous genes in the other species may not all be
co-expressed. With the second species data, each cluster
further breaks down into smaller clusters, separated by
small spacing. Each small cluster represents a group of
genes show co-expression patterns in both of the two
species (Figure 4).
To illustrate the use of the two species analysis

algorithms, we give a data example using the
coherentCluster algorithm. There have been a few
competing hypotheses regarding the aging process. First,
do different tissues within an animal share the same aging
program? Or do they each possess their own aging
programs? Second, do phylogenetically highly diverged
species share a core set of genes whose expression is
correlated with their aging processes? Analyzing human

Identify clusters in Species 1

For each cluster,
extract homologous genes  in Species 2

Identify sub-clusters in the homologous genes

Output the homologous genes in each subcluster
as co-expressed homologous genes 

Figure 3. Flowchart of the coherentClustering algorithm.
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and chimpanzee gene expression data in different parts of
the brain, Fraser et al. (53) found aging is heterogeneous
among different regions of the human brain, and
chimpanzee cortex ages differently from human cortex.
These findings suggest aging is reflected by both tissue-
specific and species-specific expression patterns. Rodwell
et al. (62) found human kidney possesses organ-specific
mechanisms and pathways in its aging process, but
two different tissues in kidney do have similar expression
profiles. However, McCarroll et al. (54) reported similarly
correlated regulation during aging in microarray data
sets from different tissues and suggested the existence of
a core set of age-related genes across different species,
in particular, gene expression in heads of young and adult
male files are highly correlated with that of aging worms.
To further investigate the hypotheses regarding shared

versus specific gene expression patterns across tissues and
across species, we applied the Consensus Tight-clustering
and coherentSubset algorithms to gene expression data in
the aging processes of human brain (55) and fly whole-
body (44). Fly and human are estimated to have diverged
for about 600 million years, which was after the
divergence of worm and fly (56–59). The human data
consist of samples from frontal pole of 30 individuals,
ranging from 26 to 106 years of age. The fruit fly data
consist of 34 arrays measuring flies from 3 to 47 days
of age. Fly samples without calorie restriction were
used because they represent the natural aging process
as the human samples (calorie-restricted flies were
excluded). Both of the two studies used Affymetrix
GeneChip microarrays. The data were normalized by
the original authors, and we made log2 transformation to
all the normalized values. Homologous gene ID map was

downloaded from Affymetrix website. Users are also
referred to the Ensembl database (http://www.ensem-
bl.org) and its accompanying Biomart software (60),
with which homologous gene mapping can be easily
obtained. Genes that do not have homologous genes in the
other species are removed from the analysis. 2934 fly
probe sets and their 3445 human homologous probe sets
were retained. (Neither of our two-species algorithms
requires this step. We did so to trim down the total
number of genes in the analysis.) We first submitted the fly
data to Consensus Tight-clustering with default para-
meters, and identified nine clusters. Next, we submitted
the nine fly clusters, the homologous ID map, and the
human expression data to the coherentCluster program.
With default parameters, the nine fly clusters broke down
to 46 coherent clusters (Supplementary Table S3 and
Figure S6, Figure 4). We could have achieved the same
result by directly submitting the ID map, fly and human
expression data to the coherentCluster program, however,
with a two-step analyses we also obtained the intermediate
results. It is interesting that the three coherent clusters
in Figure 4 came from the same fly cluster, with high
expression at an early age and the expression decreases
over time. However, the homologous genes in human
break into three subsets (coherent clusters). The first
coherent cluster has a consistent decreasing pattern in
human as well. The second coherent cluster has a�-shape,
first increasing with age and then decreasing in very old
individuals. The third coherent cluster has a completely
reversed expression pattern in human—increasing over
time. These coherent clusters represent groups of genes
possibly co-regulated in both species, but with different
mechanism of transcriptional control.

Figure 4. The ‘comparative heatmap’ showing the result from an analysis of aging data in two species. The displayed probe sets and gene names are
retrieved from the second input species. The expression patterns of the homologous genes in the two species are displayed side by side, separated by a
vertical bar. Each cluster represents a subset of genes that show coherent expression in both of the two species. The figure is interactive and sample
information will appear in a pop-up window if the user hovers the cursor on the sample IDs. Only 3 of the 46 coherent clusters are displayed. See
Supplementary Figure S6 for all the 46 coherent clusters.
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INSR-4Pax6-4quinone oxidoreductase (NQO1) pathway

Insulin receptor (INSR) is contained in one of the
coherent clusters, which had increasing expression pattern
in both human brain and whole-body flies. This coherent
cluster only contains four other genes: Pax6, RhoA,
VPS13B and YTHDF3 (Supplementary Table S3,
Figure 5). It is well known that mutations in the gene
encoding insulin-like growth factor receptor alter lifespan
in worms, flies and mice, indicating that an endocrine
signaling pathway has a conserved role in aging (61).
However, the mechanism with which insulin affects
lifespan remains largely unknown. Somewhat counter-
intuitively, the expression levels of insulin receptor in
human brain and kidney are reported to be positively and
negatively correlated with age, respectively (55,62).
Because the cross-species analysis assumes divergent
species data may help to filter out noisy data, it is natural
for us to follow-up the other genes in the INSR containing
coherent cluster to explore potential upstream and down-
stream factors and co-factors relating to the insulin
pathway during the aging process.

Pax6 encodes a transcriptional regulator involved in
developments of sensory organs, central nerve system and
pancreas. Insulin was known to be primarily produced by
b-cells of the islets of Langerhans, the functional units of
the endocrine pancreas. b-cells form the core of the islet,
whereas a-cells are arranged at the periphery of the islet
and secrete glucagon. The Pax6 gene is expressed during
the early stages of pancreatic development and in mature
endocrine cells and it is essential for the differentiation of
a-cells (63).

The fact that Pax6 is one of the only four genes
consistently co-expressed with insulin receptor provokes a
hypothesis—Pax6 is regulated by insulin signaling in
developing and adult tissues: in developing pancreas,
Pax6 in response to insulin produced by neighboring
b-cells, controls the development of surrounding a-cells;
in adult brain, Pax6 responds to insulin receptor and
carries out its effect by transcriptionally regulating other
genes. In other words, we hypothesize that Pax6 is a
downstream regulator of an insulin receptor mediated
genomic pathway. Although to the authors’ knowledge
Pax6 has not been shown to be responsive to insulin
pathway, mutation of Pax6 can lead to glucose intolerance
and early onset of diabetes mellitus (64,65). Pax6 is also
required to achieve insulin-dependent inhibition of the
transcription of the glucagon gene in a pancreatic islet cell
line (66). The co-expression of Pax6 and insulin receptor in
both human brain and whole fly may suggest a
phylogenetically conserved pathway, and it could be

utilized by multiple tissues (recall the hypotheses that
inspired our analysis.)
We further investigated the potential effects of the

INSR-4Pax6 pathway in human brain. Neurogenin-2 and
NQO1 are two genes known to be transcriptionally
regulated by Pax6 in spinal cord and in the eye,
respectively (67,68). This led us to investigate whether
NQO1 is also regulated by Pax6 in the brain (Neurogenin-
2 is not represented on the microarray). Not surprisingly,
the expression of NQO1 is strongly correlated with that
of Pax6 (P-value=0.007, Supplementary Figure S7). The
computationally suggested link of Pax6 bridging insulin
signaling to NQO1 in human brain is interesting in
3-folds. First, Alzheimer’s disease (AD) is associated with
major impairments in insulin signaling in the brain and is
reversible by early treatment of insulin sensitizer (69).
Second, oxidative stress and stress-activated signaling
pathways were found to be strongly associated with
insulin resistance (70). Third, NQO1 detoxifies quinones.
Quinones are highly redox-active molecules which often
lead to formation of reactive oxygen species (ROS), the
primary sources of oxidative stresses (71,72). These pieces
of evidence, together with the fact that Pax6 and insulin
receptor turn up in a coherent cluster, assemble a picture
of a neuro-protective pathway, i.e. insulin receptor -4
Pax6 -4 NQO1 -4 detoxification and reduction of
oxidative stress -4 stop of AD (Figure 6). In line with
the argument that NQO1 stands in a self-protective
pathway, NQO1 expression was found to regionally
co-localize with the pathology of AD (73).
The insulin receptor-mediated genomic pathway may

also be a self-defense mechanism against the natural aging
process in the brain. Lu et al. (55) showed that DNA
damage is remarkably increased in the promoters of genes
with reduced expression in the aged brain, and the same
promoters are selectively damaged by oxidative stress in
cultured human neurons. Oxidative as well as other
stresses are known to be mediated at least in part by the
production of ROS (61). The INSR-4Pax6-4NQO1
pathway may therefore defend against aging by inhibiting
ROS formation (Figure 6).
In contrast to this new pathway, INSR homologue in

worm (daf-2) was known to repress another ROS
detoxification pathway, through inhibition of daf-16, a
homologue of the HNF-3/forkhead transcription factor,
which activates ROS detoxification enzymes (74).
To summarize, INSR-mediated genomic pathways may
have two blades, one inhibiting and the other activating
detoxification enzymes, which exert opposite effects on
aging. It is worth pointing out that insulin may also play
dual roles in AD. The neuro-protective genomic pathway

Figure 5. The insulin receptor containing coherent cluster.
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coexists with a harmful non-genomic pathway. Insulin
boosts b-amyloid by monopolizing the attention of
insulin-degrading enzyme (IDE) that degrades and clears
them both. b-Amyloid is a peptide thought to be the active
ingredient in most AD pathology. The more insulin, the
less available IDE in the brain, and the higher risks for
accumulation of b-amyloid, which leads to AD (75–77)
(Figure 6).
RhoA (ras homolog gene family, member A) is another

gene co-clustered with insulin receptor. RhoA is a small
G-protein in the Rho family that binds to Rho-kinase.
Rho-kinase is shown to associate with insulin receptor and
inhibits insulin signaling in multiple cell types (78–80),
and thereby Rho/Rho-kinase is suggested to be involved
in the development of insulin resistance in diabetes (81).
The co-expression of RhoA and insulin receptor may
suggest an inhibiting mechanism to insulin signaling in
multiple tissues (recall we used human brain and fly
whole-body data, and also recall the hypotheses that
inspired our analysis). Interestingly Rho/Rho-kinase may
also be a double-edged sword for inhibition of signaling
in human brain. Besides association with insulin
receptor, Rho/Rho-kinase activation can suppress
insulin gene transcription (82), and brain is indeed an
insulin-producing organ (69).
The other two genes in the insulin receptor cluster,

VPS13B and YTHDF3, have only recently been cloned
and there is so far little functional information available to
them. The interesting biological links for the other three
genes (INSR, Pax6, RhoA) in this coherent cluster
provokes the question of what these two new genes do?
The rest of the coherent clusters, although not analyzed in
this article, also deserve further investigation.

OSCAR for ‘developers’

OSCAR requires little programming effort for ‘developers’
to add their own algorithms to the system. It takes two
steps to submit an algorithm. Step 1: clicking ‘Developers
click here to incorporate your own algorithms’, deve-
lopers will be linked to a web form for submission.
Developers should provide the following information

on the web form: algorithm name, the location of the
executable program (.exe) of the algorithm, a ‘readme’ file
(.html or. txt), the number of parameters, the number of
input files and an email for contact. After filling the form,
the developer can click the ‘Add’ button to proceed to step
2. A dynamically generated web form will appear,
requesting more information for each parameter and
each input file (Supplementary Figure S8). In this step,
the developer should specify the name and provide a short
description for each parameter and each input file. The
default value, upper and lower bounds for each parameter
should also be specified. For each input file, the developer
should provide a next file name, a short description and a
sample input file. Clicking the ‘Add’ button will invoke a
checking process and submit the algorithm. A red star will
appear next to any required field that the developer forgets
to fill in, and a red exclamation mark will appear next
to any field filled with an obviously wrong value, for
example, a string is provided as the default value for a
parameter of ‘double’ type. If the checking process is
successful the algorithm will be added to the OSCAR
server and a thank you message will appear.

At this stage this new algorithm is already managed
by the algorithm database in OSCAR, however, the
database will not release the added executable to user
interface until it passes a more rigorous test. This testing
step is necessary for two reasons. First, the developer may
have submitted a program with errors, for example a
non-functional program or that the developer mistakenly
specified one less parameter than the program actually
needs. Second, for safety to both the server and the users,
the submitted programs should be subject to virus scan
before users can execute them. The administrators of
OSCAR are committed to perform these tests within one
week of a submission. The administrators will modify the
‘enabled’ field for the new algorithm from zero to one in
the database to release the algorithm. Each time a user
accesses the server, only and all of the ‘enabled’ algorithms
will be exposed on the web page.

The checking process before enabling an algorithm
is necessary and cannot be replaced by automated
procedures. OSCAR administrators will verify the devel-
oper’s identity and communicate with the developer by
email. We retain the right to not enable any programs
submitted by developers lacking a traceable identity in the
research community.

Comparison to other systems

Supplementary Table S1 summarizes other software tools
that perform cluster analysis. OSCAR has the following
advantages over these systems. First, OSCAR is web
based. It does not require installation and has a much
shorter learning period for biologists (several minutes) as
compared with many other systems. Second, for algorithm
developers, it requires much less efforts to contribute
a clustering algorithm to OSCAR (basically providing the
executable and documentation), as compared with for
example learning the R language and writing an
R package, which may take one to eight weeks for
experienced programmers. Not to say that the majority

Figure 6. A hypothetical model for the dual roles of insulin signaling in
human brain.
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of other systems do not allow third-party algorithms.
Third, OSCAR supports more algorithms than most of
other systems, with only exceptions to the systems
that require programming capability in the analysis,
such as R. OSCAR’s target users are biologists and
medical scientists, who are unlikely to have programming
capabilities. Finally, OSCAR is pioneered in computa-
tional tools and features for cross-species analysis. These
cross-species clustering tools are most useful when a
researcher needs to obtain very reliable gene clusters for
further analysis, for example, for identification of tran-
scription factor binding sites. The criterion of conserva-
tion of expression patterns will filter out quite a number of
false gene clusters.

CONCLUSION

OSCAR is an open system that bridges the gap between
the many described clustering algorithms and the few
implemented into software tools with friendly user
interfaces. The unsupervised nature of cluster analysis
demands researchers to try out many clustering algorithms
and choose the one that works best for each particular
data set. With a unified algorithm management system
and unified outputs, OSCAR enables easy incorporation
of all clustering algorithms, and allows users to compare
them side by side. OSCAR has been tested under Mozilla
Firefox, Safari and Internet Explorer running on MacOS,
Linux and Windows systems.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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