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Abstract

Background: Although autoimmunity in MRL/lpr mice occurs due to a defect in Fas-mediated cell death of T cells, the role
of Fas-independent apoptosis in pathogenesis has rarely been investigated. We have recently reported that receptor
activator of nuclear factor (NF)-kB ligand (RANKL)-activated dendritic cells (DCs) play a key role in the pathogenesis of
rheumatoid arthritis (RA) in MRL/lpr mice. We here attempted to establish a new therapeutic strategy with RANKL-activated
DCs in RA by controlling apoptosis of peripheral T cells. Repeated transfer of RANKL-activated DCs into MRL/lpr mice was
tested to determine whether this had a therapeutic effect on autoimmunity.

Methods and Finding: Cellular and molecular mechanisms of Fas-independent apoptosis of T cells induced by the DCs were
investigated by in vitro and in vivo analyses. We demonstrated that repeated transfers of RANKL-activated DCs into MRL/lpr
mice resulted in therapeutic effects on RA lesions and lymphoproliferation due to declines of CD4+ T, B, and CD42CD82

double negative (DN) T cells. We also found that the Fas-independent T-cell apoptosis was induced by a direct interaction
between tumor necrosis factor (TNF)-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2) on T cells and TRAIL on Fas-
deficient DCs in MRL/lpr mice.

Conclusion: These results strongly suggest that a novel Fas-independent apoptosis pathway in T cells maintains peripheral
tolerance and thus controls autoimmunity in MRL/lpr mice.

Citation: Izawa T, Kondo T, Kurosawa M, Oura R, Matsumoto K, et al. (2012) Fas-Independent T-Cell Apoptosis by Dendritic Cells Controls Autoimmune Arthritis in
MRL/lpr Mice. PLoS ONE 7(12): e48798. doi:10.1371/journal.pone.0048798
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease charac-

terized by chronic inflammation and synovial infiltration of

immune cells [1]. Various immune cells are implicated in the

pathogenesis of RA in patients and in murine models [2].

Furthermore, interactions between osteoclasts and immune cells,

such as T-cell priming by activated dendritic cells (DCs), may

contribute to the pathogenesis of RA in human and murine

models [3].

DCs are professional antigen-presenting cells (APCs) that are

present in low numbers in all body tissues [4]. Immature DCs are

capable of antigen uptake. After activation via Toll like receptor

triggering [5,6], RANK/RANKL [7], or CD40/CD40L signaling

[8,9], DCs are activated as evidenced by an up-regulation of MHC

molecules and costimulatory molecules, such as CD40, CD80, and

CD86 [10]. These mature DCs are no longer capable of antigen

uptake but are endowed with the capacity to initiate antigen-

specific T-cell responses. In contrast, immature DCs are believed

to induce antigen-specific tolerance via the induction of regulatory

T cells or the deletion of antigen-specific T cells [11]. Thus, DCs

play a pivotal role in orchestrating the immune response against

self and non-self antigens. Although several studies have demon-

strated that DCs control autoimmunity in several diseases,

including in RA [12,13], it remains unclear how DCs regulate

autoreactive T cells in the periphery.

We recently reported that crosstalk between Fas and receptor

activator of NF-kB ligand (RANKL) maintains peripheral DCs

associated with autoimmunity [14]. RANKL, a type II membrane

protein of tumor necrosis factor (TNF) family, is expressed on

osteoblasts, stromal cells, and activated T cells, and binds to the

signaling receptor RANK and decoy receptor osteoprotegerin

[7,15–18]. RANK is widely expressed in the myelomonocytic

lineage, ranging from osteoclast precursors to mature DCs [15,19].

Mice lacking RANKL or RANK display severely reduced

osteoclastogenesis, show defects in early differentiation of T and

B cells, lack lymph nodes (LNs), and fail to develop mammary

glands [20,21]. Although we demonstrated that activation of Fas-

deficient DCs was up-regulated by engagement of RANKL

signaling, and that the single transfer of RANKL-stimulated

DCs resulted in accelerated autoimmune arthritis in MRL/lpr

mice [14], we speculated whether repeated transfers, but not single
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transfer, of RANKL-stimulated DCs modify peripheral tolerance

and control autoimmunity in MRL/lpr mice.

In this study, we investigated the precise molecular mechanism

of the interaction between activated DCs and T cells in the

autoimmune response of MRL/lpr mice. Furthermore, a proposed

new DC therapy was tested to see if it would regulate RA lesions in

MRL/lpr mice.

Results

Therapeutic effect of repeated transfers of DCs on RA
lesions in MRL/lpr mice

We have previously demonstrated that a single injection of

RANKL and type II collagen (CII)-stimulated bone marrow-

derived dendritic cells (BMDCs) into MRL/lpr mice resulted in

elevated severity of RA lesions through up-regulation of T-cell

functions including T-helper (Th)1-typed cytokine production or

proliferative response [14]. We have also reported that the

phenotype of the increased DC from MRL/lpr mice was myeloid

DC showing CD11b+ CD11c+ CD8a2 [14]. Therefore, we

hypothesized that multiple interactions of activated DCs with

peripheral T cells can control autoimmunity. Thus we tried to

analyze the regulatory mechanism of autoimmunity in MRL/lpr

mice by multiple transfers of activated DCs. To elucidate how

activated DCs regulate autoreactive T cells in the periphery, we

performed repeated transfer experiments with RANKL and CII-

activated DCs into MRL/lpr mice. As shown in Figure 1A,

BMDCs from MRL/lpr or MRL/+/+ mice were stimulated with

RANKL and CII, and subcutaneously transferred into MRL/lpr

mice three times during a week from 4 to 5 weeks of age. At 16

weeks after the transfers, all the organs of the recipient MRL/lpr

mice were analyzed. Pathological findings of RA lesions in non-

treated MRL/lpr mice (20 weeks of age) showed subsynovial

mononuclear inflammatory infiltrate, erosion and destruction of

articular cartilage by panus, fibrosis, and synovial proliferation

(Figure 1 B). Histological analysis showed that RA lesions from

RANKL and CII-stimulated MRL/lpr DC- (lpr DC-) transferred

mice were clearly improved although a slight infiltration of

mononuclear cells was observed in the subsynovial connective

tissue of the treated mice (Figure 1B). In contrast, there was not a

significant effect of +/+ DC transfer on the RA lesion compared

with that of lpr DC-transferred mice (Figure 1B). Histological

evaluation revealed that the arthritic score of lesions from lpr DC-

transferred mice was significantly lower than that from the control

mice (Figure 1C). In addition, we compared RA lesions between

RANKL-stimulated DCs- and RANKL+CII-stimulated DCs-

transferred recipients. There was more therapeutic effect on RA

lesions by multiple transfers of RANKL+CII-stimulated DCs than

that of RANKL-stimulated DCs (Figure S1A). Furthermore, the

levels of rheumatoid factor (RF) (IgM and IgG) in the sera of lpr

DC-transferred mice were significantly reduced compared with

those from controls (Figure 1D). Anti-double strand (ds)DNA and

anti-CII Abs, but not anti-nuclear antibody (ANA), as well as RF

in the recipients transferred with activated lpr DCs were

significantly reduced compared with those in the recipients

transferred with control DCs (Figure S1B). It is still unclear

whether antibody against CII influences the induction of RA

lesions in MRL/lpr mice. It has been reported that severe RA

lesions can develop without anti-CII antidoby [22,23]. However, it

is possible that CII-primed DCs enhance in vivo immune reaction

including CII-specific response in MRL/lpr mice. On the other

hand, when lpr DCs stimulated without CII antigen were

transferred into lpr recipients, autoantidoby production of the sera

from the recipients was not changed (Figure S1C). Therefore, the

antigen-specific response plays a key role in triggering the

immunoregulatory mechanism in the recipient mice. When we

compared a single transfer and multiple transfers (three times) of

activated lpr DCs into MRL/lpr mice, there was a clear difference

for severity of autoimmune lesions between these two treatments

(Figure 1E and 1F). These results showed that repeated transfers of

activated DCs could control RA lesions in MRL/lpr mice. In

particular, lpr DCs activated with both RANKL and CII could

regulate the RA lesion effectively.

Effect of repeated transfers of activated DCs on
lymphoproliferation in MRL/lpr mice

It is well known that splenomegaly and systemic lymphoadeno-

pathy are observed in MRL/lpr mice [24–26]. The size of the

spleen and inguinal lymph nodes (ILNs) from lpr DC-transferred

mice was smaller than those from control mice (Figure 2A). The

total cell number of spleen and ILNs in lpr DC-transferred mice

was also significantly decreased compared with that of control

mice (Figure 2B). Furthermore, to clarify which subset of

lymphocytes was reduced in the spleen and ILNs from lpr DC-

transferred mice, the T cell subpopulation was analyzed by flow

cytometry. The number of CD4+ T cells from the spleen and ILNs

of lpr DC-transferred mice was significantly decreased compared

with that of control mice (Figure 2C). In contrast, no difference

was observed in the number of CD8+ T cells of the spleen and

ILNs between lpr DC-transferred mice and control mice

(Figure 2C). Moreover, the number of B220+Thy1.22 B cells of

spleen and ILNs from lpr DC-transferred mice was significantly

reduced compared with that from control mice (Figure 2D). In

addition, a significantly decreased number of CD42CD82 double

negative (DN) T cells of ILNs, not spleen, in RANKL+CII-lpr DC-

transferred mice was found (Figure 2E). Next we attempted to

determine the T and B cell apoptosis and maturation in vivo. As we

could not detect apoptosis of the cells at 8 or 12 weeks after the

transfer, we analyzed apoptosis of T and B cells at 2 weeks after

the transfer. Flow cytometric analysis showed that annexin-V+

CD4+ T, B, and DNT cells of ILNs from lpr DCs-transferred

recipients were significantly increased compared with those from

+/+ DCs-transferred recipients (Figure S2A, B, C, D). In addition,

there were no differences in the frequency of memory (CD44high

CD62L2) CD4+ T cells between lpr and +/+ DCs-transferred

recipients although CD44high CD62L+ activated CD4+ T cells of

lpr DC-transferred mice were relatively increased compared with

that of controls (Figure S3A). As to B cell maturation markers

(CD27 and CD5), there were no differences between three groups

(Figure S3B). Those findings suggest that repeated interactions

between Fas-deficient DCs and T cells regulate CD4+ T-cell

activation. Additionally, the repeated transfers of DCs controlled B

and CD42 CD82 DNT cell survival in the periphery and reduced

lymphoproliferation as well as RA lesions in MRL/lpr mice.

On the other hand, when carboxyfluorescein succinimidyl ester

(CFSE)-labeled +/+ or lpr DCs were subcutaneously injected into

MRL/lpr mice, significantly increased CFSE+ CD11c+ lpr DCs

were observed compared with those from MRL+/+ mice in ILNs

at 2 weeks after the transfer (Figure S4A). Therefore, in vivo

experiment shows that the survival of lpr DCs may be better than

that of +/+ DCs. Moreover, we detected increased CFSE+CD11c+

cells in spleen as well as ILNs from lpr DC-transferred mice

comparing with +/+ DC-transferred mice (Figure S4B). It is

possible that a therapy using normal DCs may be effective for RA

lesions by any manipulation for longer survival.

DC Therapy for RA
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T-cell functions in DC-transferred mice
We next evaluated T-cell functions of lpr DC-transferred mice at

12 weeks after the transfer. Purified CD4+ T cells from ILNs of

recipient MRL/lpr mice were stimulated with plate-coated anti-

CD3 monoclonal antibody (mAb) (0–0.5 mg/ml) and-CD28 mAb

(10 mg/ml) for 72 hours to analyze proliferation with the

incorporation of [3H]-Thymidine. T-cell response in ILNs from

lpr DC-transferred MRL/lpr mice was significantly decreased

compared with that form +/+ DC-transferred and control mice

(Figure 3A). By contrast, when T cells from the recipient MRL+/+
mice transferred with multiple transfers of activated DCs were

analyzed, there was no change in the proliferation of CD4+ T cells

between three groups (Figure S5). Moreover, cytokine productions

using the culture supernatants from anti-CD3 mAb-engaged

CD4+ T cells of spleen and ILNs were analyzed by ELISA. Th1-

typed cytokine production such as IL-2 and IFN-c from lpr DC-

transferred MRL/lpr mice was significantly lower than that from

+/+ DC-transferred and control mice (Figure 3B). By contrast, IL-

10 production in the ILN CD4+ T cells from lpr DC-transferred

MRL/lpr mice was significantly enhanced compared with that

from +/+ DC-transferred recipients (Figure 3B). By repeated

transfer of the DCs, the immune environment displaying Th1

cytokine profile of CD4+ T cells was shifted to Th2 cytokine profile

including IL-10. It was possible that the induction of IL-10-

dependent tolerogenic environment by multiple DC transfers

might play a crucial role in the progression of autoimmunity in

MRL/lpr mice. As for IL-4 and IL-17 production, there was no

significant difference between lpr DC-transferred and control mice

(Figure 3B). These results indicate that activated DCs crucially

regulate the peripheral T-cell functions in MRL/lpr mice.

Activated and CII-exposed lpr DC may be capable of controlling

T-cell survival in the periphery by continuing the stimulation. As

for signal II initiated by CD28 ligation on T cells, the results of T-

cell functions suggest that the T cell signaling controlled by signal

I, II, and III may be imbalanced in the DC-transferred recipient

mice. Therefore, if normal DCs can survive to continue

stimulating T cells like activated lpr DCs, it is possible that normal

DCs might induce the same effect with the imbalance of T cell

signaling. In addition, we performed the flow cytometric analysis

of thymic T cells (CD4 and CD8) of the treated recipient mice

(Figure S6A). There was no change between the treated and

control mice. Therefore, multiple transfers of DCs could not

influence T cell differentiation in the thymus. Moreover, we

analyzed regulatory T (Treg) cells of ILNs and spleen in the

recipient MRL/lpr mice treated with multiple transfers of DCs.

There was no difference in the frequency of CD25+ Foxp3+ CD4+

Treg cell of ILNs and spleen between +/+ DCs- and lpr DCs-

transferred recipients (Figure S6B).

T-cell apoptosis induced by activated DCs
Repeated DC transfers reduced the cell number of CD4+ T cells

in MRL/lpr mice. However, it remained unclear whether

apoptosis of CD4+ T cells could be induced by repeated

interactions with DCs. Thus, T cells of ILNs from MRL/lpr mice

were repeatedly (three times) co-cultured with RANKL and CII-

stimulated BMDCs from MRL/lpr or MRL+/+ mice (Figure 4A).

Although the in vivo immune response in the recipient treated with

multiple transfer was not clear, in vitro repeated interactions of

activated DCs with T cells could be one of clues to understand the

in vivo immune response. In brief, T cells were repeatedly

transferred into each well in which T cells were co-cultured with

RANKL and CII-stimulated-lpr or +/+ DCs for 24 hours. After

the third incubation, apoptotic cells expressing annexin-V were

detected by flow cytometry. Apoptosis of CD4+, but not CD8+, T

cells co-cultured with lpr DCs was significantly increased

compared with those incubated with +/+ DCs (Figure 4B). In

addition, when compared the mean fluorescence intensity (MFI) of

annexin-V on the co-cultured CD4+ T cells, the MFI on CD4+ T

cells co-cultured with RANKL and CII-stimulated lpr DCs was

Figure 1. Therapeutic effect of repeated transfers of DCs on
autoimmune arthritis. (A) Experimental protocol is shown. BMDCs
from female MRL+/+ and MRL/lpr mice were stimulated with RANKL and
CII, and then female MRL/lpr mice received a total of 3 injections of the
BMDCs every other day distributed over 6 day period. At 16 weeks after
transfer (20 weeks of age), the recipient MRL/lpr mice were analyzed. (B)
Histology of joint from recipient mice. Histological photos with HE
staining are shown as representative of the recipient mice at 16 weeks
after transfers. Arrow; bone erosion or synovial proliferation, star;
mononuclear inflammatory infiltrate, fibrosis, or panus. Scale bar:
100 mm (n = 7, 10 and 12 per group respectively). (C) The histological
score of the recipient mice was evaluated at 16 weeks after repeated
transfers. Data are shown as means 6 SD. (n = 7, 10 and 12 per group
respectively). (D) Rheumatoid factor (RF) (IgM and IgG) antibody was
measured by ELISA. Values are shown as means 6 SD (n = 7, 10 and 12
per group respectively). OD = optical density. (E) RA lesions of control, a
single DC transferred (16 DC), and multiple DC transferred (36 DC)
MRL/lpr mice were compared. Histological photos with HE staining are
shown as representative of the recipient mice at 12 weeks after
transfers. Scale bar: 100 mm (n = 5 per group respectively). (F) The
histological score of the recipient mice was evaluated at 12 weeks after
repeated transfers. Data are shown as means 6 SD (n = 5 per group
respectively). *p,0.05.
doi:10.1371/journal.pone.0048798.g001

DC Therapy for RA

PLOS ONE | www.plosone.org 3 December 2012 | Volume 7 | Issue 12 | e48798



significantly increased in contrast to that with RANKL and CII-

stimulated +/+ DCs (Figure 4C). The CD4+ T-cell apoptosis was

induced by lpr DCs dependent on the number of DCs (Figure 4B).

In contrast, apoptosis of CD8+ T cells was not enhanced by

repeated co-culturing with lpr DCs (Figure 4B). There was no

increased apoptosis of DNT cells in vitro by repeated interactions

with DCs (Figure 4D). In addition, apoptosis of B220+ Thy1.22 B

cells from MRL/lpr and MRL+/+ mice was not induced by the

repeated co-culture with lpr DCs (Figure 4D). We confirmed that

the number of living and dead cells before the co-culture with T

cells was not changed after the co-culture for 24 hours. While it is

possible that lpr CD4+ T cells may control DNT cells and B cells in

the periphery directly or indirectly, there may be still veiled in vivo

mechanism of the survival of abnormal DNT cells. As for the

cultured BMDCs, we prepared the same number between +/+
and lpr DCs (Figure 4). When ovalbumin (OVA) or bovine serum

albumin (BSA), and RANKL-stimulated lpr DCs were repeatedly

co-cultured with CD4+ T cells from MRL/lpr mice, there was no

significant increase of apoptotic cells in contrast to the co-culture

with CII and RANKL-stimulated lpr DCs (Figure 4E). Addition-

ally, we performed the in vitro experiment using CD4+ T cells from

MRL+/+ mice. When CD4+ T cells from MRL+/+ mice were co-

cultured repeatedly with RANKL+CII-stimulated lpr DCs, a

significant increase of +/+ CD4+ T cell apoptosis like lpr CD4+ T

cells was not observed (Figure 4F). These results suggest that Fas-

independent T-cell apoptosis is induced by repeated interactions of

activated DCs. However, the precise mechanism of in vivo immune

response in the recipient treated with multiple transfer has not

been clear.

Molecular mechanism of Fas-independent T-cell
apoptosis

To elucidate the molecular mechanism responsible for Fas-

independent T-cell apoptosis, we compared the gene expression of

RANKL/CII-lpr DC-stimulated lpr CD4+ T cells with RANKL/

CII-+/+ DC-stimulated lpr CD4+ T cells using a PCR-based

SuperArray method focusing on apoptosis-related genes. Of the 96

genes analyzed, the most increased gene was TRAF3 (.3-fold),

and 10 genes including TNFSF10b (TRAIL-R2), and caspase 8

showed .2-fold increase compared with +/+ DC-stimulated

CD4+ T cells (Figure 5A). It has been reported that TRAIL-R

plays an important role in activation-induced apoptosis of CD4+ T

cells [27]. Therefore, we hypothesized that Fas-independent

apoptosis of CD4+ T cells is induced by the interaction between

TRAIL-R2 on CD4+ T cells and TRAIL on activated DCs in

MRL/lpr mice. To confirm the result of the PCR-array, mRNAs

of the up-regulated genes were evaluated by quantitative RT-

PCR. Consistent with the data from the RCR-array, mRNAs of

TRAF3, TRAIL-R2, and caspase 8 of T cells stimulated with lpr

DCs were significantly increased compared with those from

control T cells (Figure 5B). In contrast, the anti-apoptotic gene

Bcl-2 was significantly decreased (Figure 5B). Next, we examined

TRAIL expression on RANKL-stimulated DCs from MRL/lpr

mice. Although a previous report demonstrated that TRAIL

expression on DCs was up-regulated by IFN-c stimulation [28], it

Figure 2. Reduced lymphoproliferation of MRL/lpr mice following repeated transfers of DCs. (A) Spleen and ILNs from the recipient mice
are shown. Photos are representative of the recipient mice (16 weeks of age) at 12 weeks after the transfer. Values are shown as means 6 SD (n = 5, 7
and 7 per group respectively). (B) The total cell number in the spleen, and ILNs is shown. Scale bar: 5 mm. (C) T cell numbers in the spleen and ILNs of
the recipient mice. Flow cytometry was performed using spleen and ILN cells. The number of CD4+ and CD8+ T cells is shown. (D) B cell (B220+

Thy1.22) number in the spleen and ILNs of the recipient mice. (E) CD42 CD82 CD3+ DNT cell number in the spleen and ILNs of the recipient mice.
Values are shown as means 6 SD (n = 5, 7, and 7 respectively per group). *p,0.05, **p,0.005.
doi:10.1371/journal.pone.0048798.g002
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was unclear whether TRAIL on DCs can be controlled by the

RANK/RANKL signal. In our study, TRAIL expression on DCs

from MRL/lpr mice was significantly enhanced by RANKL

stimulation (Figure 5C). No difference was observed in the

increased expression of lprDCs and +/+ DCs induced by IFN-c
stimulation (Figure 5C). Moreover, we performed an additional

experiment using anti-TRAIL mAb to block in vitro T cell

apoptosis by multiple interactions with activated DCs. An anti-

TRAIL mAb could inhibit in vitro lpr T-cell apoptosis by the

interactions with activated lpr DCs (Figure 5D). These results

suggest that Fas-independent T-cell apoptosis is induced by a

direct interaction between TRAIL-R on T cells and TRAIL on

DCs. This shows that apoptosis of Fas-deficient CD4+ T cells may

be controlled through TRAIL/TRAIL-R. Therefore, although

normal T cells are resistant to TRAIL/TRAIL-R-mediated

apoptosis as described in the previous report [29], the mainte-

nance of peripheral T cells in human patients with abnormal Fas/

FasL system may be regulated by the TRAIL/TRAIL-R-mediated

pathway.

TRAIL/TRAIL-R2-mediated apoptosis of Fas-deficient
CD4+ T cells

To further confirm TRAIL/TRAIL-R2-mediated apoptosis of

Fas-deficient CD4+ T cells by RANKL+CII-stimulated DCs, we

examined whether siRNA for TRAIL gene silencing inhibits T-cell

apoptosis. BMDCs from MRL/lpr mice were treated with TRAIL

gene-specific siRNA, and then stimulated with RANKL and CII

for 48 hours. During the last 24 hours of the culture, purified

CD4+ T cells from MRL/lpr mice were repeatedly (three times)

co-cultured with the DCs for 8 hours. Apoptotic cells (annexin-

V+PI+) were analyzed by flow cytometry as shown in Figure 6A.

When the effect of the TRAIL gene-specific siRNA on the surface

expression of DCs from MRL/lpr mice was evaluated, up-

regulated TRAIL expression on RANKL+CII-stimulated DCs

was seen to decrease in a dose-dependent manner, indicating that

the knockdown was effective (Figure S7A, B). By contrast, the

increased level of TRAIL in stimulated DCs was unchanged by

treatment with control siRNA (Figure S7A, B). Interestingly,

apoptosis of CD4+ T cells induced by repeated co-culturing with

RANKL and CII-stimulated DCs was significantly reduced by

treatment with TRAIL siRNA although there was no change in T-

cell apoptosis following co-culturing with control siRNA-treated

DCs (Figure 6B, C). Furthermore, we assessed the repeated

transfer using TRAIL siRNA-treated DCs. BMDCs from MRL/

lpr mice were treated with TRAIL siRNA in vitro, and then

repeatedly transferred into MRL/lpr mice during 4 to 5 weeks of

age. At 12 weeks (16 weeks of age) after the transfers, autoantibody

production of serum in the recipients such as RF was measured by

ELISA. Although serum titer of RF in the recipient MRL/lpr mice

transferred with control siRNA-treated DCs were significantly

decreased compared with untreated MRL/lpr mice at 4, 8, and 12

weeks after the transfers, RF titer of the MRL/lpr recipients

transferred with TRAIL siRNA-treated DCs was not reduced, and

was equal to that of control MRL/lpr mice (Figure 6D). In

addition to RF, we analyzed anti-dsDNA and anti-CII Abs. We

could detect a significant increase of anti-dsDNA and anti-CII Abs

in the recipient transferred with TRAIL siRNA-treated DCs

compared with that with control siRNA-treated DCs (Figure S8).

Moreover, histological analysis showed that the therapeutic effect

of repeated transfers of DCs on RA lesions was inhibited by in vitro

treatment with TRAIL siRNA for DCs (Figure 6E). This result

indicates that activated DCs expressing TRAIL plays a key role in

regulating Fas-independent apoptosis of peripheral T cells.

Discussion

DCs are crucial for the initiation of T-cell immunity and play an

important role in the onset and regulation of immune responses in

RA [13,30]. Our previous report demonstrated that a single

transfer of RANKL-stimulated DCs resulted in the exacerbation of

RA lesions in MRL/lpr mice [14]. In contrast, the present study

revealed the therapeutic effect of repeated transfers of DCs on the

RA lesions and lymphoproliferation in MRL/lpr mice. In terms of

recent therapeutic strategies for RA, modulation of several

cytokines, such as TNF-a, IL-1, and IL-6 are therapeutic targets

in RA [2,31]. However, since cytokines regulate a broad range of

inflammatory processes and since this regulatory network is

considerably complicated in the pathogenesis of RA, the clinical

application of such therapies is risky because of potential side

Figure 3. T cell responses in DC-transferred MRL/lpr mice. (A)
Proliferative responses of ILN CD4+ T cells from the recipients and
control mice were analyzed. Purified CD4+ T cells were stimulated with
plate-coated CD3 mAb (0–0.5 mg/ml) and CD28 mAb (10 mg/ml) for
72 hours. The proliferative response was evaluated by [3H] thymidine
incorporation. Values are means 6 SD (n = 4, 5, and 5 respectively per
group). Results are representative of three independent experiments
with similar results. (B) The culture supernatants for 24 h (anti-CD3
mAb: 0.5 mg/ml; anti-CD28 mAb: 10 mg/ml) as described above were
analyzed for cytokine productions including IL-2, IFN-c, IL-4, IL-10, and
IL-17 by ELISA. Values are means 6 SD (n = 4, 5, and 5 respectively per
group). *p,0.05, **p,0.005.
doi:10.1371/journal.pone.0048798.g003
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Figure 4. Fas-independent T-cell apoptosis in DC-transferred MRL/lpr mice. (A) Experimental protocol of T cell apoptosis by repeated co-
culture with DCs. Total T cells from MRL/lpr mice (56104) were repeatedly (three times) co-cultured with BMDCs (2.56105) from MRL+/+ or MRL/lpr
mice for 8 hours without interval. BMDCs were stimulated with RANKL and CII for 24 hours before the co-culturing. (B) After the third co-culture,
apoptosis of CD4+ and CD8+ T cells expressing annexin-V was detected by flow cytometry. Staining of T cell with FITC-labeled isotype control Ab is
shown as a dotted line. Results are shown as representative of three independent experiments with similar results. (C) MFI of annexin-V on CD4+ T
cells was calculated, and the data are shown as the means 6 SD of triplicate samples. (D) Induction of T-cell apoptosis by repeated co-culturing with
activated DCs. Purified CD4+, CD8+, DNT, and B220+ cells (56104) were repeatedly co-cultured with BMDCs (5 and 256104). Annexin-V+ cells are
shown as the means 6 SD of triplicate samples. The experiments were repeated three times with similar results. *p,0.05. (E) BMDCs were stimulated
with RANKL and, OVA or BSA (10 mg/ml) for 24 hours before the co-culturing. Purified CD4+ cells (56104) were repeatedly co-cultured with BMDCs (5
and 256104). Annexin-V+ cells are shown as the means 6 SD of triplicate samples. The experiments were repeated three times with similar results. (F)
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effects on the immune system. In this study, no changes were

observed in any other organs in recipient mice that were subjected

to repeated transfers of DCs when all the organs were

histopathologically examined. It has been reported that repeated

injections of DCs matured with TNF-a induces antigen-specific

protection against experimental autoimmune encephalomyelitis

Purified CD4+ cells (56104) from ILNs in MRL+/+ mice were repeatedly co-cultured with lpr BMDCs (256104). Annexin-V+ cells are shown as the means
6 SD of triplicate samples. The experiments were repeated three times with similar results.
doi:10.1371/journal.pone.0048798.g004

Figure 5. T-cell apoptosis via TRAIL/TRAIL-R2. (A) Real-time RT-PCR for a wide array of apoptosis-related genes was performed using mRNA
samples of MRL/lpr CD4+ T cells repeatedly stimulated with MRL/lpr and MRL+/+ BMDCs. Gene expression of CD4+ T cells repeatedly stimulated with
MRL/lpr BMDCs was compared with those stimulated with MRL+/+ BMDCs (controls). Genes with increased and decreased expression are shown as
fold of control. The experiments were repeated twice with similar results. (B) The mRNA expression of TRAF3, TRAIL-R2, caspase 8, and Bcl-2 was
confirmed by quantitative real-time PCR analysis. Relative expression to b-actin level is shown as means 6 SD from triplicate samples. The
experiments were repeated three times with similar results. (C) Up-regulation of TRAIL expression on MRL/lpr BMDCs by RANKL was detected by flow
cytometry. Staining of DC with FITC-labeled isotype control Ab is shown as a dotted line. The experiments were repeated three times with similar
results. (D) lpr CD4+ T cells were repeatedly co-cultured with activated lpr DCs in the presence of anti-TRAIL mAb. Data are shown as means 6 SD of
triplicate samples. *p,0.05, **p,0.005.
doi:10.1371/journal.pone.0048798.g005
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(EAE) in mice [32]. Although it was reported that overexpression

of IL-10 is associated with the manifestations of ALPS and SLE,

the reduced Th2 cell population producing IL-10 is related to the

disease severity in RA [33–36]. In our study, since lpr DC therapy

was effective for RA lesions, but not renal lesions, there might be

different effects of DC transfer on autoimmune lesions in each

target organ. Regarding antigen-specificity in our model,

RANKL-stimulated DCs were incubated with CII antigen in vitro

in this study and in our previous report. Without CII antigen

incubation, the significant effects of DC transfer on autoimmunity

were not fully observed. Although we have not clarified ‘‘antigen

specificity’’ using only CII antigen, in vitro experiment using OVA

or BSA antigen implies that CII antigen may play a important role

in triggering the onset of autoimmunity of MRL/lpr mice.

Figure 6. Regulation of Fas-independent T cell apoptosis by TRAIL siRNA-treated DCs. (A) BMDCs from MRL/lpr mice were treated with
TRAIL gene-specific siRNA or control siRNA for 24 hours, and then stimulated with RANKL and CII for 48 hours. Purified CD4+ T cells of LNs from MRL/
lpr mice were repeatedly (three times) co-cultured with the activated DCs for 8 hours by transfer into each new well. (B) Expression of TRAIL on
activated BMDCs treated with TRAIL siRNA or control siRNA was analyzed by flow cytometry. Results are representative of two independent
experiments with similar results. (C) Apoptosis of CD4+ T cells cocultured with siRNA-treated DCs was analyzed by flow cytometry with Annexin-V and
PI. Results are representative of two independent experiments. (D) Apoptotic cells (%) are shown as the mean 6 SD from triplicate samples. The
experiments were repeated three times with similar results. (E) In vitro TRAIL siRNA-treated and control DCs were injected three times into MRL/lpr
mice (4 weeks of age). After 12 weeks after the transfers, RF level of sera from the recipient mice (16 weeks of age) was detected by ELISA. Values are
means 6 SD. (n = 5). The experiments were repeated twice with similar results. (F) Histology of joint from recipient mice. Histological photos with HE
staining are shown as representative of five mice in each group at 12 weeks after transfers. Arrow; bone erosion or synovial proliferation, star;
mononuclear inflammatory infiltrate, fibrosis, or panus. Scale bar: 100 mm. Histological score is shown as means 6 SD. (n = 5) *p,0.05.
doi:10.1371/journal.pone.0048798.g006
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Therefore, DC therapy with CII antigen in addition to potent

stimulation by RANKL can be more effective for autoimmunity.

We transferred the DCs into MRL/lpr at 4 weeks of age in

which lymphadenopathy and splenomegaly based on lymphpro-

liferation of the mice was not observed. By the multiple transfers of

DCs, CD4+ T cells might be killed directly by lpr DCs while it is

possible that apoptosis of DNT cell and B cells might be indirectly

induced. According to our preliminary experiment, multiple

transfers of DCs at 10 weeks of age could not be effective for

suppression of RA lesion and lymphadenopathy of MRL/lpr mice.

In this study, it is suggested that beneficial of the multiple transfers

of activated DCs is confined to the lpr background and antigen-

specific immune response.

Our previous report demonstrated that crosstalk between

RANKL and Fas signaling in DCs controls autoimmune arthritis

in MRL/lpr mice [14]. Moreover, it was reported that RANKL

regulates Fas expression and Fas-mediated apoptosis in osteoclast

[37]. To determine whether such control of autoimmunity by DCs

could be used as a therapeutic strategy, repeated transfers of

activated DCs were performed in this study to see if there could

prevent autoimmune arthritis in MRL/lpr mice. We found that

TRAIL expression on BMDCs from MRL/lpr mice was up-

regulated by RANKL stimulation. TRAIL is known to interact

with at least two death receptors, including death receptor 4 (DR4,

TRAIL-R4) and death receptor 5 (DR5, TRAIL-R5), and two

decoy receptors (decoy receptor 1 [DcR1, TRAIL-R3, TRID] and

decoy receptor 2 [DcR2, TRAIL-R4, TRUNDD]) [38–40].

Apoptosis through TRAIL/TRAIL-R has been reported in

several tumor cell lines [38]. The apoptosis is mediated by DR4

and DR5, which possess intracellular death domains similar to

those of TNF receptor I and Fas [38,41]. In addition, death

domains of TRAIL-R activate mitochondria-dependent and

mitochondria-independent pathways of apoptosis through

FADD-caspase 8, leading to activation of the caspase cascade

[42–44]. A previous report described that TRAIL-overexpressed

DCs could inhibit the development of CII-induced arthritis (CIA)

[45]. Although the precise molecular mechanism is obscure, it is

possible that RANKL-induced TRAIL expression on DCs from

MRL/lpr mice triggers T cell apoptosis. Abnormal system of Fas/

FasL is not found in all other models and in all human RA.

Autoimmunity is known to be caused by multi-factors, and is a

complex disease. RA lesions in MRL/lpr mice resembling human

RA are the most common among RA animal models. Therefore,

the abnormality of Fas/FasL system in immune cells is considered

to influence the pathogenesis of human RA. Fas-deficient DCs

might be more useful than normal DCs expressing Fas molecule

for treatment of autoimmunity in our study. The fact that Fas-

deficient DCs become more activated than normal DCs could

affect Fas-independent T cell apoptosis to prevent autoimmunity

in MRL/lpr mice. This suggests that DC therapy might be helpful

for autoimmunity of patients with abnormal Fas expression on the

immune cells, and that a therapy for autoimmunity using normal

DCs might fail to prevent or treat autoimmune diseases. Although

it is still difficult to apply a new DC therapy for human RA, any

therapeutic strategy with controlling autoreactive T cells by DCs

will be useful in the feature. In addition, although the effect

observed in our study is confined to MRL/lpr mice, the mice are

the most common and useful for understanding the pathogenesis

of autoimmune RA. Therefore, any unique phenomenon or effect

using MRL/lpr mice will pave to a road to define the mechanism

of autoimmunity and develop any new therapy for autoimmunity.

Cell death of peripheral T cells is one of the systems used to

maintain immunological tolerance [46]. Fas/FasL in T cell

apoptosis plays a crucial role in the maintenance of peripheral

tolerance [46]. Although the relationship between apoptosis of

peripheral T cells and TRAIL/TRAIL-R2 is unclear, it has been

reported that mice deficient in TRAIL have a severe defect in

thymocyte apoptosis and that TRAIL is important in the induction

of autoimmune diseases [47,48]. TRAIL/TRAIL-R-mediated T-

cell apoptosis may be promoted in a Fas-deficient situation by an

interaction with DCs that highly express TRAIL. In contrast, it

has also been reported that reciprocal expression of TRAIL and

FasL in T helper 1 and 2 cells plays a key role in T-cell apoptosis

in T helper subset differentiation [27]. Our results suggest that

activated Fas-deficient T cells expressing TRAIL-R is induced by

repeated interactions with TRAIL-expressing DCs. It is possible

that TRAIL/TRAIL-R-mediated apoptosis of T cells plays a key

role in an alternative of apoptosis pathway.

In summary, repeated transfers of activated Fas-deficient DCs

resulted in a therapeutic effect on lymphoproliferation and

autoimmune arthritis in MRL/lpr mice due to Fas-independent

apoptosis of CD4+ T cells through TRAIL/TRAIL-R2. Our new

therapeutic approach using this alternative apoptosis pathway

could prove to be a powerful strategy for the prevention and cure

of immune disorders in the near future.

Materials and Methods

Ethics
This study was conducted according the principles expressed in

the Declaration of Helsinki. The study was approved by the

Institutional Review Board of the University of Tokushima

(toku09021).

Mice
MRL/Mp-lpr/lpr mice (MRL/lpr: aged 4–12 weeks; n = 75) and

MRL+/+ mice (aged 4–12 weeks; n = 50) were purchased from

Japan SLC (Shizuoka, Japan). All mice were maintained under

specific pathogen-free conditions at our animal facility. We

analyzed female mice at 16 or 20 weeks of age.

Bone marrow-derived DCs (BMDCs)
BMDCs were generated from the bone marrow of MRL/lpr or

MRL+/+ mice as described previously [49]. BMDCs were

stimulated with 100 ng/mL RANKL and 50 mg/mL chicken

type II collagen (CII) for 48 hours. 26106 BMDCs/a mouse were

transferred three times or once into recipient MRL/lpr mice at the

base of the tail by subcutaneous injections in 200 mL PBS at the

age of 4 weeks.

Histopathology
All organs were taken from the mice, fixed with 4% phosphate-

buffered formaldehyde (pH 7.2), and prepared for histological

examination. The sections (4 mm in thickness) were stained with

hematoxylin and eosin (HE). Histological grading of inflammatory

arthritis was performed according to the methods of Edwards et al

[42]. as follows: a 1-point score indicates hyperplasia/hypertrophy

of synovial cells, fibrosis/fibroplasia, proliferation of cartilage and

bone, destruction of cartilage and bone, and mononuclear cell

infiltrate. We have confirmed that any inflammatory findings are

observed in over 90% MRL/lpr mice at 16 or 20 weeks of age. In

approximately 20% female MRL/lpr mice at 12 weeks of age, any

slight findings such as hyperplasia of synovial cells and mononu-

clear cell infiltration were observed. These findings of arthritis

lesions in MRL/lpr mice are consistent with those in previously

demonstrated reports [50–53].
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Flow cytometry
Spleen and LN cells were stained with fluorescein isothiocya-

nate (FITC)-conjugated anti-CD8, phycoerythrin (PE)-conjugated

anti-CD4, PE-Cy5.5-conjugated anti-CD44, APC-conjugated

anti-CD62L, FITC-conjugated anti-CD5, APC-conjugated anti-

CD27, PE-conjugated anti-B220, PE-Cy7-conjugated anti-CD19-

C, PE-conjugated anti-TRAIL mAb (eBiosciences, San Diego,

CA, USA). Cells were analyzed by a FACScan (BD Biosciences,

Franklin Lakes, NJ, USA).

Proliferation assay
T cells (.90%) were enriched from single-cell suspensions of

spleen and ILN cells from recipient MRL/lpr mice with nylon

wool (Wako Pure Chemical, Tokyo, Japan), and CD4+ T cells

were purified by Phycoerythrin (PE)-conjugated anti-CD4 mAb,

PE-conjugated CD8 mAb, and anti-PE Microbeads (Miltenyi

Biotec). Cells were cultured in 96-well flat-bottom microtiter plates

(56104 cells/well) in RPMI1640 containing 10% FCS, penicillin/

streptomycin, and 2-mercaptoethanol (ME), and were stimulated

with plate-coated anti-CD3 (500A2) (BD Biosciences) and anti-

CD28 mAb (37.51) (BD Biosciences). [3H]Thymidine incorpora-

tion during the last 12 hours of the culture for 72 hours was

evaluated using an automated b liquid scintillation counter. In

addition, cells were labeled with carboxyfluorescein diacetate

succinimidyl ester (CFSE), and dilution of CFSE was evaluated as

cell proliferation after stimulation by flow cytometric analysis.

ELISA
The amounts of mouse IL-2, IFN-c, IL-4, IL-10, and IL-17 in

culture supernatants, rheumatoid factor (RF) (IgM and IgG), anti-

double strand (ds)DNA, anti-CII, and anti-nuclear Ab (ANA)

(ALPHA DIAGNOSTIC INTERNATIONAL) of sera from the

recipient MRL/lpr mice were detected by ELISA as previously

described [14].

Detection of apoptotic cells
To determine the apoptosis of T and B cells by repeated

interactions with DCs, T and B cells were co-cultured for 8 hours

three times with RANKL-stimulated MRL/lpr or MRL+/+
BMDCs. Briefly, we transferred T cells into the other well, in

which DCs had been stimulated, without interval three times for

each 8 hours. After the third co-culture with DCs, apoptotic cells

of CD4+, CD8+ T, DNT, and B cells were detected with flow

cytometer using an Annexin V-FITC apoptosis detection kit (Bio

Vision, Mountain View, CA). Purified anti-mouse TRAIL mAb

(BioLegend, San Diego, CA, clone:N2B2) was used for inhibition

of T cell apoptosis.

Gene expression analysis
Apoptosis pathway-focused gene expression profiling analysis

using real-time polymerase chain reaction (PCR) was tested with a

PCR Primer array kit (SABiosciences Corporation, Frederick,

MD, USA). In brief, total RNA was extracted with RNeasy kits

(Qiagen Inc., Valencia, CA), and reverse transcribed. The

synthesized cDNA was then applied to PCR-based SuperArray

(SABiosciences) plates to detect expression of genes related to

apoptosis using a PTC-200 DNA Engine Cycler (BioRad

Kaboratories, Hercules, CA) with SYBR Premix Ex Taq (Takara,

Kyoto, Japan).

Real-time quantitative reverse transcription-polymerase
chain reaction (RT-PCR)

Total RNA was extracted from the cultured CD4+ T cells of

MRL/lpr mice using RNeasy kits (Qiagen), and reverse-tran-

scribed. Transcript levels of TRAF3, caspase 8, Tnfrsf10b

(TRAIL-R2), Bcl-2, and b-actin were observed using PTC-200

DNA Engine Cycler (BioRad) with SYBR Premix Ex Taq

(Takara, Kyoto, Japan). The following primer sequences were

used: for TRAF3, 59-AGCAGCTGACTCTGGGACAT-39 (for-

ward) and 59-CACCACACAGGGACAATCTG-39 (reverse); for

Tnfrsf10b (TRAIL-R2), 59-ACTTGCTGAGAGCT-

GACTCTGTGG-39 (forward) and 59-AGCAGTGGCTGTGTT-

CACAAGG-39 (reverse); for caspase 8, 59-GAGATCCTGT-

GAATGGAACCTGGTA-39 (forward) and 59-

CACGCCAGTCAGGATGCTAAGA-39 (reverse); for Bcl-2, 59-

TTCGCAGCGATGTCCAGTCAGC-39 (forward) and 59-

TGAAGAGTTCTTCCACCACCGT-39 (reverse); and for b-

actin, 59-GTGGGCCGCTCTAGGCACCA-39 (forward) and

59-CGGTTGGCCTTAGGGTTCAGGGGGG-39 (reverse). Rel-

ative mRNA abundance of each transcript was normalized against

b-actin.

In vitro knockdown of TRAIL gene in BMDCs
Small interfering RNA (siRNA) of TRAIL (Tnfs10) and a

negative control (StealthTM Select RNAi, Cat No:10620319,

Invitrogen, Carlsbad, CA, USA), including three sequences as off-

targets were used for analysis of in vitro knockdown of TRAIL gene

in RANKL-stimulated DCs. Transfection of siRNA into DCs was

performed with LipofectamineTM RNAiMAX Reagent (Invitro-

gen).

Statistical Analysis
Results are given as mean 6 standard deviation (SD).

Comparison was done using Student’s t test. Differences were

considered statistically significant for P values of ,0.05.

Supporting Information

Figure S1 The effect of multiple transfers of activated
lpr DCs on RA lesion and autoantibody production in
MRL/lpr mice. (A) RA lesions of recipient female mice treated

with multiple transfers of DCs that were stimulated by different

condition in vitro were compared. The histological score of the

recipient mice (16 weeks of age) was evaluated at 12 weeks after

repeated transfers. Data are shown as means 6 SD (n = 5 per

group respectively). (B) Autoantibody production of anti-dsDNA,

anti-CII, and anti-nuclear Ab (ANA) of the sera from non-treated,

stimulated +/+ DC-transferred, and stimulated lpr DC-transferred

mice (16 weeks of age) was measured by ELISA. Data are shown

as means 6 SD (n = 5 per group respectively). (C) Autoantibody

production of anti-dsDNA and anti-CII Abs of the sera from mice

(16 weeks of age) transferred with RANKL, or RANKL and CII-

stimulated lpr DCs was measured by ELISA. Data are shown as

means 6 SD (n = 5 per group respectively). *p,0.05.

(TIF)

Figure S2 Apoptosis of T and B cells by multiple
transfers of lpr DCs. Apoptosis (annexin V+) of CD4+ (A),

CD8+ (B) T, DNT (C), and B (CD19+) (D) cells of spleen and ILNs

in the recipient mice was detected by flow cytometric analysis at 2

weeks after the multiple transfers. Data are shown as means 6 SD

(n = 3 per group respectively). *p,0.05, **p,0.005.

(TIF)
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Figure S3 Activation or maturation markers on T and B
cells. (A) T cell markers (CD44 and CD62L) of CD4+-gated cells

of spleen and ILNs in the recipients (16 weeks of age) were

analyzed by flow cytometry at 12 weeks after the multiple

transfers. Results were representative of 5 mice per group. (B) B

cell markers (CD27 and CD5) of CD19+-gated cells of spleen and

ILNs in the recipients were analyzed by flow cytometry at 12

weeks after the multiple transfers. Results were representative of 5

mice per group.

(TIF)

Figure S4 Survival of DCs in MRL/lpr mice. BMDCs

from MRL+/+ or MRL/lpr mice were stimulated with or without

RANKL and CII, and then were labeled with CFSE. Those DCs

were subcutaneously injected into MRL/lpr mice. At 2 weeks after

the transfer, CFSE+CD11C+ DCs of ILNs (A) and spleen (B) were

detected by flow cytometric analysis. Data are shown as means 6

SD (n = 5 per group respectively). *p,0.05.

(TIF)

Figure S5 Effect of multiple DC transfer on T cell
proliferation in MRL+/+ mice. At 12 weeks after multiple

DC transfers into MRL+/+ mice, CFSE-labeled CD4+ T cells

were stimulated with anti-CD3 (0.5 mg/ml) and anti-CD28

(10 mg/ml) mAbs for 72 hours. Dilution of CFSE in CD4+ T

cells was evaluated as proliferative cells by flow cytometric

analysis. Data are shown as means 6 SD (n = 5 per group

respectively).

(TIF)

Figure S6 Effects of multiple DC transfer on thymic
differentiation of T cell and Treg differentiation. (A) T cell

phenotype (CD4 and CD8) in the thymus of the recipient mice was

analyzed by flow cytometry at 12 weeks after the multiple DC

transfer. Results were representative of 5 mice per group. (B)

CD25+ Foxp3+ CD4+ Treg cells in ILNs and spleen were detected

by flow cytometric analysis. Results were representative of 5 mice

per group.

(TIF)

Figure S7 Efficiency of siRNA on TRAIL expression. (A)

TRAIL expression on lpr BMDCs treated with control or TRAIL

siRNA (0, 10 and 50 nM) was detected by flow cytometric

analysis. Results were representative of individual three experi-

ments. (B) Relative expression of TRAIL to that of untreated DCs

was shown.

(TIF)

Figure S8 Effect of transfer of TRAIL siRNA-treated
DCs on autoantibody production. Autoantibodies such as

anti-dsDNA and anti-CII Abs of the sera from mice (16 weeks of

age) transferred with control and TRAIL siRNA-treated DCs were

detected by ELISA. Data are shown as means 6 SD (n = 5 per

group respectively). *p,0.05.

(TIF)
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