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Abstract: Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory
activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the
24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory
effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was
105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs),
respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM,
which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of
the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited
MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be
considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50

values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher
than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of
COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were
recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B,
with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are
potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B
and AChE.
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1. Introduction

Alzheimer’s disease (AD) is one of the greatest concerns confronting the medical community, and
is the fourth leading cause of neurodegenerative disease-related death. Furthermore, AD has been
predicted to affect 100 million patients within 30 years [1]. AD accounts for 70% of all reported cases of
dementia, being characterized by cholinergic functional decline, β-amyloid oligomer formation, and
the dysregulations of other cellular processes [2]. Over past years, many efforts have been made to
identify the key biochemical events responsible for AD. However, AD is a multifactorial disease and,
thus, its management requires the simultaneous modulations of multiple targets [3]. Based on greater
understanding of the disease, recent research efforts have increasingly focused on multitarget-drugs
that simultaneously bias different biological targets [4].

This novel approach is viewed optimistically, and hybridizations of the pharmacophore subunits
of bioactive molecules have already resulted in the identification of multifunctional drugs [5] and,
as a result, synthetic drugs, like donepezil, rivastigmine, and tacrine, have been used as structural
models for molecular hybridization experiments (Figure 1) [6]. Tacrine was the first cholinesterase
(ChE) inhibitor that was approved by the FDA for the treatment of AD. However, the use of tacrine
is limited by its side-effects and, thus, searches for more compatible and potent tacrine derivatives
continue [7].
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On the other hand, monoamine oxidase (MAO)-A is primarily targeted for the treatment of
depression and anxiety, whereas MAO-B is targeted for AD and Parkinson’s disease, based on
their specificity, which is, MAO-A prefers serotonin, and MAO-B prefers phenylethylamine and
benzylamine [8]. Rasagiline is a MAO inhibitor, and its neuroprotective activity has been attributed
to the presence of a propargyl amine moiety, which suppresses the overexpression of Bax protein in
AD [9].

The complexity of AD militates against the use of consolidated mono-therapies and supports the
notion that dual MAO and acetylcholinesterase (AChE)-inhibitory activities are likely to have better
therapeutic effects in AD [10]. Ladostigil is an example of such multi-functional drugs, as it possesses
the neuroprotective effects of rasagiline and ChE inhibitory activity (Figure 1) [11]. Notably, most drugs
used to treat AD patients in palliative care settings are ChE inhibitors with some multifunctional
activity. Furthermore, many studies have shown that MAO inhibitors have attracted considerable
research interest in the context of halting or retarding the progression of AD [4].

Chalcones are versatile scaffolds and they are widely distributed in edible plants. Several
attempts have been made to synthesize novel biologically active chalcone derivatives due to their
wide-ranging biological activities [12–16]. Over recent decades, the MAO-B inhibitory activities
of chalcone derivatives have progressively appreciated [17], and many studies have reinforced the
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association between chalcone derivatives and potent MAO-B inhibition [18–35]. Recently, our group
reported that ethoxy and ethyl acetohydroxamate (Figure 2) functionalities on chalcone phenyl groups
confer significant MAO-B and AChE inhibitory effects [36,37].
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Figure 2. Structures of various biologically active compounds containing oxime moieties.

The oxime ethers are among the most important structural pharmaceutical motifs, for example,
they have been associated with transthyretin amyloid fibril formation [38], antibiotic (Cefmenoxime [39],
Aztreonam [40], Roxithromycin [41]), anti-inflammatory (Ridogrel) [42], antifungal (Oxiconazole) [43]
(Figure 2), and neuroleptic activities [44]. We considered manipulating the ethyl acetohydroxamate
functionality in ethyl acetohydroxamate chalcones by introducing an oxime to produce a range of
novel chalcone oxime ethers (COEs) with the objective of synthesizing drugs with MAO and AChE
inhibitory effects for the treatment of AD since oxime ethers have numerous biological properties and
ethyl acetohydroxamate chalcones have significant MAO-B and AChE inhibitory [37] (Figure 2) and
antiplasmodial [45] effects. Recently, we used Pd-catalyzed C-O cross-coupling reactions between
bromo-chalcones and aldoximes [46], or ketoximes [47] in order to synthezise the chalcones, as shown
in Scheme 1.
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Scheme 1. Pd-catalyzed C-O cross-coupling reactions of bromo-chalcones with oximes.

Herein, we report the abilities of our previously synthesized chalcone ketoxime ethers to inhibit
human MAOs (hMAOs) and AChE, kinetics, reversibility, and docking studies.
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2. Results and Discussion

2.1. Synthesis of COEs

Pd-catalyzed C-O cross-coupling was used to produce 24 COEs by reacting activated aryl bromides,
ketoximes, and chalcone oximes together, as shown in Scheme 2, and previously described [47].
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Scheme 2. Pd-catalyzed C-O coupling of activated aryl bromides with ketoximes and chalcone oximes.

The activated aryl bromides included aryl bromides bearing electron-withdrawing groups at the
4-position and bromo-chalcones. Screening phosphine ligands, Pd-catalyst, and solvents was utilized
to optimize the method.

2.2. Inhibitory Activities against MAO-A, MAO-B and AChE

The MAO-A, MAO-B, and AChE inhibitory activities of 24 synthesized COEs were evaluated
while using toloxatone, lazabemide, clorgyline, pargyline, and tacrine as reference molecules
(Table 1). The synthesized COEs were of two structural categories, that is, chalcone ketoxime or
chalcone-chalcone oxime hybrids. Nineteen of the 24 COEs showed residual MAO-B activities
of <50% at 1.0 µM and potently inhibited MAO-B with IC50 values of <1.0 µM (Table 1). Eight
of the 19 showed significant MAO-B inhibitory activities with IC50 values of <0.1 µM, and
compound COE-6 most potently inhibited MAO-B (IC50 = 0.018 µM), and COE-7 and COE-22 had
equally significant MAO-B inhibitory activity (both IC50 = 0.028 µM). Interestingly, COE-6 and
pargyline had an identical IC50 value (0.020 µM) and they were 2.33 and 105.6 times more potent
than lazabemide and clorgyline, respectively, and COE-6 was more potent than other chalcone
derivatives, (2E)-1-(4-ethoxyphenyl)-3-(4-fluorophenyl) prop-2-en-1-one (E7, IC50 = 0.053 µM) [36],
and ethyl (1E)-N-{4-[(1E)-3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl]phenoxy}ethanimidate (L3,
IC50 = 0.053 µM) [37]. Similarly, COE-7 and COE-22 were 1.5 and 68 times more potent than
lazabemide and clorgyline, respectively.

Twenty three of the 24 COEs showed residual MAO-A activities of >60% at 1.0 µM, but only
COE-13 had a residual activity of <50% at 1.0 µM (Table 1). Twenty-three of the COEs screened
relatively weakly inhibited MAO-A (IC50 > 4.0 µM). COE-13 had an IC50 value of 0.88 µM and it was 1.1
and 2.8 times more potent than toloxatone (IC50 = 0.99 µM) and pargyline (IC50 = 2.43 µM), respectively.
COE-13 also significantly inhibited MAO-B (IC50 = 0.13 µM) and, thus, had a low selectivity index (SI)
of 6.8. Twenty two of the 24 COEs inhibited MAO-B more than MAO-A, as was reflected by SI values
(defined as the ratio of the IC50 values of MAO-A to MAO-B). Of the 24 COEs, only COE-6, COE-7,
COE-8, COE-21, and COE-22, had high SI values. Compound COE-8 (IC50 = 0.042 µM) had the lowest
SI (182.9), and the most potent MAO-B inhibitor COE-6 (IC50 = 0.018 µM) had the second lowest (222.2).
The next most potent MAO-B inhibitors COE-7 and COE-22 (both had an IC50 of 0.028 µM) had SI
values of 392.9 and 778.6, respectively, and COE-21 (IC50 = 0.036 µM) had the second highest SI (441.7).
This result shows that the chalcone-chalcone oxime hybrids tend to inhibit MAO-B more selectively
than chalcone ketoxime hybrids.

AChE inhibition studies showed that only six compounds, COE-5, COE-9, COE-10, COE-19,
COE-21, and COE-22, had AChE residual activities of <50% at 10 µM with IC50 values of 7.06, 8.39,
9.42, 5.35, 9.65, and 4.39 µM, respectively. However, AChE inhibitions by these compounds were
approximately 22 times less than that of the reference tacrine. COE-22 most potently inhibited AChE
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and also inhibited MAO-B well and it had the highest SI value, which suggest its possible use for the
dual-targeting of MAO-B and AChE.

Table 1. Inhibitions of recombinant human MAO-A, MAO-B, and AChE by chalcone oxime ethersa.

Chalcone Oxime Ethers
(COEs)

Residual Activity (%) IC50 (µM)

MAO-A
(1.0 µM)

MAO-B
(1.0 µM)

AChE
(10 µM) MAO-A MAO-B AChE SIb

Chalcone-ketoxime ethers
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2.3. SARs for Inhibition Studies

Twenty two of 24 COEs included in the present study were selective MAO-B inhibitors (Table 1).
The activity results showed that the activity of the COEs depended on the structures and substituents
of oximes and chalcones. For example, in compounds COE-1 to COE-4, structures and the substituent
(-OMe) on the chalcone moiety were the same and substituents and structures of oximes differed.
The substituents on acetophenone oxime of the chalcone moieties of COE-1 and COE-2 had no
meaningful influence on MAO-B inhibition, whereas the conversion of acetophenone oxime (COE-1)
to benzophenone oxime (COE-3) and 1-indanone oxime (COE-4) on the chalcone moiety increased
MAO-B inhibition by 5.8 and 4.7 times, respectively. Similarly, the removal of –OMe from chalcone
and introduction of a F at the 4-position of acetophenone oxime of COE-1 greatly reduced the MAO-B
inhibitory activity of COE-5 (IC50 = 1.12 µM) four-fold. Introduction of F in place of the -OMe group
in chalcone moiety of COE-3 structure (IC50 = 0.048 µM) enhanced the MAO-B inhibitory activity of
the compound COE-7 (IC50 = 0.028 µM) 1.7-fold, which suggested that the presence of F increases
MAO-B inhibitory activity more than –OMe group, similar to other chalcone derivatives containing
F [48]. Similarly, replacement of the benzophenone oxime of COE-7 with cyclohexanone oxime in
COE-6 (IC50 = 0.028 µM) enhanced MAO-B inhibitory activity by 1.5-fold. The presence of a F in
acetophenone oxime in COE-5 (IC50 = 1.12 µM) and in COE-11 (IC50 = 1.82 µM) reduced MAO-B
inhibition, irrespective of the substituents on or the position of oxime in chalcone structure. The position
of the 1-acetonaphthone oxime in the chalcone structures of COE-8 (IC50 = 0.042 µM) and COE-14
(IC50 = 1.58 µM) also reduced MAO-B inhibitory activity. Similarly, the position of benzophenone
oxime in the chalcone structures of COE-3 (IC50 = 0.048 µM) and COE-15 (IC50 = 0.95 µM) significantly
altered MAO-B inhibitory activity. As a result, different ketoxime structures in the benzaldehyde
portion of the chalcone structure had significantly greater MAO-B inhibitory activities than ketoxime
structures in the acetophenone portion of chalcones. Our SAR study suggested that active oxime
groups (e.g., benzophenone oxime, cyclohexanone oxime, acetothiophene oxime, and 1-acetonaphthone
oxime) on benzaldehyde portions of chalcones and altering substituents and the structure on the
acetophenones portion of chalcones provide a means of enhancing MAO-B inhibitory activities.



Molecules 2020, 25, 2356 8 of 16

Of the three O-aryl chalcone oximes (COE-16, COE-17, and COE-18), two compounds, COE-17
and COE-18, showed significantly higher MAO-B inhibitory activities (IC50 = 0.72 and 0.85 µM,
respectively) than COE-16 (IC50 > 10 µM). This result implies that the presence of two -OMe groups in
the chalcone oxime structure greatly enhances MAO-B inhibition as compared with single -OMe group.
Moreover, replacing the O-aryl group with an O-chalcone group (viz. COE-19 to COE-23) improved
the MAO-B inhibitory activity. In the dimethoxy chalcone oxime series, a F in the acetophenone
portion of the chalcone, COE-22, resulted in excellent MAO-B inhibitory activity (IC50 = 0.028 µM),
as compared with unsubstituted (-H), COE-19 and –OMe substituted COE-20. The single -OMe
substituted chalcone oxime with -Me group in the acetophenone portion of the chalcone moiety
of COE-21 also showed significant difference in MAO-B inhibitory activity (IC50 = 0.036 µM). This
result suggests that electronegative groups enhance MAO-B inhibitory activity. The acetophenone
portion of chalcone containing the -OMe group in COE-20 significantly increased MAO-B inhibitory
activity, when compared to the benzaldehyde portion containing the same group in COE-23 (IC

50 = 0.35 vs. 0.15 µM). These SAR studies afford great scopes of opportunity to synthesize more potent
chalcone-chalcone oxime hybrid molecules, i.e., COEs.

No SAR study could be performed with respect to MAO-A inhibitory activity. Only one compound,
COE-13, showed significant MAO-A inhibitory activity with an IC50 value of 0.88 µM, which in itself
suggested that the presence of an acetothiophene oxime group in the acetophenone portion might
enhance the MAO-A inhibitory activity. Interestingly, COE-13 also inhibited MAO-A and MAO-B.

Similarly, only compound COE-22, a chalcone-chalcone oxime ether with a –F substituent,
inhibited AChE (IC50 = 4.39 µM). Thus, COE-22 may be considered a MAO-B and AChE dual inhibitor
for the treatment of neurodegenerative diseases.

2.4. Kinetics of MAO-B Inhibitions

Kinetic studies were performed on MAO-B inhibition by COE-6 and COE-22. Lineweaver–Burk
plots and secondary plots showed that COE-6 and COE-22 competitively inhibited MAO-B
(Figure 3A,C) with Ki values of 0.0075± 0.00067 and 0.010± 0.0035µM, respectively (Figure 3B,D). These
results suggest that COE-6 and COE-22 are potent, selective, and competitive inhibitors of MAO-B.

2.5. Reversibility Studies

Reversibility studies were conducted on MAO-B inhibition by COE-6 and COE-22. In these
experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered from 19.7 (AU) to 81.1% (AD)
and from 22.6 (AU) to 86.8% (AD), respectively (Figure 4), and these values were similar to those of the
reversible reference inhibitor lazabemide (from 2.4 to 76.4%). However, inhibition by the irreversible
reference inhibitor pargyline was only slightly recovered (from 3.7 to 10.4%). These experiments
showed that inhibitions of MAO-B by COE-6 and COE-22 were recovered to the reversible reference
level, which suggested that both are reversible inhibitors.

2.6. Computational Studies

Computational analyses were performed using QM-polarized docking and MM-GBSA calculations
in order to investigate the binding modes of COE-6 and COE-22 towards MAO-A and MAO-B and
with the purpose of clarifying the MAO-B selectivity of the two compounds. Table 2 reports calculated
docking scores and the ∆G binding values of the two compounds against MAO-A and MAO-B. In
agreement with in vitro IC50 values, COE-22 showed a better docking and MMGBSA scores for MAO-B
compared to MAO-A. Conversely, COE-6 did not show a significant gap in the docking score values
between MAO-B and MAO-A.

Compound COE-22 interacts with MAO-A and MAO-B with different binding modes (Figure 5).
The residues of MAO-A involved in COE-22 binding are Tyr62 and Lys218, which establish π and
cation-π interactions, respectively, with the para-fluorine phenyl ring, Lys341, which engages a hydrogen
bond with the carbonyl oxygen atom of the chalcone portion of COE-22, and Lys316, which forms a
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cation-π interaction with the para-methoxy phenyl ring, as shown on panel (a) of Figure 5. Notably, the
distance between the para-fluorine phenyl ring and aromatic rings of the flavin adenine dinucleotide
(FAD) molecule is ~11 Å. On the other hand, as shown on panel (b) of Figure 5, the residues of MAO-B
involved in COE-22 binding are similar to those hypothesized in previous studies [25], whereby the
para-fluorine phenyl ring of COE-22 is trapped within an aromatic cage made up of FAD, Tyr398,
and Tyr435. Furthermore, the para-fluorine phenyl ring, the para-methoxy styryl, and the chalcone
aromatic ring establish π−π interactions with Tyr398, Trp119, and Tyr236 (MAO-B selective residue),
respectively. In addition, the carbonyl oxygen of the chalcone scaffold of COE-22 forms a hydrogen
bond with the thiol group of Cys172.
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Table 2. Docking scores and ∆G binding values of lead compounds with MAO-A and MAO-B.

Compound
Docking Score (kcal/mol) ∆Gbinding (kcal/mol)

MAO-A MAO-B MAO-A MAO-B

COE-6 −10.128 −11.728 −58.64 −82.65
COE-22 −7.785 −13.452 −60.57 −87.94
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Figure 5. Top scored poses of COE-22 in the binding sites of MAO-A (a) and MAO-B (b). Proteins are
rendered as white cartoons, while ligands are rendered as yellow sticks. Green, blue and red arrows
indicate π−π interactions, cation-π interactions and hydrogen bonds, respectively. Y326, responsible
for MAO-B selectivity, is labeled red.

Docking analysis did not report meaningful differences for interactions of COE-6 towards MAO-A
and MAO-B. The para-fluorine phenyl ring of COE-6 is involved in π−π interaction with Tyr407 of
MAO-A, and it is trapped within an aromatic cage delimited by Tyr407, Tyr444, and FAD, unlike
COE-22, as shown on panel (a) of Figure 6. When considering MAO-B, the para-fluorine phenyl ring
of COE-6 engages π−π interaction with Tyr435 and faces the aromatic cage that is formed by Tyr435,
Tyr398, and FAD. Notably, the selective MAO-B residue Tyr326 establishes π−π interaction with the
chalcone aromatic ring, and Cys172 makes a hydrogen bond with the carbonyl oxygen of the COE-6
chalcone scaffold.

Docking studies carried out on COE-6 and COE-22 have proved that compound COE-22 had
the highest MAO-B affinity and appreciable selectivity. More specifically, COE-22 interacts with
MAO-A and MAO-B, but with different binding modes. In particular, in agreement with previous
findings [24–29], the chalcone head of COE-22 faces the FAD of MAO-B, whereas COE-6 adopts similar
poses for MAO-A and MAO-B, probably because of its smaller size. Interestingly, docking studies
successfully explained at the molecular level the different experimental affinities of COE-6 and COE-22
for the two MAO isoforms. In particular, the gain in binding for MAO-B was mostly supported by the
chance of forming π−π hydrophobic interaction with Tyr326. This is a key residue, which changed
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to I335 in MAO-A [49], capable of giving access to the binding pocket (for COE-22 compound) and
stabilizing the chalcone aromatic ring.
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3. Materials and Methods

3.1. Enzyme Assays

Recombinant hMAO-A and hMAO-B activities were assayed while using kynuramine (0.06 mM)
and benzylamine (0.3 mM) as substrates, respectively, as described previously [50]. The substrate
concentrations were 1.7 × and 1.9 × Km, respectively (Km = 0.036 and 0.16 mM, respectively). AChE
activity was measured using Type VI-S from Electrophorus electricus in the presence of 0.5 mM
5,5’-dithiobis(2-nitrobenzoic acid) and 0.5 mM acetylthiocholine iodide, as described previously [51,52].
Enzymes and chemicals were purchased from Sigma–Aldrich (St. Louis, MO, USA).

3.2. Analysis of Enzyme Inhibitions and Kinetics

The inhibitory activities of the 24 COEs synthesized against MAO-A and MAO-B were first
investigated at a concentration of 1.0 µM, and IC50 values were then determined. AChE inhibitory
activities were also determined, except at a concentration of 10 µM. Time-dependent inhibitions
and reversibilities were measured, and kinetic studies were performed on the most potent MAO-B
inhibitors, i.e., COE-6, and COE-22, as previously described [53]. Kinetic experiments were carried
out at five substrate and three inhibitor concentrations.

3.3. Analysis of Inhibitor Reversibility

The reversibilities of compounds COE-6, and COE-22 were analyzed while using a dialysis
method after preincubating with MAO-B for 30 min, as previously described [54]. Reversibilities were
determined for COE-6, COE-22, lazabemide (a reversible MAO-B reference inhibitor), and pargyline
(an irreversible MAO-B reference inhibitor) at ~2 × IC50 concentrations, i.e., 0.004, 0.050, 0.080, and
0.040 µM, respectively. Relative activities of undialyzed (AU) and dialyzed (AD) samples were used to
determine the reversibilities.

3.4. Computational Studies

The three-dimensional (3D) structures of MAO-A (PDB ID: 2Z5X) and MAO-B (PDB ID: 2V5Z)
were obtained from the Protein Data Bank. The protein preparation wizard available in the Schrödinger
suite was used to optimize X-ray crystal structures [55,56]. MAO-A and MAO-B active sites contained
nine and eight water molecules, respectively. The LigPrep tool was used to optimize ligand structures
and generate possible tautomers and ionization states at physiological pH. Docking simulations were



Molecules 2020, 25, 2356 13 of 16

carried out using the QM polarized ligand docking protocol available from Schrödinger Suite. While
retaining the rigidities of protein structures, QM polarized ligand docking allows for ligands with a
certain degree of conformational flexibility. Centers of mass of X-ray cognate ligands of MAO-A and
MAO-B structures were used as references for the cubic grid center.

The QM-polarized ligand docking protocol that was implemented in Glide was used with default
options. This protocol uses three computational steps, that is: a) a standard precision (SP) initial
docking using Glide; b) calculation of QM partial charges of the docked ligand based; and, c) a SP
re-docking phase for each ligand pose when considering computed QM based charges.

A Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) method was added to the
workflow for the calculation of the binding free energies (∆G) between protein and ligands in order to
estimate ligand-binding affinities. Such a method is implemented in Prime available in the Schrodinger
software 2018-2 (New York, NY, USA) [57]. Provided that ∆EMM is the minimized energy of the
ligand-protein complex, ∆Gsolv is the solvation energy, and ∆GSA is the binding energy of the surface
area of compounds, with respect to MAO-A and MAO-B, ∆Gbind values were computed, as follows:

∆Gbind = ∆EMM + ∆Gsolv + ∆GSA (1)

Obtained docking poses were minimized using Prime [57–59].

4. Conclusions

We evaluated the MAO-A, MAO-B, and AChE inhibitory activities of 24 previously synthesized
chalcone oxime ethers (COE-1–COE-24). Most of the COEs exhibited significant and selective
MAO-B inhibitory activity. Three compounds, viz., COE-6, COE-7 (chalcone-ketoxime ethers),
and COE-22 (chalcone-chalconeoxime ethers), potently inhibited MAO-B. However, only COE-13
(chalcone-ketoxime ethers) significantly inhibited MAO-A and MAO-B. Notably, COE-22 inhibited
AChE well and potently inhibited MAO-B. Both lead MAO-B inhibitors, COE-6 (chalcone-ketoxime
ethers) and COE-22, contained a F substitution, which once again supports the notion that fluorine
inclusion can have a profound effect on the biological activity. Reversibility and kinetics studies on
COE-6 and COE-22 showed that both potently, selectively, reversibly, and competitively inhibited
MAO-B. We hope this preliminary study on these novel COEs encourages medicinal chemists to further
explore MAO inhibition and conduct biological activity studies.
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