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Chronic graft-versus-host disease (cGVHD) is one of the most common reasons of late
non-relapse morbidity and mortality of patients with allogeneic hematopoietic stem cell
transplantation (allo-HSCT). While acute GVHD is considered driven by a pathogenic T cell
dominant mechanism, the pathogenesis of cGVHD is much complicated and involves
participation of a variety of immune cells other than pathogenic T cells. Existing studies
have revealed that antigen presenting cells (APCs) play crucial roles in the
pathophysiology of cGVHD. APCs could not only present auto- and alloantigens to
prime and activate pathogenic T cells, but also directly mediate the pathogenesis of
cGVHD via multiple mechanisms including infiltration into tissues/organs, production of
inflammatory cytokines as well as auto- and alloantibodies. The studies of this field have
led to several therapies targeting different APCs with promising results. This review will
focus on the important roles of APCs and their contributions in the pathophysiology of
cGVHD after allo-HSCT.

Keywords: chronic graft versus host disease, allogeneic hematopoietic stem cell transplantation, antigen
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a widely used life-saving
procedure for patients with hematopoietic malignancies including leukemia, lymphoma as well
as other non-malignant diseases related with bone marrow failure. However, its success is markedly
compromised by the development of graft-versus-host disease (GVHD) after transplantation due to
the histoincompatibility between donors and recipients. Donor alloreactive T cells are first primed
through recognition of host alloantigens presented by host antigen presenting cells (APCs), and less
often, by donor APCs. Upon preparative conditioning (including high dose chemotherapy and/or
total body irradiation) caused gastrointestinal tract or tissue damage, the released pathogen-
associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs)
stimulate the upregulation of costimulatory molecules and production of inflammatory cytokines
expressed in APCs. Such APCs subsequently drive the activation and differentiation of donor
alloreactive T cells into effector T cells which contribute to GVHD in target organs (1–3). According
to the time of onset and pathological mechanisms, GVHD can be divided into acute GVHD
(aGVHD) and chronic GVHD (cGVHD). aGVHD usually starts within the first 100 days after allo-
HSCT and is mediated mainly by infused donor alloreactive T cells in the grafts. Accompanied with
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the process of aGVHD, donor hematopoietic stem cells (HSCs)
engraft in host bone marrow and develop into various immune
cell lineages. Unfortunately, such donor-derived immune cells
could be dysfunctional and autoreactive due to the altered
microenvironment unable to support their normal development.
Many aGVHD survivors could further develop into subsequent
cGVHD which usually begins at a later stage (100 days to 2 years
after allo-HSCT), though earlier onset (termed overlap cGVHD
when concurrent with aGVHD) is also possible (4, 5).

cGVHD is a life-threatening complication which affects 30%–
70% patients who have received allo-HSCT (6–8), with prior
episode of aGVHD as the most potent risk factor. It remains a
leading cause of late non-relapse morbidity and mortality of
patients following allo-HSCT (9). The incidence of cGVHD has
been increasing in the past two decades attributed to increased
use of old age donors and unrelated/mismatched donors,
reduced intensity conditioning regimen and G-CSF mobilized
peripheral blood stem cells (G-PBSCs) instead of unmanipulated
bone marrow grafts (8, 10, 11). Several curative therapies against
aGVHD, such as corticosteroids and calcineurin inhibitors and
other immune inhibition drugs, have been successfully developed
(12). However, therapies for cGVHD are still challenging due to
our poor understanding on its much complex and obscure
pathogenesis (13). Conventional treatments for cGVHD are
glucocorticoids and immunosuppressive drugs which only
achieve disease remission in part of the patients (14, 15).
Moreover, systemic glucocorticoids often bring long-term
complications which increase morbidity and mortality in
patients with cGVHD (12, 16). In recent years, ruxolitinib (a
selective JAK1/2 inhibitor) has been used in patients with
steroid-refractory cGVHD which showed promising clinical
results (17). Other cell based therapy such as extracorporeal
photopheresis has also been found to benefit the treatment of
cGVHD although the immunological mechanism remains
elusive (18).
OVERVIEW OF CGVHD IN PATIENTS AND
MOUSE MODELS

GVHD is a complex immunological process involving both
innate and adaptive immune responses. cGVHD and aGVHD
have distinct pathogenesis albeit they share some common
clinical manifestations (19). Unlike aGVHD in which T cells
play dominant pathogenic roles (20), the pathogenesis of
cGVHD is comprehensive and involves the infiltration of
various inflammatory cells as well as the production of auto-
and alloantibodies. The complexity of cGVHD immunopathology
also indicates a dysfunction of immune tolerance in the hosts after
allo-HSCT, which may be part of the reasons for the
unresponsiveness of cGVHD patients to the commonly used
immunosuppressive agents (21). Tissue and organ damage
caused by donor T cell-mediated aGVHD is crucial for
initiating cGVHD. Depletion or inhibition of donor T cells in
the grafts by anti-lymphocyte antibodies and high-dose
cyclophosphamide in the early post-transplantation period
Frontiers in Immunology | www.frontiersin.org 2
could not only prevent aGVHD but also delay the onset of
cGVHD (22–25). cGVHD affects not only epithelial tissues
(gastrointestinal tract, lung, liver and skin), mostly targeted in
aGVHD, but also many other tissues/organs including oral,
esophageal, musculoskeletal, fascial, ocular, joint, and even
genital tissues (4, 26–29). Attributed to the introduction of
National Institute of Health (NIH) consensus criteria, the
diagnosis and scoring for cGVHD have been greatly improved
in the last two decades. Fibrosis is the most frequently observed
characteristic of cGVHD with cutaneous and pulmonary fibrosis
(tissue fibrosis manifesting as scleroderma and bronchiolitis
obliterans) as the definitive clinical manifestations (4, 30).

Since human cGVHD is very difficult to study mechanistically,
various mouse models of cGVHD have been developed in the last
decades (31–36). To recapitulate the natural evolution of clinical
cGVHD in human allo-HSCT patients, mouse models have been
designed with a more precise imitation of clinic procedures
including preparative conditioning (total body irradiation),
donor and recipient strain combinations (use semiallogeneic F1
mice or minor histoincompatible mice as recipients), and in some
models, use of G-CSF-mobilized splenocytes or peripheral blood
grafts instead of conventional bone marrow transplantation
(BMT) plus purified splenic T cells to induce cGVHD (37, 38).
These aspects permit recipients to survive aGVHD and give time
for auto- and alloreactive T cells and B cells to develop and cause
cGVHD. Inappropriate BMT conditions such as high dose total
body irradiation, or high T cell number in grafts, or use of fully
MHC-mismatched donors often correlate with an early mortality
(within a couple of weeks) after BMT as a result of severe
gastrointestinal aGVHD (20, 39). By adjusting to an optimal
BMT condition, an autoimmune-mediated pathology could be
induced 4-8 weeks after BMT attributable to chronic autoreactive
T cell activation and subsequent autoantibody production (40,
41). Considering of the different kinetics with clinical symptoms
observed in patients, the disease occurrence in mouse cGVHD
models is often absence or only happens at late stage after BMT. In
a mouse model of mixed hematopoietic chimerism, the
persistence of host B cells and high levels of circulating IgG
autoantibodies were found to be associated with the appearance of
sclerodermatous cGVHD-like lesions which were observed 7-9
months after BMT (42). In recent years, CD34+-stem-cell-
humanized NSG mice were found to develop cGVHD late after
transplantation (more than 24 weeks). These mice reproduce the
full spectrum of pleiotropism of human cGVHD in the absence of
prior aGVHD which may serve as a great model for cGVHD
related research (43).

In cGVHD, donor T cells developed from engrafted HSCs
could be both auto- and alloreactive capable of inducing similar
disease when adoptively transferred into secondary allogeneic or
syngeneic recipients (44, 45). In these mouse models, pathogenic
Th17 cells have been implicated to be causative to cGVHD as well
as their roles in aGVHD (46–48). Specific antibody-mediated
suppression of IL-17 producing cells reduces histopathological
damage of skin, salivary gland and liver in cGVHD (47). In
addition, T follicular helper (Tfh) cells play a part in cGVHD as
well through interaction with auto- and alloreactive germinal
February 2021 | Volume 12 | Article 614183
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center (GC) B cells via expression of both cell surface molecules
and IL-21 (41). The pathogenesis of cGVHD is also found to be
closely related with deficient development of regulatory cell
subsets such as regulatory T cells (Tregs) and regulatory B cells
(Bregs) (49, 50). In addition to the contributions of dysfunctional
lymphocytes, pathogenic macrophages play important roles in the
development of cGVHD, indicating a mutlifactorial pathogenesis
of the disease (51, 52). Based on the studies of mouse models, the
pathophysiological and immunological evolution of cGVHD
should include at least 4 major mechanisms: distorted T cell
negative selection in injured host thymus, lack of regulatory cell
populations, macrophage-mediated multi-organ fibrosis and loss
of B cell tolerance (50–53). cGVHD is a result of immune
imbalance between inflammatory immune responses and
inhibitory immune mechanisms that maintain immune
tolerance. Given that APCs play critical roles in initiation of
auto- and alloreactive T cell responses, development/maintenance
of central/peripheral immune tolerance, production of profibrotic
cytokines as well as auto- and alloantibodies, they are likely
important contributors to the development of cGVHD. Below,
Frontiers in Immunology | www.frontiersin.org 3
we review the existing literatures of the functions and contributions
of APCs in the pathogenesis of cGVHD (Table 1).
DYSREGULATION OF CENTRAL AND
PERIPHERAL T CELL TOLERANCE BY
DENDRITIC CELLS IN CGVHD

Dendritic cells (DCs) at steady state play dual roles in the induction
of T cell-mediated adaptive immune response and maintenance of
immune tolerance (72, 73). In cGVHD settings after allo-HSCT,
DCs are crucial for initiating pathogenic T cell activation in
periphery. Their dysfunction also causes failure of autoreactive T
cell education in host thymus and loss of T cell peripheral tolerance
which contribute to the pathogenesis of cGVHD.

Preclinical Data
During normal thymopoietic development, autoreactive T cells
are depleted in the thymus as a result of negative selection which
TABLE 1 | Distinct origins and functions of antigen presenting cells (APCs) in chronic graft-versus-host disease.

Cell type Origin Function Mouse model/
Patient

DCs Donor Regulate T cell central tolerance (44)
May influence T cell peripheral tolerance (54, 55)
Impaired cDC expression of MHCII leads to a failure of Treg development (50)
GM-CSF induced CD4+CD8- DCs promote Treg expansion (56)

(H2-Ab1-/-)
B6!C3H (44)
Patients (54, 55)
B6!B6D2F1 (50)
BALB/c!B6 (50)
B10.D2!BALB/c
(56)

Host NA NA
B cells Donor Production of autoantibodies (57, 58)

Production of autoanitbodies (59, 60)
Promote the expansion of donor autoreactive T cells (61)
Interaction with Tfh cells (41, 62, 63)
Altered B-cell homeostasis, over-activation of IgG producing B cells, increased numbers of circulating pre-GC B cells and
post-GC plasmablast-like cells (64)

DBA/2!BALB/c
(57)
B6!B10.BR (58)
Patients (59, 60)
DBA/2!BALB/c
(61)
B6!B10.BR (41)
B6!B6D2F1 (62)
Bm12!B6 (62)
DBA/2!BALB/c
(63)
Patients (64)

Host Produce autoantibodies in a mixed chimerism mouse model (42) FVB!BALB/c (42)
Macrophages Donor Mediate fibrosis via producing of profibrotic TGF-b, induce the differentiation of fibroblasts into collagen-producing

myofibroblasts, promote collagen synthesis and deposition (65, 66)
Activate and interact with Th17 cells (67)
Induce a strong T cell infiltration in the buccal mucosa and labial salivary glands (68)
CSF-1 dependent BM derived M2 macrophages induce pathogenesis of cGVHD via expression of CD206 and production
of TGF-b (51)
M2 macrophage over-activation and increased oxidative stress (69)

B6!B10.BR (65)
B10.D2!BALB/c
(65)
B10.D2!BALB/c
(66)
HSPCs!hIL-6 Tg
NSG* (67)
Patients (68)
B6!B6D2F1 (51)
Patients (69)

Host NA NA
mTECs Donor Restore T cell central tolerance and ameliorate cGVHD by adoptive transfer of donor derived TEC progenitors (70) B6!BALB/c (70)

Host Defective T cell negative selection in thymus due to damage of mTECs (71) B6!BALB.B (71)
February 2021 | Volume
*In this study, cord blood-derived human CD34+CD38-CD45RA- haematopoietic stem/progenitor cells (HSPCs) were transferred into sublethally irradiated hIL-6 transgenic NSG mice.
NA, data not available.
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is mediated by the medullary thymic epithelia cells (mTECs) and
the presence of intrathymic autoantigen presenting DCs (73–76).
However, in allogeneic BMT scenario, preparative conditioning
regimen and donor T cell-mediated aGVHD could damage host
thymus and impair thymopoiesis, resulting in dysfunction of
negative selection and subsequent release of auto- and
alloreactive T cells into periphery (77–79). Allogeneic BMT
recipient animals of MHC class II deficient bone marrow grafts
developed cGVHDwhich can be prevented by prior thymectomy
(44), indicating a regulatory role of donor DCs in T cell central
tolerance during cGVHD. Donor T cells escaped from the
thymus of recipient of MHC class II deficient bone marrow
grafts are autoreactive and pathogenic owing to the dysfunction
of DCs and can cause cGVHD when transferred into secondary
recipient mice (44). Interestingly, even host T cells become
pathogenic in the absence of DC-mediated central tolerance.
Unlike radioresistant tissue-resident macrophages, host DCs are
radiosensitive and replaced by donor cells shortly after
transplantation. A study reported that host T cells derived
from radioresistant intrathymic T cell precursors escaped
negative selection in mice lack of host intrathymic DCs and
caused dermal fibrosis in mouse cGVHD model (80). After
escaping from dysfunctional thymus, auto- and alloreactive T
cells further differentiate into effector T cells in periphery. DCs
are well known as the most potent professional APCs in eliciting
peripheral naïve T cell activation. While host DCs are rapidly
eliminated early after allo-HSCT, donor DCs predominate in
peripheral tissues and contribute to the development of cGVHD
by presenting both host and donor antigens to activate donor T
cells via indirectly antigen presentation (81, 82).

Clinical Data
Although the appearance of donor DCs occurs early after allo-
HSCT, their reconstitution is impaired and requires a long
period of time to complete. Conventional DCs (cDCs) and
plasmacytoid DCs (pDCs) are two major DC subsets both of
which contribute to the induction of donor T cell tolerance
against host organs after allo-HSCT (73, 74, 83). A study of
pediatric allo-HSCT revealed that cDC numbers returned to
normal level within 300-400 days after transplantation while
pDC numbers recovered very slowly in these pediatric patients
and were always lower than their age-matched healthy controls
up to 7 years after transplantation (54). Another study reported
that allo-HSCT patients with sooner or higher pDC recovery
profile correlated with improved overall survival, indicating pDC
count in peripheral blood of allo-HSCT patients is a significant
predictor of long-term outcome after allo-HSCT (55).

Pathophysiologic Interpretation and
Therapeutic Implications
DCs maintain T cell immune tolerance in both thymus and
periphery. Peripheral T cell tolerance can be induced via direct
interaction of inhibitory signaling molecules PD-L1/PD-1 and
(CD80/86)/CTLA4 expressed on the surface of DCs and T cells,
respectively (84–86). Besides, DCs could also promote donor T
cell tolerance via expansion of Tregs. In addition to IL-2
dependency, Tregs require costimulatory signals from DCs for
Frontiers in Immunology | www.frontiersin.org 4
their optimal activation and proliferation. Tregs play important
roles in the control of pathogenic T cell response and
dysfunctional Treg development could cause various
autoimmune diseases (87, 88). Decreased numbers of circulating
Tregs were found to be correlated with cGVHD in both preclinical
and clinical studies (40, 89–91), and adoptive transfer of Tregs
could effectively ameliorate cGVHD (92, 93). DCs are important
for their role in the induction and maintenance of Tregs and this
function is mediated through a MHC class II-dependent
interaction (94). It was found that an inflammatory cytokine
milieu dominated by TNF during GVHD impairs the MHC class
II antigen presentation pathway of cDCs, while MHC class I
presentation remains largely intact, and leads to a failure in Treg
development which results in a loss of immune tolerance in
cGVHD (50, 95). Promoting Treg expansion is a promising
approach to prevent cGVHD. Low-dose subcutaneous injection
of IL-2 has shown to effectively expand Tregs in vivo and
ameliorate cGVHD (96–99). A recent study reported that GM-
CSF treatment increased CD4+CD8- DC number and promoted
DC-dependent Treg expansion, thus protected mice against the
development of skin cGVHD (56), validating an indirect strategy
to prevent cGVHD via strengthening DC and Treg interaction.
ACTIVATION AND INFILTRATION OF
DONOR MACROPHAGES CONTRIBUTE
TO CGVHD

Macrophages are remarkably plastic innate immune cells which
can be found in all tissues and exhibit a vast functional diversity
in development, maintenance of microenvironment
homeostasis, tissue damage repair as well as innate immunity
and adaptive immunity (100–102). Tissue-resident macrophages
differ from monocyte-derived macrophages in terms of origin,
which has been widely investigated in the last decade as immune
sentinels in immune defense and resolution of inflammation
(103). They are of embryonic origin and found to reside in
majority peripheral tissues and organs, replenished by self-
renewal independent of bone marrow monocyte replacement
at steady state. However, after allo-HSCT, tissue-resident
macrophages can be replaced by donor monocyte-derived
macrophages which contribute to the pathogenesis of cGVHD.

Preclinical Data
In mouse models, accumulating studies support the concept that
donor-derived macrophages could facilitate and intensify the
pathophysiology of cGVHD (37, 51, 67, 104). It has been
revealed that inhibition of donor macrophage infiltration in
tissues and organs could ameliorate mouse cGVHD (65). CSF-
1 axis controls macrophage development, differentiation and
survival and is critical for monocyte-derived macrophage
reconstitution after allo-HSCT. In IL-17-dependent cGVHD
models of scleroderma and bronchiolitis obliterans, donor
bone marrow-derived macrophages were found infiltrating the
skin and lung in a CSF-1/CSF-1R-, but not CCL2/CCR2- or GM-
CSF/GM-CSFR-, dependent manner and contribute to the
February 2021 | Volume 12 | Article 614183
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pathogenesis of cGVHD. These macrophages express CD206
and TGF-b but not iNOS, identifying them as M2 macrophages
(51). Administration of CSF-1R blocking antibodies significantly
reduced HSP47+ myofibroblasts in the skin, indicating a
macrophage-dependent accumulation of myofibroblasts in
cGVHD (66). The origin of macrophages is important for their
profibrotic gene expression as evidenced by a finding that
monocyte-derived alveolar macrophages differ significantly
from tissue-resident alveolar macrophages and drive lung
fibrosis after BMT (105).

Clinical Data
In allo-HSCT scenario, host derived tissue-resident macrophages
are eliminated and replaced by donor monocyte differentiated
tissue resident macrophages with M2 phenotype which are found
associated with the development of cGVHD. CD163, a scavenger
receptor with immunoregulatory properties, is expressed mainly
on M2 macrophages. Examination of biopsy specimens from
patients with skin GVHD showed that increased infiltration of
CD163+ M2 macrophages was a significant predictor for
refractory GVHD and poor prognosis (106). Soluble CD163
(sCD163) accumulates in the blood of hosts under oxidative
stress or severe inflammatory conditions, as a result of direct
secretion by activated macrophages or cleavage of membrane-
bound CD163 from cell surface by matrix metalloproteinases
(107–110). Intriguingly, plasma sCD163 in allo-HSCT patients is
a high risk predictor of cGVHD, indicating a role of M2
macrophage activation and oxidative stress in the pathogenesis
of cGVHD (69). Macrophage-derived chemokine and CC
chemokine receptor 4 were also found to be closely associated
with strong T cell infiltration in the buccal mucosa and labial
salivary glands in cGVHD patients (68).

Pathophysiologic Interpretation and
Therapeutic Implications
Activated donor-derived macrophages could mediate tissue
fibrosis via production of profibrotic cytokine TGF-b, which
induces the differentiation of fibroblasts into collagen-producing
myofibroblasts capable of promoting collagen synthesis and
deposition in cGVHD (65, 66, 111, 112). Pirfenidone, approved
by U.S. Food and Drug Administration (FDA) for idiopathic
pulmonary fibrosis, can also ameliorate cGVHD by inhibiting
macrophage infiltration and TGF-b production (65). A recent
study found that type 2 cannabinoid receptor expressed on
macrophages played a critical role in the regulation of cGVHD
and therapeutic targeting of this receptor by agonist showed
beneficial effect in a sclerodermatous cGVHD model (113).
Additionally, macrophages could contribute to the pathogenesis
of cGVHD via interaction with T cells. In cGVHD, alloreactive T
cells activate and differentiate into Th1/Tc1, Th17/Tc17, and Tfh
cell paradigms in the presence of inflammatory cytokines such as
IL-6 and IL-12, while Th17/Tc17 cells play a central role in
cGVHD pathophysiology (46–48). IL-17 is a key mediator of
pathology in cGVHD and it controls the infiltration of F4/80+

macrophages into skin which facilitate the development of
scleroderma (51). It should be noted that both pathogenic
Frontiers in Immunology | www.frontiersin.org 5
macrophages and T cells share some common cytokine
requirement. IL-6 is a multifunctional inflammatory cytokine
which can activate macrophages and also drive the differentiation
of pathogenic Th17 cells. By using a humanized cGVHD mouse
model through engraftment of human hematopoietic stem/
progenitor cells into hIL-6 transgenic recipient mice, Rintaro
et al. reported that co-activation of macrophages and T cells
were found in lung and liver and contribute to the pathogenesis
of cGVHD (67). IL-6 gene polymorphism is closely associated with
the pathogenesis of cGVHD and anti-IL-6R monoclonal antibody
(tocilizumab) has been reported to ameliorate cGVHD in some
allo-HSCT patients (114, 115).
LOSS OF B CELL TOLERANCE IN CGVHD

At steady state, B cells develop in bone marrow and undergo
negative selection which leads to a state of B cell central tolerance
to avoid production and release of autoreactive B cells into
periphery. Loss of B cell tolerance and aberrant activation of
peripheral B cells contribute to the development of cGVHD
(116–118).
Preclinical Data
An intact bone marrow microenvironment is critical for normal
B cell lymphopoiesis. Osteoblasts, which could form bone
marrow stromal niche for HSCs and B cell progenitors, are
targeted by donor pathogenic T cells in GVHD (119, 120).
Interestingly, protection of osteoblasts from T cell-mediated
damage, by a Treg-expanded graft infusion, could maintain the
bone marrow niche for early B cell progenitors and increase the
number of pro-B, pre-B and immature B cells in bone marrow
and ameliorate cGVHD (121). Aberrant B cell negative selection
in host bone marrow causes release of auto- and alloreactive B
cells into periphery. These B cells migrate into secondary
lymphoid organs and encounter auto- and alloantigens,
become activated and then differentiate into plasmablasts or
memory B cells via interaction with Tfh cells. Through their
expression of cell surface molecules and IL-21, Tfh cells promote
mature B cell proliferation, differentiation and secretion of auto-
and alloantibodies in cGVHD (41, 62, 122). Both Tfh cells and
GC B cells are involved in cGVHD and their functions are
mutually dependent. Depletion of B cells could suppress Tfh cells
in addition to GC formation in cGVHD (63). These data indicate
that T-B cell interaction is an important contributor to the
pathogenesis of cGVHD. Interestingly, it was reported that
donor B cells in transplants, activated by donor T cells, are also
efficient APCs to augment the initial clonal expansion and survival
of donor autoreactive T cells which are capable of mediating
autoimmune-like cGVHD (61). Recently, a study by Deng et al.
has reported that extrafollicular CD4+ T and B cell interactions are
more important and sufficient for inducing cGVHD, while GC
formation is dispensable (123). They identified PSGL-1lowCD4+

pre-Tfh-like extrafollicular T cells that were critical for the
pathogenesis of cGVHD owing to their interaction with B cells,
February 2021 | Volume 12 | Article 614183
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indicating a much complex mechanism of T-B cell interaction in
the pathogenesis of cGVHD.

Clinical Data
It was originally found in a case report that a cGVHD patient
who developed refractory immune-mediated thrombocytopenia
after allo-HSCT responded to B cell depletion therapy (124).
This finding provided evidence of B cell dysfunction in the
immunopathology of cGVHD and suggested a potential way of
cGVHD prevention by B cell depletion. B cell development
deficiency is often observed in cGVHD patients, indicating an
aberrant bone marrow microenvironment failed to support
normal B cell lymphopoiesis and selection during cGVHD
(125, 126). Insufficient B lymphopoiesis causes post-
transplantational B cell deficiency with decreased bone marrow
B cell precursors which has been reported in both aGVHD and
cGVHD patients after allo-HSCT (127, 128). In addition, there is
increasing evidence showing that aberrant peripheral B cell
expansion is a feature of cGVHD owing to their dysfunctional
regulation of activation and proliferation. For instance, B cells
from patients with active cGVHD are in a heightened metabolic
state and resistant to apoptosis due to deficient expression of
proapoptotic molecule Bim (129). B cell activating factor of the
tumor necrosis family (BAFF), which is produced by
macrophages, monocytes, DCs, T cells and stromal cells, plays
important roles in B cell metabolism, survival and maintaining
autoreactive B cell clones (130–132). In cGVHD patients,
increased BAFF concentrations and higher BAFF/B-cell ratios
correlate with increased numbers of circulating pre-GC B cells
and post-GC plasmablast-like cells (64). These circulating
pathogenic B cells are capable of autoantibody production
without requiring additional antigen stimulation. Besides, other
molecules regulating B cell activation and proliferation could
also contribute to B cell-mediated pathogenesis in cGVHD.
Increased NOTCH2 activation was found to be closely related
with robust BCR responsiveness to alloantigens in B cells from
cGVHD patients and suppression of BCR-NOTCHhyperactivation
by all-trans retinoic acid could reduce NOTCH2 signaling and
prevent B cell proliferation while maintaining functional B cell
responses (133).

Pathophysiologic Interpretation and
Therapeutic Implications
Production of multiple auto- and alloantibodies is a hallmark of
cGVHD, and a variety of auto- and alloantibodies have been
found to be associated with the severity of cGVHD (134–137). In
mouse cGVHD models of scleroderma and bronchiolitis
obliterans, these auto- and alloantibodies are found not only the
outcome of dysfunctional B cell activation during cGVHD, but
also could be causative to cGVHD pathogenesis (57, 58).
Alloantibodies against H-Y minor histocompatibility antigens
are significantly associated with cGVHD and disease remission
(59). Autoantibodies against platelet-derived growth factor
receptor have been found to play a role in the development of
skin and lung fibrosis in cGVHD via stimulating type I collagen
gene expression through the Ha-Ras-ERK1/2-ROS signaling
Frontiers in Immunology | www.frontiersin.org 6
pathway (60). It has been reported that microRNA-17-92
expression is required for alloantibody production and IgG
deposition in the skin in cGVHD (138). A recent study found
that checkpoint regulator SLAMF3 could modulate the activation
thresholds of B cell subsets and SLAMF3 blockade markedly
enhanced autoantibody production in cGVHD, thereby
revealing a role of SLAMF3 in the negative regulation of
cGVHD via preventing the expansion of autoreactive B cells
(139). Since aberrant activation of B cells contributes to the
pathogenesis of cGVHD, approaches directly targeting the key
downstream kinases of B cell activation have been developed for
cGVHD treatment with promising results. Ibrutinib was designed
as a selective inhibitor of Bruton’s tyrosine kinase (BTK) and
became the first FDA-approved drug for the treatment of steroid-
refractory cGVHD in 2017 (140). A small molecule inhibitor of
Syk has been found effective in the therapy of cGVHD in mouse
models (32, 141). Fostamatinib, a Syk inhibitor drug approved by
FDA for the treatment of immune thrombocytopenia, is now
under clinical evaluation in patients with cGVHD.
FUNCTIONS OF OTHER APCS IN CGVHD

Among the non-hematopoietic APCs (e.g., epithelial or stromal
cells), mTECs play important roles in the induction of T
lymphocyte central tolerance and the pathogenesis of cGVHD.
Damage of recipient mTECs caused by alloreactive T cells in the
donor grafts leads to defective negative selection of donor T cells
and release of autoreactive CD4+ T cells into periphery which
contribute to the development of cGVHD (71, 77, 142). A recent
study has found that transplantation of donor-derived TEC
progenitors into cGVHD recipients could restore immune
tolerance and ameliorate cGVHD (70). In periphery, non-
hematopoietic APCs initiate the initial priming of alloreactive
T cells independent of hematopoietic APCs while the latter
contribute to the intensification of GVHD (143–145), although
most of these studies are based on mouse models of aGVHD.
Considering the chronic inflammation and continuing existence
of alloreactive T cells in cGVHD, detailed investigation on the
role of peripheral non-hematopoietic APCs in pathophysiology
of cGVHD is merited.
CONCLUDING REMARKS

While traditional treatments of cGVHD with corticosteroids and
other immune suppressive agents are facing more and more
challenges, it is of great interest to discover key cellular targets to
interfere the pathogenesis of cGVHD. Detailed investigation on
APCs in the pathophysiology of cGVHD will provide insights
into new potential therapeutic treatments, especially for patients
with steroid-refractory cGVHD. Attributed to the broad
investigations based on mouse cGVHD models, the functional
contributions of different APCs to the pathogenesis of cGVHD
have been uncovered which were considered to be promising
targets for cGVHD treatment (Figure 1). These findings in
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mouse cGVHDmodels have been translated into the development
of clinical medicines some of which have already showed
beneficial results in clinical trials to treat patients with cGVHD
(32, 65, 140, 141). However, challenges still remain due to the
differences of pathogenesis and kinetics of disease occurrence
between mouse models and patients with cGVHD. In addition,
there is still lack of effective guidance for selection of optimal
therapies for individual patients and none of the drugs available in
clinic is effective for all patients with cGVHD. Considering the
complexity of cGVHD pathophysiology, comprehensive strategies
aiming at multiple APC targets may prove to be more promising
in the future.
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FIGURE 1 | Schematic overview of the functional contributions of APCs to cGVHD. Conditioning regimens such as irradiation, chemotherapy as well as aGVHD
cause host thymus damage. Thymic dysfunction contributes to the defective T cell negative selection and release of auto-/alloreactive T cells into periphery. These
Th0/Tc0 cells are activated by host or donor DCs and differentiate into auto-/alloreactive Th17/Tc17 and T-follicular helper (Tfh) cells. In germinal center, Tfh cells
produce IL-21 which results in activation and expansion of allo-/autoreactive B cells. Elevated levels of BAFF could also contribute to the aberrant B cell expansion.
These auto-/alloreactive B cells differentiate into plasmablasts or plasma cells which produce auto-/alloantibodies. Host tissue resident macrophages are eliminated
and replaced by donor monocyte derived tissue resident macrophages. These macrophages recruit auto-/alloreactive Th17/Tc17 cells via production of chemokines.
After migration into target organs, auto-/alloreactive Th17/Tc17 cells further secrete IL-17 to induce more macrophage infiltration. Under the influence of multiple
cytokines such as CSF-1, IL-13 and IL-6, donor monocyte derived macrophages are polarized into TGF-b-producing M2 macrophages. The profibrotic cytokine
TGF-b, together with auto-/alloantibodies, contribute to the pathogenesis of cGVHD via inducing fibroblast differentiation into myofibroblasts which promote collagen
synthesis and deposition in target organs and tissues. ECP, extracorporeal photopheresis; Fostamatinib, a Syk inhibitor; Ibrutinib, Bruton’s tyrosine kinase inhibitor;
Pirfenidone, an anti-fibrotic drug; Ruxolitinib, a selective JAK1/2 inhibitor; Tocilizumab, anti-IL-6R monoclonal antibody.
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